Normal and Superconducting Properties of the High-Tc Oxides. The Van Hove Scenario

Authors

  • A. Bechlaghem Faculté des Sciences de la Nature et de la Vie, Université d’Oran 1 Ahmed Ben Bella, Algeria

DOI:

https://doi.org/10.15379/2408-977X.2016.03

Keywords:

Superconductivity, Van Hove singularity, Magnetic correlations, Penetration depth, Superconducting gap, Pseudogap, Electrical resistivity, Hall constant, Spin density waves, Charge density waves, Jahn-Teller effect, Coherence length, Effective mass, Superconducting gap ratio, Isotope effect

Abstract

In this review, we study the normal and superconducting properties of the high- cuprate superconductors. We provide an overview of general concepts relevant to these compounds. We review the experimental results of the pseudogap, the electrical resistivity and the Hall constant which are considered as relevant to cuprates in understanding their normal state. The competition between SDW, CDW and superconductivity is also discussed in this work. The van Hove singularity (VHS) appears to play a crucial role in these new superconductors, particularly since experimental studies have found that the Fermi level lies close to the VHS in most of high-cuprates. After a description of the van Hove singularity model, we evaluate and analyze the major parameters of these compounds. General expressions of the superconducting gap ratio and the isotope coefficient are obtained in the van Hove scenario and discussed in more detail. Our theoretical results are in qualitative agreement with experimental results.

References

Bednorz JG, Müller KA. Possible high superconductivity in the Ba-La-Cu-O system. Z Phys B. 1986; 64(2): 189-193. http://dx.doi.org/10.1007/BF01303701

Anderson PW. The resonating valence bond state in La2CuO4 and superconductivity Science. 1987; 235(4793): 1196-1198. http://dx.doi.org/10.1126/science.235.4793.1196

Labbé J, Bok J. Superconductivity in alkaline-earth-substituted La2CuO4: a theoretical model. Europhys Lett. 1987; 3(11): 1225-1230. http://dx.doi.org/10.1209/0295-5075/3/11/012

Aoki H and Kamimura H. Jahn-Teller-effect mediated superconductivity in oxides. Solid State Commun. 1987; 63(7): 665-669. http://dx.doi.org/10.1016/0038-1098(87)90876-3

Apostol M. On the mechanism of high-temperature superconductivity in Ba-La(Y)Cu-O type systems. Solid State Commun. 1988; 67(4): 425-429. http://dx.doi.org/10.1016/0038-1098(88)91059-9

Kurihara S. Interacting hole-spin model for oxide superconductors. Phys Rev B. 1989; 39(10): 6600-6606. http://dx.doi.org/10.1103/PhysRevB.39.6600

Johnson KH, Clougherty DP and McHenry ME. Dynamic Jahn-Teller coupling anharmonic oxygen vibrations and high- superconductivity in oxides. Mod Phys Lett B. 1989; 3(18): 1367-1374. http://dx.doi.org/10.1142/S0217984989002065

Englman R, Halperin B and Weger M. Jahn-Teller (reverse sign) mechanism for superconductive pairing. Physica C. 1990; 169(3-4): 314-324. http://dx.doi.org/10.1016/0921-4534(90)90193-I

Fil DV, Tokar OI, Shelankov AL and Weber W. Lattice-mediated interaction of Cu2+ Jahn-Teller ions in insulating cuprates. Phys Rev B. 1992; 45(10): 5633-5640. http://dx.doi.org/10.1103/PhysRevB.45.5633

Rabinowtz M and McMullen T. Phenomenological theory of cuprate superconductivity. App Phys Lett. 1993; 63(7): 985-986 http://dx.doi.org/10.1063/1.109866

Chubukov AV and Morr DK. Electronic structure of underdoped cuprates. Phys Rep 1997; 288(1-6): 355-387. http://dx.doi.org/10.1016/S0370-1573(97)00033-1

Cho JH, Borsa F, Johnston DC and Torgeson DR. Spin dynamics in La2-xSrxCuO4 (0.02?x?0.08) from La139 NQR relaxation: Fluctuations in a finite-length-scale system. Phys Rev B 1992; 46(5): R3179-R3182. http://dx.doi.org/10.1103/PhysRevB.46.3179

Kitazawa A. Electronic structures of oxide superconductors – Development of concepts. Earlier and Recent Aspects of Superconductivity, edited by Bednorz JG and Müller KA. 1991; 45-65.

Tranquada JM. Magnetic and electronic correlations in YBa2Cu3O6+x. Earlier and Recent Aspects of Superconductivity, edited by Bednorz JG and Müller KA. 1991; 422-440.

Germain P and Labbé J. Orthorhombicity, anitiferromagnetism and superconductivity in YBa2Cu3O6+x. Europhys Lett. 1993; 24(5): 391-396. http://dx.doi.org/10.1209/0295-5075/24/5/012

Burger JP and Zanoun Y. Main properties and origin of the new high- superconductors. Materials Chemistry and Physics. 1992; 32(1): 177-182. http://dx.doi.org/10.1016/0254-0584(92)90274-C

Tallon JL, Bernhard C, Shaked H, Hitterman RL and Jorgensen JD. Generic superconducting phase behavior in high- cuprates: variation with hole concentration in YBa2Cu3O7-?. Phys Rev B. 1995; 51(18): R12911-R12914. http://dx.doi.org/10.1103/PhysRevB.51.12911

Markiewicz RS, Sahrakorpi S, Lindroos M, Lin H and Bansil A. One-band tight- banding model parametrization of the high- cuprates including the effect dispersion. Phys Rev B. 2005; 72(5): 054519-054531. http://dx.doi.org/10.1103/PhysRevB.72.054519

Fisher RA, Gordon JE and Phillips NE. High- Superconductors: Thermodynamic Properties. HandBook of High-Temperature Superconductivity. Theory and Experiment, edited by John Robert Shrieffer 2006; 345-397.

