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Abstract: This paper presents a process model of sweet sorghum growth and development which reconstructs realistic 
3D images of sweet sorghum with geometric and topological characteristics, and makes it possible to view actual stalk, 
spike motion from a variety of angles when necessary. Model can also be rotated and the 3D images can be zoomed in 
and out at a high level of fidelity. They are also used to generate other plant species for use in analyzing the interplay 
between stochastic and deterministic processes. 
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1. INTRODUCTION 

3D plant model, visual representation of three-
dimensional architecture of plant, can be produced for 
analytic, scientific and industrial purposes [8, 25]. For 
example, 3D plant models can be used in computer 
simulations of landscape evolution [15] and 
calculations for branching and fruit-setting structures of 
fruit trees [32]. 

Computer graphics can create computer-generated 
imagery (CGI) through 3D rendering algorithm [20]. 
Some of these plant models focus only on realistic 
presentation techniques for dynamic simulation rather 
than on the methods for function approximation, 
parameter estimation from the field-measured data, 
which make them difficult to apply to precision 
agriculture [12].  

L-system models can integrate plant parts into 
reproductive and vegetative structures of whole plants 
using relatively simple specific algorithms [23,18]. In 
principle, the rewriting rules of L-systems should make 
it possible to represent a number of well-defined linear 
or branched topologies, which could be potentially in 
general more valuable than simulations. Consequently, 
it become a powerful computational tool for biological 
researches.  

And in consequence, however, this modeling 
method is inherently time-consuming and inefficient for 
describing sophisticated plant architectures under field 
conditions due to the lack of mathematical tools for 
analysis of plant development, form and ontogeny. 
Another challenge comes from the discrepancy  
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between theoretical relationships and experimental 
results. As a matter of fact, construction of specific, 
compact sets of data for plant properties still seems 
quite difficult because of its complexity, heterogeneity 
and uncertainty [22].  

The architectural plant model (AMAP) describes 
plant architecture through conceptualizing the 
branching patterns and their growth habits, which 
integrates physiological processes, botanical laws and 
field measurements, can contribute to greater efficiency 
in data analysis, parameterization and simulation  
[3, 4, 8, 6]. Application of the method was illustrated 
with example of Austrian black pine plantations. The 
results showed the ability to simultaneously estimate 
the topological and geometric parameters describing 
growth [3]. This method addressed the central problem 
of plant development: pattern and scale, then it was 
relatively easy to integrate field-measured values of 
plant growth parameters. The simulation of plant 
growth and development relies on the maximum 
likelihood-based probability analysis of virtual buds. 
The dynamic state of each bud is represented by 
numerical magnitude called physiological age, which 
determines parameter value for each bud in the model. 
All possible values for physiological ages that make up 
virtual plant axis is called the reference axis. 
Regrettably, this approach involves a complexity of 
concepts and architectures with a wide variability of 
features and in-built functions in the software [14, 24, 9, 
10], which makes it difficult to understand and use in 
agricultural research, education, and extension without 
an in-depth background knowledge of software 
engineering. 

This may be compared with analogous approach to 
measure a large number of data and explore them 
statistically to uncover numerical relationships [16]. 
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Unfortunately, the enormous number of plant species 
with complex branching patterns that need be 
measured implies inefficiency in data collection, 
processing, and interpretation.  

In recent times, sweet sorghum [Sorghum bicolor 
(L.) Moench] has attracted more interest as an energy 
crop with high yield potential, water-use efficiency, 
drought resistance [5, 9, 10]. Compared with several 
other energy crops such as corn and sugar cane, 
sweet sorghum is able to adapt to lower level of soil 
nutrition and obtains a higher biomass productivity [1]. 
Especially, its juicy stalk contains soluble carbohy- 
drates and sugars which can be completely converted 
into fuel ethanol with less impact on food and nutrition 
security than traditional starchy crops such as rice, 
maize and barley [36].  

Nonetheless, the quantitative biomass production of 
sweet sorghum strongly depends on the cultivars, 
environmental factors, cultural methods, and 
management techniques, some aspects of which are 
still largely unknown [13]. It has become evident that 
the 3D structure of sweet sorghum strongly affects its 
physiological function [12], such as the distribution of 
carbohydrates in root, leaf, stalk, and spike tissues, the 
light interception properties of leaves and canopies in 
different plant spacing, and the efficiency of canopy 
photosynthesis during the life span of leaf. 

In the present study, a process model, which 
describes some statistical properties of topology and 
geometry, is used to explore the developmental 
processes of sweet sorghum. The overall objective of 
this paper is to establish modeling and visualization 
methods for systematic analysis the architecture of 
sweet sorghum that use the critical data available to 
simulate its vegetative and reproductive growth. The 
present study, as part of a larger study on growth 
characteristic of plant community, is designed to 
construct a model of stalk expansion in sweet sorghum. 
It also provides detailed architectural information for 
design of bioenergy crop breeding projects. 

