Investigation of Intrinsic Stress and Transport Properties of Fe/P-Si (001) Schottky Heterojunction

Authors

  • Anirban Sarkar Department of Physics & Meteorology, Indian Institute of Technology, Kharagpur, India
  • S. Bhaumik Department of Physics & Meteorology, Indian Institute of Technology, Kharagpur, India
  • R. Adhikari Department of Physics & Meteorology, Indian Institute of Technology, Kharagpur, India
  • A. K. Das Department of Physics & Meteorology, Indian Institute of Technology, Kharagpur, India

DOI:

https://doi.org/10.15379/2408-977X.2014.01.01.5

Keywords:

Intrinsic stress, Magnetoresistance, Schottky diode.

Abstract

We present a comprehensive study on the growth morphology, the electrical and magnetic transport properties of thin iron (Fe) film on p-Si(100) substrate. The structural analysis revealed the growth of an amorphous Fe film, with low crystalline ordering and granular structure. The resistivity of the film was observed to deviate from the usual metallic behavior at lower temperature revealing a tunneling type conductance. This was also reflected in the magnetoresistance measurement of the film. The film show high positive (negative) magnetoresistance at all temperatures (below 10 K) on application of out-of-plane (in-plane) magnetic field. The current-voltage (I-V) measurement of Fe/p-Si Schottky heterojunction exhibits good rectifying property. The ideality factor (n) and Schottky barrier height (fb) of the device, at room temperature, were obtained from fitting the I-V curves. The carrier concentration of the semiconductor substrate was evaluated from the capacitance-voltage (C-V) measurements. From the measurements large deviation from the ideal value of the diode parameters was observed. All the results thus obtained show a strong correlation between the stress and the transport measurements.

References

Žutic I, Fabian J, and Sarma SD. Rev. Mod. Phys.2004; 76: 323.

Hanbicki AT, Van ’t Erve OMJ, Magno R, KioseogloucG, Li CH, Jonker BT, Itskos G, Mallory R, Yasar M, and Petrou A. Appl. Phys. Lett. 2003; 82: 4092.

Hall KC and Flatté ME. Appl. Phys. Lett. 2006; 88: 162503.

Zhu HJ, Ramsteiner M, Kostial H, Wassermeier M, Schönherr HP, and Ploog KH. Phys. Rev. Lett. 2001; 87: 016601.

Klokholm E, and Berry BS. J. Electrochem. Soc. 1938; 118: 823.

Wulfhekel W, Knappmann S and Oepen HP. J. Appl. Phys. 1996; 79: 988.

Sarkar A, Adhikari R, and Das AK. Current Science 2013; 104: 826.

Klockholm E. Rev. Sci. Instru. 1969; 40: 1054.

Sander RD, Enders A, and Kirschner. J. Rev. Sci. Instru. 1995; 66: 4734.

Koch R, Leonhard H, Thurner G, and Abermann R. Rev. Sci. Instru. 1990; 61: 3859.

Langier M. Thin Solid Films 1981; 75: 213.

du Trémolet de Lacheisserie E, and Peuzin JC. J. Magn. Magn. Mater. 1994; 136: 189.

Finegan JD and Hoffman RW. J. Appl. Phys. 1959; 30: 587.

Hoffman RW, in Physics of Thin Films, edited by G. Haas and R. E. Thun (Academic Press, New York, 1966), Vol. 3.

Hoffman RW. Thin Solid Films 1976; 34: 185.

M. Weber, R. Koch, and K. H. Rieder. Phys. Rev. Lett. 1994; 73: 1166.

Glazman LI, and Matveev KA. Sov. Phys. JETP 1988; 67: 1276.

Mallik R, Sampathkumaran EV, and Paulose PL, Appl. Phys. Lett.1997; 71: 2385 and reference thereon.

Peng DL, Sumiyama K, Konno TJ, Hihara T, and Yamamuro S. Phys. Rev. B 1999; 60: 2093 and reference thereon.

Sze SM. Physics of Semiconductor Devices, 2nd ed. (Wiley, NY, 1981).

Cheung SK, and Cheung NW, Appl. Phys. Lett. 1986; 79: 85.

Downloads

Published

2014-08-28

Issue

Section

Articles