Hussey NE. Normal State Transport Properties. HandBook of High-Temperature Superconductivity. Theory and Experiment, edited by John Robert Shrieffer 2006; 399-425.

Hussey NE, Takagi H, Tajima S, Rykov AI and Yoshida K. Charge confinement on the CuO2 planes in slightly overdoped YBa2Cu3O7?? and the role of metallic chains. Phys Rev B 2000; 61(10) R6475-6478. http://dx.doi.org/10.1103/PhysRevB.61.R6475

Kadowaki K, Li JN and Franse JJM. Superconducting fluctuation effects on the magnetoconductivity in single-crystalline YBa2Cu3O7?? and Bi2Sr2CaCu2O8+?. J. Magn. Magn. Mater.1990; 90-91: 678-680. http://dx.doi.org/10.1016/S0304-8853(10)80247-1

Boebinger GS, Ando Y, Passner A, Kumira T, Okuya M, Shimoyama J et al. Insulator- to-Metal Crossover in the Normal State of La2?xSrxCuO4. Near Optimum Doping. Phys Rev Lett. 1996: 77(27): 5417-5420. http://dx.doi.org/10.1103/PhysRevLett.77.5417

Ono S, Ando Y. Evolution of the resistivity anisotropy in Bi2Sr2?xLaxCuO6+? single crystals for a wide range of hole doping. Phys Rev B. 2003; 67(10): 104512-9. http://dx.doi.org/10.1103/PhysRevB.67.104512

Giura M, Fastampa R, Sarti S, and Silva. Normal-state c-axis transport in Bi2Sr2CaCu2O8+?. Interlayer tunneling and thermally activated dissipation. Phys Rev B 2003; 68(13); 134505-7. http://dx.doi.org/10.1103/PhysRevB.68.134505

Manako T, Kubo Y and Shimakawa Y. Transport and structural study of Tl2Ba2CuO6+? single crystals prepared by the KCl flux method. Phys Rev B 1992; 46(17): 11019-11024. http://dx.doi.org/10.1103/PhysRevB.46.11019

Ekino T, Doukan T, Fujii H, Nakamura F, Sakita S, Kodama M et al. Superconducting energy gap of La1.85Sr0.15CuO4 single crystals from break-junction tunneling. Physica C 1996; 263(1-4): 249-252. http://dx.doi.org/10.1016/0921-4534(95)00714-8

Ekino T and Akimitsu J. Energy gaps in Bi-Sr-Ca-Cu-O and Bi-Sr-Cu-O systems by electron tunneling. Phys Rev B 1989; 40(10): 6902-6911. http://dx.doi.org/10.1103/PhysRevB.40.6902

Yu G, Li Y, Motoyama EM and Greven M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nature Phys 2009; 5: 873-875. http://dx.doi.org/10.1038/nphys1426

Wei JYT, Tsuei CC, van Bentum PJM, Xiong Q, Chu CW and Wu MK. Quasiparticle tunneling spectra of the high-Tc mercury cuprates: Implications of the d-wave two- dimensional van Hove scenario. Phys Rev B 1998; 57(6): 3650-3662. http://dx.doi.org/10.1103/PhysRevB.57.3650

Lee WS, Vishik IM, Tanaka K, Lu DH, Sasagawa T, Nagaosa N et al. Abrupt onset of a Second energy gap at the superconducting transition of underdoped Bi2212. Nature (London). 2007; 450: 81-84. http://dx.doi.org/10.1038/nature06219

Schachinger E and Carbotte JP. Coupling to spin fluctuations from conductivity scattering rates. Phys Rev B 2000; 62(13): 9054-9058. http://dx.doi.org/10.1103/PhysRevB.62.9054

Guyard W, Sacuto A, Cazayous M, Gallais Y, Le Tacon M, Colson D et al. Temperature dependence of the gap size near the Brillouin-zone nodes of HgBa2CuO4+? superconductors. Phys Rev Lett 2008; 101(9): 097003-4. http://dx.doi.org/10.1103/PhysRevLett.101.097003

Fedorov AV, Valla T, Johnson PD, Li Q, Gu GD and Koshizuka N. Temperature dependent photoemission studies of optimally doped Bi2Sr2CaCu2O8. Phys Rev Lett 1999; 82(10): 2179-2182. http://dx.doi.org/10.1103/PhysRevLett.82.2179

Ideta S, Takashima K, Hashimoto M, Yoshida T, Fujimori A, Anzai H et al. Enhanced superconducting gaps in the trilayer high-temperature Bi2Sr2Ca2Cu3O10+? cuprate superconductor. Phys Rev Lett 2010; 104(22): 227001-4. http://dx.doi.org/10.1103/PhysRevLett.104.227001

Yoshida T, Hashimoto M, Ideta S, Fujimori A, Tanaka K, Mannella N et al. Universal versus material-dependent two-gap behaviors of the high- cuprate superconductors: angle-resolved photoemission study of La2?xSrxCuO4. Phys Rev Lett. 2009; 103(3): 037004-037007. http://dx.doi.org/10.1103/PhysRevLett.103.037004

Inosov DS, Park JT, Charnukha A, Li Y, Boris AV, Keimer B et al. A crossover from weak to strong pairing in unconventional superconductors. Arxiv: 1012.4041v1 [cond- mat.supr-con] 18 Dec 2010.

Sato T, Kamiyama T, Takahashi T, Kurahashi K and Yamada K. Observation of -like superconducting gap in an electron-doped high-temperature superconductor Science 2001; 291(5508): 1517-1519. http://dx.doi.org/10.1126/science.1058021

Dagan Y, Beck R and Greene RL. Dirty Superconductivity in the Electron-Doped Cuprate Pr2?xCexCuO4??. Tunneling Study. Phys Rev 2007; 99(14): 147004-04.

Matsui H, Terashima K, Sato T, Takahashi T, Fujita M, and Yamada K. Direct Observation of a Nonmonotonic - Wave Superconducting Gap in the Electron- Doped High- Superconductor Pr0.89LaCe0.11CuO4. Phys Rev Lett 2005; 95(1): 017003(4pages).

