Fundamental Properties and Origin of the High-Tc Cuprate Superconductors: Development of Concepts

Authors

  • A. Bechlaghem Faculté des Sciences de la Nature et de la Vie, Université d’Oran, Es-sénia, 31100, Algeria

DOI:

https://doi.org/10.15379/2408-977X.2014.01.01.3

Keywords:

Electron-phonon interaction, Magnetic excitations, Van Hove singularity, Gap energy, Pseudogap, Coherence length, Isotope coefficient, Superconducting gap ratio

Abstract

After a review of the fundamental properties of the high-Tc cuprate superconductors, we evaluate and study the major parameters of these compounds. In this approach, we consider the attractive interaction is due to the phonons at low temperature, but at high temperature it is related to the magnetic excitations. Analytical expressions for the coherence length x, the isotope coefficient a and the superconducting gap ratio R = 2D(0)/kBTC are obtained for the case where the Fermi level is close to the van Hove singularity. This model explains simultaneously high Tc, large gap energy D(0), short coherence length x and small values of the isotope coefficient a . Our theoretical values are in a good agreement with experimental results.

References

Bednorz JG, Müller KA. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z Phys B. 1986; 64(2): 189-193.

Chaudhuri I, Taraphder A, Ghatak SK. Pseudogap and its influence on normal and superconducting states of cuprates. Physica C. 2001; 353 (1-2): 49-59.

Tallon JL, Bernhard C, Shaked H, Hitterman RL, Jorgensen JD. Generic superconducting phase behavior in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7-?. Phys Rev B. 1995; 51(18): R12911-R12914.

Markiewicz RS. A survey of the van Hove scenario for high-Tc superconductivity with special emphasis on pseudogaps and striped phases. J Phys Chem Solids. 1997; 58(8): 1179-1310.

Markiewicz RS, Sahrakorpi S, Lindroos M, Lin H, Bansil A. One-band tight-binding model parametrization of the high-Tc cuprates including the effect kz dispersion. Phys Rev B. 2005; 72(5): 054519-054531.

Das T, Markiewicz RS, Bansil A. A competing order scenario of two-gap behavior in hole doped cuprates. arXiv:0711.0480v1 [cond.mat.supr-con] 3 Nov 2007.

Borne AJH, Carbotte JP, Nicol EJ. Signature of pseudogap formation in the density of states of underdoped cuprates. arxiv:1006.3232v1[cond-mat.supr-con] 16 Juin 2010.

Kanigel A, Norman MR, Randeria M, Chatterjee U, Souma S, Kaminski A, et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Physics. 2006; 2: 447-451; Kanigel A, Chatterjee U, Randeria M, Norman MR, Souma S, Shi M, et al. Protected nodes and the collapse of Fermi arcs in high-Tc cuprate superconductors. Phys Rev Lett. 2007; 99(15): 157001-157004.

Moca CP, Tifrea I, Crisan M. An analytical approach for the pseudogap in the spin fluctuations model. J Supercond Incorp Novel Mag. 2000; 13(3): 411-416.

Dzhumanov S, Ganiev OK, Djumanov SS. Novel isotope effects on the pairing pseudogap in high-Tc cuprates: Evidences for polaronic metal and precursor BCS-like pairing of large polarons. arXiv:1006.2892v1[cond.mat.supr.con] 15 Juin 2010.

Welp U, Kwok WK, Crabtree GW, Vandervoort KG, Liu JZ. Magnetic measurements of the upper critical field of YBa2Cu3O7-? single crystals. Phys Rev Lett. 1989; 62(16):1908-1911.

Hao Z, Clem JR, McElfresh MW, Civale L, Malozemoff AP, Holtzberg F. Model for the reversible magnetization of high-? type-II superconductors: Application to high-Tc superconductors. Phys Rev B. 1991; 43(4): 2844-2852.