2. MATERIALS AND METHODS 

2.1. Experimental Site 

The study was carried out over two successive 
growing seasons (2015-2016) at experimental ranch in 
Guangzhou, Guangdong Province, China. Topsoil is 
red loamy soil, and annual rainfall in this area is from 
1600mm to 2000 mm. The observed data on individual 
plants were collected each ten-day in a randomized 

complete block with 40 replications. Field management 
practices, such as irrigation, fertilization, and pesticide 
application, were the same for all sampling plots. 

2.2. Plant Material 

Sweet sorghum cultivars 'Dale' were planted at a 
density of 95238 plants/ha with a within-row spacing of 
15cm and between-row spacing of 70cm.  

2.2. Model Description 

2.2.1. Topological Model 

Topological model, based on probabilities of the 
occurrence of an internode, provides a quantitative 
method to explore the growth and development 
characteristics of sweet sorghum under different 
environmental conditions, which makes it possible to 
evaluate the cultural practices that optimize the 
productivity. 

Each internode along the stalk of sweet sorghum 
has one bud (leaf bud or blossom bud), one leaf and 
one node, in which the terminal blossom bud will 
develop into a spike. Hence, Markov chain model with 
two states is used to describe quantitatively the growth 
process of sweet sorghum. The rank of an internode 
along the stalk corresponds to the index of a state in 
Markov chain model. In this context, state 1 represents 
one blossom bud will form a spike attached to the 
internode of the stalk, and state 0 represents one leaf 
bud will develop into one leaf attached to the internode 
of the stalk. 

2.3. Model Description 

Each internode along the stalk of sweet sorghum 
has one bud (leaf bud or blossom bud), one leaf and 
one node, in which the terminal blossom bud will 
develop into a spike. Hence, Markov chain model with 
two states is used to describe the stalk expansion. The 
rank of a node along the stalk consists of an index of a 
state from which Markov chain can be built. In this 
context, state 0 represents zero blossom bud borne on 
a node, state 1 represents one blossom bud borne on a 
node. 

A graphical structure of Markov chain with two 
states is shown in Figure 1. As shown in Figure 1, initial 
probability p So = i( )( )  denotes the probability of the 
first internode being a given state, with i = 0, 1 where 

p S0 = i( ) = 1! . Transition probability (pij) indicates that 
the probability of the occurrence of the state shift from 
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one to another, with i = 0, 1 and j = 0, 1, where pi j = 1
i
! . 

To compute the total number of state, occupancy 
distribution (oi (n)) is used to sum the number of 
successive internodes being in the same state, when 
i = j,oi n( ) = 1! pii( )n!1 pii , where n = 1.2, ..." and i = 0,1 . 

 

Figure 1: Schematic structure of the Markov chain with two-
state. The transition probability of a state is represented by 
the broken line and the initial probability of a state by the 
continuous line. 

The initial probability, the transition probability, and 
the occupancy distribution of a given state in Markov 
model can be estimated using the Baum-Welch 
algorithm. 

In this study, the binomial distribution is used to 
count how often an internode ‘i’ occurs in ‘n’ growth 
steps, with the probability of occurrence of a single 
internode in a single step denoted by ‘p’ and the 
probability ‘1-p’ of ceased producing the internode.  

The following formula is the binomial probability 
density function: 

P i, p,n( ) = pi 1! p( )n!i for i =
i

n" 0,1, 2, ...,n  

Each parameter value may change associated with 
structural changes of each stalk of sweet sorghum. In 
this regard, terminal bud on the stalk can produce only 
one internode per growth step, as is different with that 

on the annual shoot of fruit tree which produce tens of 
internodes [20]. 

2.2.2. Geometrical Model 

The presented geometrical model is based on the 
recently developed software tool [20], which makes use 
of built-in functions of random variable to compute and 
generate a shape or surface of an organ faithful to its 
real geometrical structure [29].  

Each organ placed in 3D space and its scaling 
attributes is computed by using similar methods as 
described by Lewis [17]. For example, the inclination 
angle of the leaf tip is given as functions of curvilinear 
distance from the leaf base to the leaf tip, where the 
angular value may vary between zero degrees (which 
is 0 at the leaf base, also called leaf insertion angle) 
and 180 degrees (which is 180 at the leaf tip). Bending 
of an organ can be modelled according to the beam 
theory [19]. 

The initial direction of a leaf (initial leaf azimuth) is 
determined based on the geometrical rules of spiral 
phyllotaxis in nature, which is defined as rotate angle of 
the leaf between two adjoining internodes along the 
stalk. Although each leaf of sweet sorghum stands at a 
constant divergence angle of 137.5 degrees to the 
previous or next leaf, the twisting of the internodes, the 
sheaths and the nodes have effects on azimuthal shift 
during the growing period before spike emergence [7].  

All the internodes together with their component 
have varying length-to-width ratios depending on their 
relative position on the stalk [21]. 

In the geometric model, parameters of the organs 
can be indexed to their position on the stalk, which 
make them easy for users to deal with geometry in 
terms of the temporal sequence of morphologic 
changes. 