Giubileo F, Piano S, Scarfato A, Bobba F, Bartolomeo AD and Cucolo AM. A tunneling spectroscopy study of the pairing symmetry in the electron-doped Pr1?xLaCexCuO4?y. J Phys Condens Matter 2010; 22(4) 045702. http://dx.doi.org/10.1088/0953-8984/22/4/045702

Niestemski FC, Kunwar S, Zhou S, Li S, Ding H, Z. Wang Z, P. Dai P, and Madhavan V, A distinct bosonic mode in an electron-doped high- transition-temperature superconductor. Nature (London) 2007; 450(7172): 1058-1061. http://dx.doi.org/10.1038/nature06430

Shan L, Huang Y, Wang YL, Li S, Zhao J, Dai P, Zhang YZ, Ren C, and Wen HH. Weak-coupling Bardeen-Cooper-Schrieffer superconductivity in the electron-doped cuprate superconductors. Phys Rev B 2008; 77 (1): 014526-5. http://dx.doi.org/10.1103/PhysRevB.77.014526

Brandaw B. Characteristic features of the exotic superconductors. Phys Rep 1998; 296(1): 1-63. http://dx.doi.org/10.1016/S0370-1573(97)00071-9

Welp U, Kwok WK, Crabtree GW, Vandervoort KG and Liu JZ.Magnetic measurements of the upper critical field of YBa2Cu3O7-? single crystals. Phys Rev Lett 1989; 62(16): 1908-1911. http://dx.doi.org/10.1103/PhysRevLett.62.1908

Hao Z, Clem JR, McElfresh MW, Civale L, Malozemoff AP and Holtzberg F. Model for the reversible magnetization of high-? type-II superconductors: Application to high- superconductors. Phys Rev B 1991; 43(4): 2844-2852. http://dx.doi.org/10.1103/PhysRevB.43.2844

Brandsatter G, Sauerzopf FM, Weber HW, Ladenberger F and Schwarzmann E. Upper critical field, penetration depth, and GL parameter of Tl-2223 single crystals. Physica C 1994; 235-240(3): 1845-1846.

Li Q, Suenaga M, Hikata T and Sato K. Two-dimensional fluctuations in the magnetization of Bi2Sr2Ca2Cu3O10. Phys Rev B 1992; 46(9): 5857-5860. http://dx.doi.org/10.1103/PhysRevB.46.5857

Batlogg B, Kourouklis G, Weber W, Cava RG, Jayaraman A, White AE et al. Nonzero isotope effect in La1.85Sr0.15CuO4. Phys. Rev. Lett 1987; 59(8): 912-918. http://dx.doi.org/10.1103/PhysRevLett.59.912

Batlogg B, Cava RJ, Jayaraman A, van Dover RB, Kourouklis GA, Sunshine S et al. Isotope effect in the high- superconductors Ba2YCu3O7 and Ba2EuCu3O7. Phys Rev Lett 1987; 58(22) 2333-2336. http://dx.doi.org/10.1103/PhysRevLett.58.2333

Katayama-Yoshida H, Hirooka T, Oyamada A, Okabe Y, Takahashi T, Sasaki T, et al. Oxygen isotope effect in the superconducting Bi-Sr-Ca-Cu-O system. Physica C 1989; 156(3): 481-484. http://dx.doi.org/10.1016/0921-4534(88)90776-9

Franck JP, Harker S and Brewer JH. Copper and oxygen isotope effects in La2-xSrxCuO4. Phys Rev Lett 1993; 71(2): 283-286. http://dx.doi.org/10.1103/PhysRevLett.71.283

Crawford MK, Farneth WE, McCarron EM, III, Harlow RL and Moudden AH. Oxygen isotope effect and structural phase transitions in La2CuO4-based superconductors Science 1990; 250(4986): 1390-1393. http://dx.doi.org/10.1126/science.250.4986.1390

Franck JP, Jung J, Mohamed MAK, Gygax S and Sproule GI. Observation of an oxygen isotope effect in superconducting (Y1-xPrx)Ba2Cu3O7-?. Phys Rev B 1991; 44(10): 5318-5321. http://dx.doi.org/10.1103/PhysRevB.44.5318

Kulé ML. Importance of the electron-phonon interaction with the forward scattering peak for superconducting pairing in cuprates. J Supercond Novel Magnetism 2006; 19(3-5): 213-249.

Bishop AR, Bussmann-Holder A, Doglov OV, Furrer A, Kamimura H, Keller H et al. Real and marginal Isotope Effects in Cuprates Superconductors. J Supercond Nov Magn 2007; 20(5): 393-396. http://dx.doi.org/10.1007/s10948-007-0235-6

Batlogg B. A critical review of selected experiments in high-Tc superconductivity Physica B 1991; 169(1-4): 7-16. http://dx.doi.org/10.1016/0921-4526(91)90201-O

Hidaka Y and Suzuki M. Growth and anisotropic superconducting properties of Nd2–xCexCuO4–y single crystals. Nature 1989; 338(6217): 635-637 http://dx.doi.org/10.1038/338635a0

Machkenzie AP, Julian SR, Sinclair DC and Lin CT. Normal-state magnetotransport in superconducting Tl2Ba2CuO6+? to millikelvin temperatures. Phys Rev B 1996; 53(9): 5848-5855. http://dx.doi.org/10.1103/PhysRevB.53.5848

Takenaka K, Mizuhashi K, Takagi H, and Uchida S. Interplane charge transport in YBa2Cu3O7?y: Spin-gap effect on in-plane and out-of-plane resistivity Phys Rev B 1994; 50(9): 6534-6527. http://dx.doi.org/10.1103/PhysRevB.50.6534

Markiewicz RS. A survey of the van Hove scenario for high- superconductivity with special emphasis on pseudogap and striped phases. J Phys Chem Solids 1997; 58(8): 1179-1310. http://dx.doi.org/10.1016/S0022-3697(97)00025-5