Brandstätter G, Sauerzopf FM, Weber HW, Ladenberger F, Schwarzmann E. Upper critical field, penetration depth, and GL parameter of Tl-2223 single crystals. Physica C. 1994; 235-240(3): 1845-1846.

Li Q, Suenaga M, Hikata T, Sato K. Two-dimensional fluctuations in the magnetization of Bi2Sr2Ca2Cu3O10. Phys Rev B. 1992; 46(9): 5857-5860.

Batlogg B, Kourouklis G, Weber W, Cava RJ, Jayaraman A, White AE, et al. Nonzero isotope effect in La1.85Sr0.15CuO4. Phys Rev Lett. 1987; 59(8): 912-914.

Batlogg B, Cava RJ, Jayaraman A, van Dover RB, Kourouklis GA, Sunshine S, et al. Isotope effect in the high-Tc superconductors Ba2YCu3O7 and Ba2EuCu3O7. Phys Rev Lett. 1987; 58(22) 2333-2336.

Katayama-Yoshida H, Hirooka T, Oyamada A, Okabe Y, Takahashi T, Sasaki T, et al. Oxygen isotope effect in the superconducting Bi-Sr-Ca-Cu-O system. Physica C. 1988; 156(3): 481-484.

Franck JP, Harker S, Brewer JH. Copper, oxygen isotope effects in La2-xSrxCuO4. Phys Rev Lett. 1993; 71(2): 283-286.

Crawford MK, Farneth WE, McCarron EM, III, Harlow RL, Moudden AH. Oxygen isotope effect and structural phase transitions in La2CuO4-based superconductors. Science. 1990; 250: 1390-1394.

Franck JP, Jung J, Mohamed MAK, Gygax S, Sproule GI. Observation of an oxygen isotope effect in superconducting (Y1-xPrx)Ba2Cu3O7-?. Phys Rev B. 1991; 44(10): 5318-5321.

Kulé ML. Importance of the electron-phonon interaction with the forward scattering peak for superconducting pairing in cuprates. J Supercond Novel Magnetism. 2006; 19(3-5): 213-249.

Ekino T, Doukan T, Fujii H, Nakamura F, Sakita S, Kodama M, et al. Superconducting energy gap of La1.85Sr0.15CuO4 single crystals from break-junction tunneling. Physica C. 1996; 263(1-4): 249-252.

Yu G, Li Y, Motoyama EM, Greven M. A universal relation-

ship between magnetic resonance and superconducting gap in unconventional superconductors. Nature Phys. 2009; 5: 873-875.

Wei JYT, Tsuei CC, van Bentum PJM, Xiong Q, Chu CW, Wu MK. Quasiparticle tunneling spectra of the high-Tc mercury cuprates: Implications of the d-wave two-dimensional van Hove scenario. Phys Rev B. 1998; 57(6): 3650-3662.

Lee WS, Vishik IM, Tanaka K, Lu DH, Sasagawa T, Nagaosa N, et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature (London). 2007; 450: 81-84.

Schachinger E, Carbotte JP. Coupling to spin fluctuations from conductivity scattering rates. Phys Rev B. 2000; 62(13): 9054-9058.

Guyard W, Sacuto A, Cazayous M, Gallais Y, Le Tacon M, Colson D, et al. Temperature dependence of the gap size near the Brillouin-zone nodes of HgBa2CuO4+? super-

conductors. Phys Rev Lett. 2008; 101(9): 097003-097006.

Fedorov AV, Valla T, Johnson PD, Li Q, Gu GD, Koshizuka N. Temperature dependent photoemission studies of optimally doped Bi2Sr2CaCu2O8. Phys Rev Lett. 1999; 82(10): 2179-2182.

Ideta S, Takashima K, Hashimoto M, Yoshida T, Fujimori A, Anzai H, et al. Enhanced superconducting gaps in the trilayer high-temperature Bi2Sr2Ca2Cu3O10+? cuprate superconductor. Phys Rev Lett. 2010; 104(22): 227001-227004.