Pattnaik PC, Kane CL. Newns DM. Tsuei CC. Evidence for the van Hove scenario in high-temperature superconductivity from quasiparticle-life time broadening. Phys Rev B 1992; 45(10): 5714-5717. http://dx.doi.org/10.1103/PhysRevB.45.5714

Lu DH, Schmidt M, Cummuns TR, Schuppler S, Lichtenberg F and Bednorz JG. Fermi Surface and Extended van Hove Singularity in the Noncuprate Superconductor Sr2RuO4 Phys Rev Lett 1996; 76(25): 4845-4848. http://dx.doi.org/10.1103/PhysRevLett.76.4845

Hellman ES. Umklapp electron-electron scattering resistivity of half-filled copper-oxygen chains and planes. Phys Rev B 1989; 39(13): 9604-9606. http://dx.doi.org/10.1103/PhysRevB.39.9604

Tsuei CC, Gupta A, Koren G. High-resolution angle-resolved photoemission study of the Fermi surface and the normal-state electronic structure of Bi2Sr2CaCu2O8. Physica C 1989; 161(3): 415-422. http://dx.doi.org/10.1016/0921-4534(89)90354-7

Kubo Y, Shimakawa Y, Manako T, Igarashi H. Transport and magnetic properties of Tl2Ba2CuO6+? showing a ?-dependent gradual transition from an 85-K superconductor to a nonsuperconducting metal. Phys Rev B 1991; 43(10): 7875-7882. http://dx.doi.org/10.1103/PhysRevB.43.7875

Newns DM, Tsuei CC, Huebener RP, van Pentum PJM, Pattnaik PC and Chi CC. Quasiclassical transport at a van Hove singularity in cuprate superconductors. Phys Rev Lett 1994; 73(12): 1695-1698. http://dx.doi.org/10.1103/PhysRevLett.73.1695

Dessau DS, Shen Z-X, King DM, Marshall DS, Lombardo LW, Dickinson PH et al. Key features in the measured band structure of Bi2Sr2CaCu2O8+?: Flat bands at EF and Fermi surface nesting. Phys Rev Lett 1993; 71(17): 2781-2784. http://dx.doi.org/10.1103/PhysRevLett.71.2781

Olson CG, Liu R, Lynch DW, List RS, Arko AJ, Veal BW et al. Phys Rev B. High- resolution angle-resolved photoemission study of the Fermi surface and the normal-state electronic structure of Bi2Sr2CaCu2O8 1990; 42(1); 381-386.

Hwang HY, Batlogg B, Takagi H, Kao HL, Kav RJ, Krajewski JJ, et al. Scaling of the temperature dependent Hall effect in La2?xSrxCuO4 Phys Rev Lett 1994; 72(16): 2636-2639. http://dx.doi.org/10.1103/PhysRevLett.72.2636

Ino A, Kim C, Nakamura M, Yoshida T, Mizokawa T, Fujimori A et al. Doping-dependent evolution of the electronic structure of La2?xSrxCuO4 in the superconducting and metallic phases. Phys Rev B. 2002; 65(9): 094504-11. http://dx.doi.org/10.1103/PhysRevB.65.094504

Blumberg G, Stojkovi? BP and Klei MV. Aniferromagnetic excitations and van Hove singularities in YBa2Cu3O6+x. Phys Rev B 1995; 52(22): R15741-R15744. http://dx.doi.org/10.1103/PhysRevB.52.R15741

Moca CP, Tifrea I and Crisan M. An analytical approach for the pseudogap in the spin fluctuations model. J Supercond Incorp Novel Mag. 2000; 13(3): 411-416.

Chaudhuri I, Taraphder A and Ghatak SK. Pseudogap and its influence on normal And superconducting states of cuprates. Physica C 2001; 353(1-2): 49-59. http://dx.doi.org/10.1016/S0921-4534(00)01743-3

Borne AJH, Carbotte JP and Nicol EJ. Signature of pseudogap formation in the density of states of underdoped cuprates. arxiv: 1006.3232v1[cond-mat.supr-con] 16 Juin 2010.

Vaknin D, Sinha SK, Moncton DE, Johnston DC, Newsam JM, Safinya CR, et al, Antiferromagnetism in La2CuO4?y. Phys Rev Lett 1987; 58(26): 2802-2805. http://dx.doi.org/10.1103/PhysRevLett.58.2802

Keimer B, Aharony A, Auerbach A, Birgeneau RJ, Cassanho A, Endoh Y et al. Néel transition and sublattice magnetization of pure and doped La2CuO4 Phys Rev B 1992; 45(13): 7430-7435. http://dx.doi.org/10.1103/PhysRevB.45.7430

Hayden SM, Aeppli G, Perring TG, Mook HA, and Dogan F. High-frequency spin waves in YBa2Cu3O6.15. Phys Rev B 1996; 54(10): R6905-R6908. http://dx.doi.org/10.1103/PhysRevB.54.R6905

Mizuki J, Kubo Y, Manako T, Shimakawa Y, Igarashi H Tranquada JM et al. Antiferromagnetism in TlBa2YCu2O7. Physica C 1988; 186(5): 781-784. http://dx.doi.org/10.1016/0921-4534(88)90159-1

Vaknin D, Caignol E, Davies PK, Fisher JE, Johnston DC, and Goshorn DP. Antiferromagnetism in (Ca0.85Sr0.15) CuO2, the parent of the cuprate family of superconducting compounds Phys Rev B 1989; 39(13): 9122-9125. http://dx.doi.org/10.1103/PhysRevB.39.9122

Matsuda M, Yamaka K, Kakurai K, Kadowaki H, Thurston TR, Endoh Y, et al. Three-dimensional magnetic structures and rare-earth magnetic ordering in Nd2CuO4 and Pr2CuO4. Phys Rev B 1990; 42(16): 10098-10107. http://dx.doi.org/10.1103/PhysRevB.42.10098

Bourges P, Casalta H, Ivanov AS, and Petitgrand D. Superexchange Coupling and Spi Susceptibility Spectral Weight in Undoped Monolayer Cuprates. Phys Rev Lett 1997; 79(24): 4906-4909. http://dx.doi.org/10.1103/PhysRevLett.79.4906

Sumarli IW, Lynn JW, Chattopadhyay T, Barilo SN, Zhugonov DI, and Peng JL. Magnetic structure and spin dynamics of the Pr and Cu in Pr2CuO4. Phys Rev B 1995; 51(9): 5824-5839. http://dx.doi.org/10.1103/PhysRevB.51.5824

Hayden FM, Aeppli G, H. Mook HA, Perring TG, Mason TE, SW. Cheong, et al. Comparison of the high-frequency magnetic fluctuations in insulating and Superconducting La2?xSrxCuO4. Phys Rev Lett 1996; 76(8): 1344-1347. http://dx.doi.org/10.1103/PhysRevLett.76.1344

Birgeneau RJ, Gabbe DR, Jenssen HP, Kastner MA, Picone PJ, Thurston TR, et al. Antiferromagnetic spin correlations in insulating, metallic, and superconducting La2?xSrxCuO4. Phys Rev B 1988; 38(10): 6614-6623. http://dx.doi.org/10.1103/PhysRevB.38.6614

Rigamonti A, Borsa F, Corti M, Rega T, Ziolo J and Waldner F. Magnetic correlations and spin dynamics in La2-xSrxCuO4 from NQR relaxation. Earlier and Recent Aspects of Superconductivity, edited by Bednorz JG and Müller KA 1991; 441-466.

Keimer B, Birgeneau RJ, Cassanho A, Endoh Y, Erwin RW, Kastner MA, et al. Scaling Behavior of the Generalized Susceptibility in La2?xSrxCuO4+y. Phys Rev Lett 1991; 67(14): 1930-1933. http://dx.doi.org/10.1103/PhysRevLett.67.1930

Rossat-Mignot, Bourges P, Onufrieva F, Regnault LP, J.Y. Henry JY, Burlet P et al. Spin dynamics in the high- system YBa2Cu3O6+x: the heavily doped regime. Physica B 1994; 199-200(1): 281-283.

Regnault LP, Bourges P, Burlet P, Henry JY, Rossat-Mignod J et al. Spin dynamics in the normal and superconducting states of YBa2Cu3O6+x. physica C 1994; 235-240(P1): 59-62.

Warren WW, Waldstedt Re, Brennert GF, Cava RJ, Tycko R, Bell RF et al. Cu spin dynamics and superconducting precursor effects in planes above in YBa2Cu3O6.7. Phys Rev Lett 1989; 62(10): 1193-1196. http://dx.doi.org/10.1103/PhysRevLett.62.1193

Birgeneau RJ, Endoh Y, Kakurai K, Hidaka Y, Murakami T, Kastner MA et al. Static and dynamic spin fluctuations in superconducting La2?xSrxCuO4. Phys Rev B 1989; 39(4): 2868-2871. http://dx.doi.org/10.1103/PhysRevB.39.2868

Oda M, Matsaki H and Ido M. Common features of magnetic and superconducting properties in Y-doped Bi2(Sr,Ca)3Cu2O8 and Ba(Sr)-doped La2CuO4 Solid State Commun. 1990; 74(12) 1321-1326. http://dx.doi.org/10.1016/0038-1098(90)91000-7

Birgeneau RJ, Greven M, Kastner MA, Lee YS, Wells BO, Endoh Y et al. Instantaneous spin correlations in La2CuO4. Phys Rev B 1999; 59(21): 13788-13794. http://dx.doi.org/10.1103/PhysRevB.59.13788

Tranquada JM. Neutron Scattering Studies of Aniferromagnetic correlations in Cuprates. Hand Book of High-Temperature Superconductivity. Theory and Experiment, edited by John Robert Shrieffer. 257-298.

Chakravarty S, Halperin BI, and Nelson DR. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys Rev B 1989; 39 (4): 2344-2371. http://dx.doi.org/10.1103/PhysRevB.39.2344

Hasenfratz P and Niedermayer F. The exact correlation length of the antiferromagnetic d=2+1 Heisenberg model at low temperatures. Phys Lett B 1991; 268(2): 231-235 http://dx.doi.org/10.1016/0370-2693(91)90809-5

Barford W and Gunn JMF. The theory of the measurement of the London penetration depth in uniaxial type II superconductors by muon spin rotation. Physica C 1988; 156(4): 515-522. http://dx.doi.org/10.1016/0921-4534(88)90014-7

Schneider T and Frick. Experimental constraints and theory of layered high-temperature superconductors. Earlier and Recent Aspects of Superconductivity, edited by Bednorz JG and Müller KA. 1991; 501-517.

Keller H. Muon spin rotation experiments in high- superconductors. Earlier and Recent Aspects of Superconductivity, edited by Bednorz JG and Müller KA 1991; 222-239.

Harshman DR, Schneemeyer LF, Vaszczak JV, Aeppli G, Cava RJ, Batlogg B, et al. Magnetic penetration depth in single-crystal YBa2Cu3O7??. Phys Rev B 1989; 39(1): R851-R854. http://dx.doi.org/10.1103/PhysRevB.39.851

Fruchter R, Giovannella C, Collin G, and Campbell IA. Lower critical fields and pinning in YBa2Cu3O7??. Physica C 1988; 156(1): 69-72. http://dx.doi.org/10.1016/0921-4534(88)90107-4

Fiory AT, Hebard AF, Mankiewich PM, and Hoard RE.Renormalization of the mean-field superconducting penetration depth in epitaxial YBa2Cu3O7 Films. Phys Rev Lett.1988; 61(12): 1419-1422. http://dx.doi.org/10.1103/PhysRevLett.61.1419