Yoshida T, Hashimoto M, Ideta S, Fujimori A, Tanaka K, Mannella N, et al. Universal versus material-dependent two-gap behaviors of the high-Tc cuprate superconductors: Angle-resolved photoemission study of La2?xSrxCuO4. Phys Rev Lett. 2009; 103(3): 037004-037007.

Kurihara S. Interacting hole-spin model for oxide superconductors. Phys Rev B. 1989; 39(10): 6600-6606.

Chubukov AV, Morr DK. Electronic structure of underdoped cuprates. Phys Rep. 1997; 288(1-6): 355-387.

Cho JH, Borsa F, Johnston DC, Torgeson DR. Spin dynamics in La2-xSrxCuO4 (0.02?x?0.08) from La139 NQR relaxation: Fluctuations in a finite-length-scale system. Phys Rev B. 1992; 46(5): R3179-R3182.

Kitazawa A. Electronic structures of oxide superconductors – Development of concepts. Earlier and Recent Aspects of Superconductivity, Edited by Bednorz JG and Müller KA. 1991; 45-65.

Tranquada JM. Magnetic and electronic correlations in YBa2Cu3O6+x. Earlier and Recent Aspects of Superconducti-

vity, Edited by Bednorz JG and Müller KA. 1991; 422-440.

Germain P, Labbé J. Orthorhombicity, anitiferromagnetism and superconductivity in YBa2Cu3O6+x. Europhys Lett. 1993; 24(5): 391-396.

Burger JP, Zanoun Y. Main properties and origin of the new high-Tc superconductors. Materials Chemistry and Physics. 1992; 32(1): 177-182.

Barford W, Gunn JMF. The theory of the measurement of the London penetration depth in uniaxial type II superconductors by muon spin rotation. Physica C. 1988; 156(4): 515-522.

Keller H. Muon spin rotation experiments in high-Tc super-

conductors. Earlier and Recent Aspects of Superconductivity, Edited by Bednorz JG and Müller KA. 1991; 222-239.

Pokrovsky VL. Physical effects in layered superconductors. Phys Rep. 1997; 288(1-6): 325-345.

Ekino T, Akimitsu J. Energy gaps in Bi-Sr-Ca-Cu-O and Bi-Sr-Cu-O systems by electron tunneling. Phys Rev B. 1989; 40(10): 6902-6911.

Kadowaki K, Li JN, Franse JJM. Superconducting fluctuation effects on the magnetoconductivity in single-crystalline YBa2Cu3O7?? and Bi2Sr2CaCu2O8+?. J Magn Magn Mater. 1990; 90-91: 678-680.

Panagopoulos C, Cooper JR, Peacock GB, Gameson I, Edwards PP, Schmidbauer W, et al. Anisotropic magnetic penetration depth of grain-aligned HgBa2Ca2Cu3O8+?. Phys Rev B. 1996; 53(6): R2999-R3002.

Abrikosov AA, Campuzano JC, Gofron K. Experimentally observed extended saddle point singularity in the energy spectrum of YBa2Cu3O6.9 and YBa2Cu4O8 and some of the consequences. Physica C. 1993; 214(1-2): 73-79.

Ding H, Campuzano JC, Gofron K, Gu C, Liu R, Veal BW,

et al. Gap anisotropy in Bi2Sr2CaCu2O8+? by ultrahigh-resolution angle-resolved photoemission. Phys Rev B. 1994; 50(2): 1333-1336.

Ma J. Quitmann C, Kelley RJ, Alméras P, Berger H, Margaritondo G, et al. Observation of a van Hove singularity in Bi2Sr2CaCu2O8+x with angle-resolved photoemission. Phys Rev B. 1995; 51(6): 3832-3839.

Dessau DS, Shen Z-X, King DM, Marshall DS, Lombardo LW, Dickinson PH, et al. Key features in the measured band structure of Bi2Sr2CaCu2O8+?: Flat bands at EF and Fermi surface nesting. Phys Rev Lett. 1993; 71(17): 2781-2784.