Krusin-Elbaum L, Greene RL, Holtzberg F, Malozemoff AP and Yeshurun Y. Direct Measurement of the Temperature Dependent Magnetic Penetration Depth in Y-Ba-Cu-O Crystals. Phys Rev Lett 1989; 62(2): 217-220. http://dx.doi.org/10.1103/PhysRevLett.62.217

Krusin-Elbaum L, Malozemoff AP, Malozemoff AP, Cronemeyer DC and Holtzberg F. Temperature dependence of lower critical fields in Y-Ba-Cu-O crystals. Phys Rev B 1989; 39(4): 2936-2939. http://dx.doi.org/10.1103/PhysRevB.39.2936

Scheidt E-W, Huch C, Luders K and Muller V. Magnetic penetration depth in oriented YBaCuO powder samples. Solid State commun 1989; 71(6): 505-509. http://dx.doi.org/10.1016/0038-1098(89)90101-4

Bechlaghem A, Properties of the Coherence Length and van Hove Singularity in High- Superconductors. Int J App Phys Res 2015: 2(1): 19-30. http://dx.doi.org/10.15379/2408-977X.2015.02.01.3

Zhou XJ, Cuk T, Devereaux T, Nagaosa N, Shen Z-X. Angle-Resolved Photoemission Spectroscopy on electronic Structure and Electron- Phonon Coupling in Cuprate Superconductors. HandBook of High-Temperature Superconductivity. Theory and Experiment, edited by John Robert Shrieffer. 87-144.

Xing DY, Liu M and Gong CD. Comment on "Anomalous isotope effect and van Hove singularity in superconducting Cu oxides". Phys Rev Lett 1992; 68(7): 1090. http://dx.doi.org/10.1103/PhysRevLett.68.1090

Schulz HJ. Superconductivity and antiferromagnetism in the two-dimensional Hubbard model: Scaling theory. Europhys Lett 1987; 4(5): 609-615. http://dx.doi.org/10.1209/0295-5075/4/5/016

Yndurain F. Model for the variation upon doping of the isotope coefficient in high- superconductors. Phys Rev B 1995; 51(13): 8495-8497. http://dx.doi.org/10.1103/PhysRevB.51.8494

Croft TP, Lester C, Senn MS, Bombardi A and Hayden SM. Charge density wave fluctuations in La2?xSrxCuO4 and their competition with superconductivity. Phys Rev B 2014; 89(22): 224513-20. http://dx.doi.org/10.1103/PhysRevB.89.224513

Torchinsky DH, Mahmood F, Bollinger AT, Božovi? I and Gedik N. Competition of superconductivityand charge Density Wave inCuprates: Recent evidence and interpretation. Nature Materials 2013; 12(1) 387-391. http://dx.doi.org/10.1038/nmat3571

Chang J, Blackburn E, Holmes AT, Christensen NB, Larsen J, Mesot J et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nature Phys. 2012; 8(1): 871-876. http://dx.doi.org/10.1038/nphys2456

Cappelluti E and Pietronero L. Nonadiabatic superconductivity: The role of van Hove singularities. Phys. Rev B 1996; 53(2): 932-944. http://dx.doi.org/10.1103/PhysRevB.53.932

Shen Z-X, Spicer WE, King DM, Dessau DS, Wells BO. et al. Photoemission Studie of High- Superconductors: The superconducting gap. Science. 1995; 267(5196343-350.

Kresin VS, Wolf SA. Major normal and superconducting parameters of high- oxides. Phys Rev B 1990; 41(7): 4278-4285. http://dx.doi.org/10.1103/PhysRevB.41.4278

Kresin VZ and Wolf SA and Ovchinnikov. Exotic normal and superconducting properties of the high- oxides. Physics Reports 1997; 288(1-6): 347-354. http://dx.doi.org/10.1016/S0370-1573(97)00032-X

Bouvier J and Bok J. Gap anisotropy and van Hove singularties in high superconductors. Physica C 1997; 249(1): 117-122.

Kato K. New interpretation of the role of electron–phonon interactions in electron pairing in superconductivity. Synthetic Metals 2013; 181: 45-51. http://dx.doi.org/10.1016/j.synthmet.2013.07.025

Muller KA. From Single- to Bipolarons with Jahn-Teller Character and Metallic Cluster-Stripes in Hole-Doped Cuprates, edited by John Robert Shrieffer 2006; 399-425.

Apostol M. On the mechanism of high-temperature superconductivity in Ba-La(Y)-Cu-O type systems. Int J Mod Phys B 1987; 1(3-4): 957-964. http://dx.doi.org/10.1142/S0217979287001377

Apostol M and Popescu M. The relation between the critical temperature and the oxygen content of the superconducting phase YBa2Cu3Oz. Phyl Mag Lett 1988; 57(6): 305-309. http://dx.doi.org/10.1080/09500838808214718

Liu FH and Apostol M. Critical temperature, isotope effect and superconducting gap in the MxLa2-xCuO4 and M2RCu3O7-? -type superconductors. Int J Mod Phys B 1988; 2(6): 1415-1429. http://dx.doi.org/10.1142/S0217979288001256

Apostol M. On the high temperature superconductivity in 123-class of superconductors. Mod Phys Lett B. 1989; 3(11) 847-852. http://dx.doi.org/10.1142/S0217984989001333

Vasiliu L and Apostol M. On the high-temperature superconductivity of SrxLa2-xCuO4-?. J Supercond 1989; 2(4) 513-528. http://dx.doi.org/10.1007/BF00627564

Apostol M, Buzatu F and Liu FH. Critical temperature of third generation high-temperature superconductors. Int J Mod Phys B. 1990; 4(1): 159-177. http://dx.doi.org/10.1142/S0217979290000103

Friedel. Electron-Phonon Interactions and Phase Transition.Edited by Riste T (Plenum, N, Y, 1977: 1.

Markiewicz RS. Van Hove excitons and high- superconductivity VIIIB. vHs - Jahn-Teller effect. Physica C 1992; 200(1-2): 65-91. http://dx.doi.org/10.1016/0921-4534(92)90323-5

Markiewicz RS. Van Hove Excitons and High- Superconductivity: VIIIC Dynamic Jahn-Teller Effects vs Spin-Orbit Coupling in the LTO Phase of La2?xSrxCuO4. ArXiv: cond. Mat/9303020v1. 3 Mar 1993.

Markiewicz RS. Van Hove Jahn-Teller effect and high- superconductivity. J Physics and Chemestry of Solids. 1993; 54(10): 1153-1156 http://dx.doi.org/10.1016/0022-3697(93)90158-N

Bardeen J, Cooper LN and Schrieffer JR. Theory of superconductivity. Phys Rev 1957; 108: 1175-1204. http://dx.doi.org/10.1103/PhysRev.108.1175

Bechlaghem A and Bourbie D. Theory of the isotope effect and superconducting transition temperature in High- Oxides. Mod Phys Lett B 2011; 25(26): 2069-2078. http://dx.doi.org/10.1142/S0217984911027248

Bechlaghem A, Mostéfa and Zanoun Y. Gap energy, Isotope Effect and Coherence Length in High- Oxides. Int J Mod Phys B 1999; 13(22): 3915-3925. http://dx.doi.org/10.1142/S0217979299004082

Force L and Bok J. Solid State Commun. Superconductivity in two dimensional systems: van Hove singularity and Coulomb repulsion. Solid State Commun 1993; 85(11): 975-978. http://dx.doi.org/10.1016/0038-1098(93)90716-Z

Tsuei CC, Newns DM, Chi CC and Pattnaik PC. Anomalous Isotope Effect and van Hove Singularity in Superconducting Cu Oxides. Phys Rev Lett 1990; 65(21): 2724- 2727. http://dx.doi.org/10.1103/PhysRevLett.65.2724

Szczesniak R, Mierzejewski M, Zielinski J and Entel P. Modification of the isotope effect by the van Hove singularity of electrons on a two-dimensional lattice. Sold State Commun 2001; 117(1): 369-371. http://dx.doi.org/10.1016/S0038-1098(00)00477-4

Bechlaghem A and Bourbie D. Properties of the superconducting Gap Ratio in the Van Hove Scenario of High- Oxides. Mod Phys Lett B 2010; 24(23): 2395-2401. http://dx.doi.org/10.1142/S0217984910024638

Loeser AG, Shen Z-X, Dessau DS, Marshall DS, Park CH, Fournier P, et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+?. Science 1996; 273(5273): 325-329. http://dx.doi.org/10.1126/science.273.5273.325

Shen Z-X, Spicer WE, King DM, Dessau DS, Wells BO, et al. Photoemission studies of high- superconductors: The superconducting gap. Science 1995; 267(5196) 343-350. http://dx.doi.org/10.1126/science.267.5196.343

Williams GVM, Tallon JL, Haines EM, Michalak R, and Dupree R. NMR evidence for a d-wave normal-state pseudogap. Phys Rev Lett 1997; 78(4): 721-724. http://dx.doi.org/10.1103/PhysRevLett.78.721

Williams GVM, Haines EM, and Tallon JL. Pair breaking in the presence of a normal-state pseudogap in high- cuprates. Phys Rev B 1998; 57(1): 146-149. http://dx.doi.org/10.1103/PhysRevB.57.146

Tsuei CC, Kirtley JR, Chi CC, Yu-Jahnes LS, Gupta A, Shaw A, et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7??. Phys Rev Lett. 1994; 73(4): 593-596. http://dx.doi.org/10.1103/PhysRevLett.73.593

Khasanov R, Shengelaya A, Maisuradze A, La Mattina F, Bussmann-Holder A, Keller H et al. Experimental evidence for two gaps in the high-temperature La1.83Sr0.17CuO4 superconductor. Phys Rev Lett 2007; 98(5): 057007-4. http://dx.doi.org/10.1103/PhysRevLett.98.057007

Deutscher G. Andreev–Saint-James reflections: A probe of cuprate superconductors. Rev Mod Phys 2005; 77(1): 109-135. http://dx.doi.org/10.1103/RevModPhys.77.109

Loeser AG, Dessau DS and Shen ZH. Doping dependence of Bi2Sr2CaCu2O8+? in the normal state. Physica C 1996; 263(1-4); 208-213. http://dx.doi.org/10.1016/0921-4534(96)00074-3

Marshal DS, Dessau DS, Loeser AG, Park CH, Matsuura AY, Eckstein JN et al. Unconventional Electronic Structure Evolution with Hole Doping in Bi2Sr2CaCu2O8+?: Angle-Resolved Photoemission Results. Phys Rev Lett 1996; 76(25): 4841-4844 http://dx.doi.org/10.1103/PhysRevLett.76.4841

Ding H, Yokowa T, Campuzano JC, Takahashi T, Randeria M, norman MR et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors Nature 1996; 382(6586): 51-54. http://dx.doi.org/10.1038/382051a0

Sherman A and Schreiber M. Normal-state pseudogap in spectrum of strongly correlated frmions. Phys Rev B 1997; 55(2): R712-R715. http://dx.doi.org/10.1103/PhysRevB.55.R712

Houssa M, Ausloos M and Cloots R. Thermal conductivity of YBa2(Cu1-xZnx)O7-?: Relation between x and ?. Phys Rev B 1997; 56(10): 6226-6230. http://dx.doi.org/10.1103/PhysRevB.56.6226

Bechlaghem A. Fundamental Properties and Origin of the High-Tc Cuprate Superconductors: Development of Concepts. Int J Adv App Phys Res 2014; 1(1): 19- 34. http://dx.doi.org/10.15379/2408-977X.2014.01.01.3

Dai P, Mook HA and Dogan F. Pseudogap and incommensurate magnetic fluctuations in YBa2Cu3O6.6. Physica B. 1998; 241-213: 524-523.