Newns DM, Tsuei CC, Pattnaik PC, Kane CL. Cuprate superconductivity: The van Hove scenario. Comments Condens Matter Phys. 1992; 15: 273-302.

Newns DM, Tsuei CC, Huebener RP, van Bentum PJM, Pattnaik PC, Chi CC. Quasiclassical transport at a van Hove singularity in cuprate superconductors. Phys Rev Lett. 1994; 73(12): 1695-1698.

Houssa M, Ausloos M, Cloots R. Thermal conductivity of YBa2(Cu1-xZnx)3O7-?: Relation between x and ?. Phys Rev B. 1997; 56(10): 6226-6230.

Schulz HJ. Superconductivity and antiferromagnetism in the two-dimensional Hubbard model: Scaling theory. Europhys Lett. 1987; 4(5): 609-615.

Xing DY, Liu M, Gong CD. Comment on “Anomalous isotope effect and van Hove singularity in superconducting Cu oxides”. Phys Rev Lett. 1992; 68(7): 1090.

Bechlaghem A, Bourbie D. Properties of the superconducting gap ratio in the van Hove scenario of high-Tc oxides. Mod Phys Lett B. 2010; 24(23): 2395-2401.

Bechlaghem A, Bourbie D. Theory of the isotope effect and superconducting transition temperature in high-Tc oxides. Mod Phys Lett B. 2011; 25(26): 2069-2078.

Bechlaghem A, Bourbie D. Isotope effect due to the super-exchange interaction and van Hove singularity in high-Tc superconductors. J App Phys. 2013; 114(6): 063901-063903.

Bok J, Bouvier J. Superconductivity in cuprates, the van Hove scenario. J Supercond. 1999; 12(1): 27-31.

Novikov DL, Gubanov VA, Freeman AJ. Electronic structure and Fermi surface topology of the infinite-layered super-

conductor Sr1?xCaxCuO2. Physica C. 1993; 210(3-4): 301-307.

Udomsamuthirun P, Yoksan S, Crisan M. Effect of ortho-

rhombic distortion and second-nearest neighbor hopping on gap-to Tc ratio. J Supercond. 1997; 10(3): 189-191.

Cappelluti E, Pietronero L. Nonadiabatic superconductivity: The role of van Hove singularities. Phys Rev B. 1996; 53(2): 932-944.

Labbé J, Bok J. Superconductivity in alkaline-earth-substi-

tuted La2CuO4: a theoretical model. Europhys Lett. 1987; 3(11): 1225-1230.

Markiewicz RS. Van Hove excitons and high-Tc super-

conductivity VIIIA: Valence bond density waves. Physica C. 1992; 193(3-4): 323-343.

Markiewicz RS. Van Hove excitons and high-Tc supercon-

ductivity VIIIB. vHs - Jahn-Teller effect. Physica C. 1992; 200(1-2): 65-91.

Markiewicz RS. Is the pseudogap in the high-Tc cuprates evidence for dynamic van Hove Jahn-Teller effects? J Supercond. 1995; 8(5): 579-582.

Markiewicz RS. Van Hove Jahn-Teller effect and high-Tc superconductivity. J Physics and Chemestry of Solids. 1993; 54(10): 1153-1156.

Apostol M. On the mechanism of high-temperature super-

conductivity in Ba-La(Y)-Cu-O type systems. Int J Mod Phys B. 1987; 1(3-4): 957-964.

Apostol M, Popescu M. The relation between the critical temperature and the oxygen content of the superconducting phase YBa2Cu3Oz. Phyl Mag Lett. 1988; 57(6): 305-309.

Apostol M, Vasiliu-Doloc L. High-temperature superconducti-

vity from electron-lattice coupling. Int J Mod Phys B. 1992; 6(9): 1539-1559.