Bouvier J and Bok J. Van Hove Singularity and "Pseudogap" in HTSC. J of supercond. 1997; 10(6): 673-676. http://dx.doi.org/10.1007/BF02471931

Rossat-Mignod J, Regnault LP, Vettier C, Bourges P, Burlet P, Bossy J, et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C 1991; 185-189 (1): 86-92. http://dx.doi.org/10.1016/0921-4534(91)91955-4

Panda SK, Rout GC. Interplay of CDW, SDW and superconductivity in high- cuprates. Physica C 2009; 469(13): 702-706. http://dx.doi.org/10.1016/j.physc.2009.03.005

Hücker M, Christensen NB, Holmes AT, Blackburn E, Forgan EM, Liang R. Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy. ArXiv: 1405. 7001.v1 [cond. Mat.supr-con] 17 May 2014.

Getino JM. De Llano M and Rbio H. Properties of the gap energy in the van Have scenario of high-temperature superconductivity. Phys Rev B 1993; 48(1): 597-599. http://dx.doi.org/10.1103/PhysRevB.48.597

Gupta HC. Electron-phonon interaction for an analytic solution to the BCS equation for the high temperature superconductors. Mod Phys Lett B 1991; 5(20): 1349-1353. http://dx.doi.org/10.1142/S0217984991001647

Bouvier J and Bok J. Gap anisotropy and van Hove singularities in high superconductors. Physica C. 1995; 249(1): 117-122. http://dx.doi.org/10.1016/0921-4534(95)00294-4

Ratanaburi S, Udomsamuthirun P and Yoksan S. Ratio in a van Hove superconductor. J Supercond 1996; 9(5): 485-486. http://dx.doi.org/10.1007/BF00723519

Krunavakarn B, Udomsamuthirun P, Yoksan S, Grosu I and Crisan M. The gap-to- ratio of a van Hove superconductor. J Supercond 1998; 11(2): 271-273. http://dx.doi.org/10.1023/A:1022636001976

Pakokthom C, Krunavakarn B, Udomsamuthirun P and Yoksan S. Reduced-gap ratio of high- cuprates within the d-wave two-dimensional van Hove scenario. J Supercond 1998; 11(4): 429-432. http://dx.doi.org/10.1023/A:1022645630932

Kaskamalas S, Krunavakarn B, Rungruang P and Yoksan S. Dependence of the gap ratio on the Fermi level shift in a van Hove superconductor. J Supercond Incorp Novel Mag. 2000; 13(1): 33-36. http://dx.doi.org/10.1142/s0217979200002387

Sarkar S and Das AN. Isotope-shift exponent, pressure coefficient of, and the superconducting-gap ratio within the van Have scenario. Phys Rev B. 1994; 49(18): 13070-5. http://dx.doi.org/10.1103/PhysRevB.49.13070

Das AN, Lahiri J and Sil S. Superconducting gap ratio and isotope-shift exponent in a pair-tunneling model. Physica C 1998; 294(1-2): 97-104. http://dx.doi.org/10.1016/S0921-4534(97)01754-1

Szczesniak R and Dyga M. The van Hove singularity and two-dimensional charge Density waves. Exact analytical results. Acta Physica Slovaca 2003; 53(6): 477-487.

Gabovich AM, Voitenko AI, Ekino T, Li MS, Szymczak H and Peka?a M. Competition of superconductivity and charge density waves in cuprates: Recent evidence and interpretation. Advances in Condensed Matter Physics 2009; 2010(1): 681070-109.

Orozco S, Ortiz MA, Méndez-Moreno RM and Mreno M. A model of the isotope effect in high- superconductors. Physica C 2004; 408-410: 346-347. http://dx.doi.org/10.1016/j.physc.2004.02.102

Shneyder EI and Ovchinnikov SG. Isotope Effect in the Model of Strongly Correlated Electrons with the Magnetic and Phonon superconducting Pairing Mechanisms. Journal of Experimental and theoretical Physics JETP 2009; 109(6): 1017-1021. http://dx.doi.org/10.1134/S1063776109120139

Bill B and Kresin VZ. Isotope Effect in High- Superconductors due to Non-Adiabaticity, Proximity Effect and Magnetic Impurties. Zeitschrift fur Physikalishe Chemie Bd 1997; 201, S: 271-284.

Bill B and Kresin VZ. Isotope Effect in High- Materials: Role of non adiabicity and magnetic imurties. Z Phys B. 1997; 104(4): 759-763. http://dx.doi.org/10.1007/s002570050523

Balseiro CA and Falicov LM. Superconductivity and charge-density waves. Phys Rev B 1979; 20(11): 4457-4464. http://dx.doi.org/10.1103/PhysRevB.20.4457

Muller KA, Nature (London). Possible coexistence of - and -wave condensates in copper oxide superconductors. Naure (London) 1995; 377(6545): 133-135. http://dx.doi.org/10.1038/377133a0

Muller KA and. Keller H, High-Tc Superconductivity1996: Ten YearsafterDiscovery (Kluwer Academic,Dordrecht, 1997), p. 7.

Khasanov R, Shengelaya A, Maisuradze A, La Mattina F, Bussmann-Holder A and Keller H. Experimental Evidence for Two Gaps in the High-Temperature La0.83Sr0.17CuO4 Superconductors. Phys Rev Lett 2007: 98: 057007-04. http://dx.doi.org/10.1103/PhysRevLett.98.057007

Lu YM, Xiang T and Lee DH. Underdoped superconducting cuprates as topological superconductors. Nature Physics. 2014; 10: 634-637. http://dx.doi.org/10.1038/nphys3021

Sacks W, Mauger A and Yves Noat Y. Mean-field approach to unconventional superconductivity. Physica C. 2014; 503(8): 14-24. http://dx.doi.org/10.1016/j.physc.2014.04.041

Szczesniak R, Jarosik MW, and Duda AM. The Correlation between the Energy Gap and the PseudogapTemperature in Cuprates: The YCBCZO and LSHCO Case. Advances in Condensed Matter Physics. 2015; 2015: 10 pages.

Downloads

Published

2016-01-29