Liu FH, Apostol M. Critical temperature, isotope effect and superconducting gap in the MxLa2-xCuO4 and M2RCu3O7-?-type superconductors. Int J Mod Phys B.1988; 2(6): 1415-1429.

Apostol M. On the high temperature superconductivity in 124-class of superconductors. Mod Phys Lett B. 1989; 3(11) 847-852.

Vasiliu L, Apostol M. On the high-temperature superconducti-

vity of SrxLa2-xCuO4-?. J Supercond. 1989; 2(4) 513-528.

Apostol M, Buzatu F, Liu FH. Critical temperature of third generation high-temperature superconductors. Int J Mod Phys B. 1990; 4(1): 159-177.

Aoki H, Kamimura H. Jahn-Teller-effect mediated super-

conductivity in oxides. Solid State Commun. 1987; 63(7): 665-669.

Johnson KH, Clougherty DP, McHenry ME. Dynamic Jahn-Teller coupling anharmonic oxygen vibrations and high-Tc superconductivity in oxides. Mod Phys Lett B. 1989; 3(18): 1367-1374.

Englman R, Halperin B, Weger M. Jahn-teller (reverse sign) mechanism for superconductive pairing. Physica C. 1990; 169(3-4): 314-324.

Fil DV, Tokar OI, Shelankov AL, Weber W. Lattice-mediated interaction of Cu2+ Jahn-Teller ions in insulating cuprates. Phys Rev B. 1992; 45(10): 5633 –5640.

Force L, Bok J. Superconductivity in two dimensional systems: van Hove singularity and Coulomb repulsion. Solid State Commun. 1993; 85(11): 975-978.

Getino JM, de Llano M, Rubio H. Properties of the gap energy in the van Hove scenario of high-temperature superconductivity. Phys Rev B. 1993; 48(1): 597-599.

Tsuei CC, Newns DM, Chi CC, Pattnaik PC. Anomalous isotope effect and van Hove singularity in superconducting Cu oxides. Phys Rev Lett. 1990; 65(21): 2724-2727.

Bechlaghem A, Mostéfa M, Zanoun Y. Gap energy, isotope effect and coherence length in high-Tc oxides. Int J Mod Phys B. 1999; 13(32): 3915-3925.

Sherman A, Schreiber M. Normal-state pseudogap in the spectrum of strongly correlated fermions. Phys Rev B. 1997; 55(2): R712-R715.

Loeser AG, Shen Z-X, Dessau DS, Marshall DS, Park CH, Fournier P, et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+?. Science. 1996; 273(5273): 325-329.

Shen Z-X, Spicer WE, King DM, Dessau DS, Wells BO, et al. Photoemission studies of high-Tc superconductors: The superconducting gap. Science. 1995; 267(5196): 343-350.

Williams GVM, Tallon JL, Haines EM, Michalak R, Dupree R. NMR evidence for a d-wave normal-state pseudogap. Phys Rev Lett. 1997; 78(4): 721-724.

Williams GVM, Haines EM, Tallon JL. Pair breaking in the presence of a normal-state pseudogap in high-Tc cuprates. Phys Rev B. 1998; 57(1): 146-149.

Tsuei CC, Kirtley JR, Chi CC, Yu-Jahnes LS, Gupta A, Shaw T, et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7??. Phys Rev Lett. 1994; 73(4): 593-596.

Khasanov R, Shengelaya A, Maisuradze A, Mattina LF, Bussmann-Holder A, Keller H, et al. Experimental evidence for two gaps in the high-temperature La1.83Sr0.17CuO4 super-

conductor. Phys Rev Lett. 2007; 98(5): 057007-057010.

Deutscher G. Andreev–Saint-James reflections: A probe of cuprate superconductors. Rev Mod Phys. 2005; 77(1): 109-135.

Brandaw B. Characteristic features of the exotic super-

conductors. Phys Rep. 1998; 296(1): 1-63.

Bok J, Force L. Origin of superconductivity in cuprates: The van Hove scenario. Physica C. 1991; 185-189(3): 1449-1450.

Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys Rev 1957; 108: 1175-1204.

Kresin VZ, Wolf SA, Ovchinnikov YN. Exotic normal and superconducting properties of the high-Tc oxides. Phys Rep. 1997; 288(1-6): 347-354.

Mook HA, Yethiraj M, Aeppli G, Mason TE, Armstrong T. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7. Phys Rev Lett. 1993; 70(22): 3490-3493.

Rossat-Mignod J, Regnault LP, Vettier C, Bourges P, Burlet P, Bossy J, et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C. 1991; 185-189(1): 86-92.

Szczesniak R, Mierzejewski M, Zielinski J, Entel P. Modification of the isotope effect by the van Hove singularity of electrons on a two-dimensional lattice. Solid State Commun. 2001; 117(1): 369-371.

Szczesniak R, Dyga M. The van Hove singularity and two-dimensional charge density waves. Exact analytical results. Acta Physica Slovaca. 2003; 53(6): 477-487.

Balseiro CA, Falicov LM. Superconductivity and charge-density waves. Phys Rev B. 1979; 20(11): 4457-4464.

Yndurain F. Model for the variation upon doping of the isotope coefficient in high-Tc superconductors. Phys Rev B. 1995; 51(13): 8494-8497.

Gupta HC. Electron-phonon interaction for an analytic solution to the BCS equation for the high temperature superconductors. Mod Phys Lett B. 1991; 5(20): 1349-1353.

Sarkar S, Das AN. Isotope-shift exponent, pressure coeffi-

cient of Tc, and the superconducting-gap ratio within the van Have scenario. Phys Rev B. 1994; 49(18): 13070-13074.

Bouvier J, Bok J. Gap anisotropy and van Hove singularities in high-Tc superconductors. Physica C. 1995; 249(1): 117-122.

Ratanaburi S, Udomsamuthirun P, Yoksan S. Ratio 2?0/kbTc in a van Hove superconductor. J Supercond. 1996; 9(5): 485-486.

Krunavakarn B, Udomsamuthirun P, Yoksan S, Grosu I, Crisan M. The gap-to-Tc ratio of a van Hove superconductor. J Supercond. 1998; 11(2): 271-273.

Pakokthom C, Krunavakarn B, Udomsamuthirun P, Yoksan S. Reduced-gap ratio of high-Tc cuprates within the d-wave two-dimensional van Hove scenario. J Supercond. 1998; 11(4): 429-432.

Das AN, Lahiri J, Sil S. Superconducting gap ratio and isotope-shift exponent in a pair-tunneling model. Physica C. 1998; 294(1-2): 97-104.

Kaskamalas S, Krunavakarn B, Rungruang P, Yoksan S. Dependence of the gap ratio on the Fermi level shift in a van Hove superconductor. J Supercond Incorp Novel Mag. 2000; 13(1): 33-36.

Gabovich AM, Voitenko AI, Ekino T, Li MS, Szymczak H, Peka?a M. Competitionof superconductivity and charge density waves in cuprates: Recent evidence and interpretation. Advances in Condensed Matter Physics. 2009; 2010(1): 681070-109.

Croft TP, Lester C, Senn MS, Bombardi A, Hayden SM. Charge density wave fluctuations in La2-xSrxCuO4 and their competition with superconductivity. Phys Rev B. 2014; 89(22): 224513-520.

Torchinsky DH, Mahmood F, Bollinger AT, Božovi? I, Gedik N. Fluctuating charge-density waves in a cuprate super-

conductor. Nature Materials. 2013; 12(1): 387-391.

Chang J, Blackburn E, Holmes AT, Christensen NB, Larsen J, Mesot J, et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nature Phys. 2012; 8(1): 871-876.

Panda SK, Rout GC. Interplay of CDW, SDW and super-

conductivity in high-Tc Cuprates. Physica C. 2009; 469(13): 702-706.

Downloads

Published

2014-08-28

Issue

Section

Articles