SIMULATION AND VISUALIZATION  

Simulation Tool 

The growth and development process of sweet 
sorghum can be simulated by the pruningsim software 
[20]. The basic step for simulation is the output of 
internode and its associated organs, which depends on 
the state probabilities in Markov chain, i.e. the initial 
probabilities, transition probabilities, and occupancy 
distributions of state 0 and state 1. For the 
modularization and detailed interfaces of software tool 
see Xia et al. [20].  
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The Markov chain model captures the change of the 
organ over time and defines how they join together to 
construct the structure of stalk. Simulation of sweet 
sorghum can proceed at a smaller time step with only 
one internode formation. By contrast, similar dynamic 
simulation of branching structure of fruit tree is not 
possible due to one or more shoots at each time step 
[30, 31]. 

 

Figure 2: Simulation of internode growth. Internodes 2, 6, 10, 
14, and 16, and 28 from the basal bud emergence are shown 
in (a) to (e), respectively. 

 

Figure 3: Simulated progression of leaf positions of the stalk 
over time. 

The shapes of organs are reconstructed using 3D 
max software, designed according to realism, as 
described earlier [34]. The gradual elongation of organs 
over the growth period is captured by means of the 
cubic function. 

The input to the pruningsim consists of documents 
files that define the parameters of model and built-in 
functions, and provide some default values necessary 
to generate 3D pictures. These comprise colors of the 
organs, specific routing of the incoming light, and 
viewing angle. A plugin for pruningsim can help to 
select the colors on the interactive palette. The 
simulation results can also be also represented as 
traditional single line drawings (see Figure 3). 

Dynamic Simulation of the Stalk of Sweet Sorghum 

The startup phase of the simulation, representing a 
bud break and an internode formation, is shown in 
Figure 4(1). Internode occurred at about 3 to 5 days 
after the beginning of the bud burst. The uppermost 
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bud in the internode of the stalk is also shown, but it did 
not sprout in the current time step of the simulation. 

The consecutive developmental stages of sweet 
sorghum are illustrated in Figure 4 (2-30) the values of 
parameters used in simulations correspond to an 
internode with its associated organs, arrange in order 
along the stalk. The images reproduce a series of 
stages of vegetative growth beginning from the first bud 
break with one internode interval to the halt of the stalk 
expansion and formation of the terminal flower bud. 
The simulations demonstrate convincingly that 
internodes develop in order from the base to apex of 
the stalk. In the case of internodes, this tendency can 
be described using the logistic function. 

The leaf expansion has a similar acropetal pattern. 
The simulation results reveal rapid growth of the 
proximal leaves, whereas the distal leaves grow more 
slowly, resulting in a smaller leaf size. At the second 
internode, two new leaves emerge. By the 31st 
internode, all leaves unfold on the stalk. The upper 
leaves remain small until the 38th internode when 
sweet sorghum has reached its maximum height. 
Nevertheless, all leaves have not yet reached their final 
sizes, in which the upper leaves then grow rapidly after 
this time and at last reach a maximum size. The 

simulation also illustrates that basal leaves have 
stopped to expand when apex internode occurs. 

The image also shows the gradual change in leaf 
orientation, such as leaf inclination angle and leaf 
azimuth. As the stalk grows, the leaf inclination angle 
gradually decreases due to gravity, these dynamic 
characteristics are clearly illustrated in Figure 3, 
showing a sequence of leaf positions during vegetative 
growth stage. 

Morphological Variation of the Spike of the Sweet 
Sorghum 

Figure 5 shows major spike developmental stages 
in sweet sorghum. Images represent five phases of 
expansion at 4-internode intervals beginning from the 
32nd internodes with a terminal flower bud develop into 
a spike. Internodes 32, 36, 40, 44, and 48 from the 
basal bud emergence are shown in (A) to (E), 
respectively. 

DISCUSSIONS AND CONCLUSIONS 

A method for modeling and visualization of sweet 
sorghum growth is presented. The method uses a 
Markov chain to assess organogenesis according to 
the transition probabilities for each state representing 

 

Figure 4: Three-dimensional structure of an Sweet sorghum at various stages of development. 
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plant organ transitioning to any other state (including 
itself). Based on the concept of morphogenesis such as 

apical growth, branching, fruiting, self-pruning, 
reiteration or ageing, plant topological and geometrical 
structure is simulated using pruningsim software. 

The embedded architectural model in the 
pruningsim software describes each plant component 
(or group of components) by introducing a set of growth 
functions that have been already chosen and fixed to 
capture the growth and development processes, such 
that complex plant architectures can be generated 
simply by assigning values to variables. The integration 
of topology and geometry makes it possible to simulate 
the main morphological stages of plant from seedling 
emergence until ripening period without sacrificing 
botanical reality. This may be compared with many 
previous models that might require in-depth knowledge 
of algorithmic programming and technique for deriving 
the set of rewrite rules or productions. 

Potential applications of integrating simulation and 
3D visualization include intelligent systems for 
sustainable agriculture and environment as well as 
tools for scientific computing [11, 26], teaching 
theoretical concepts in agricultural management 
practices [34], and training [32, 33].  

In the case of the sweet sorghum growth model, 
realistic simulation and 3D visualization made it 
possible to dynamically analyze in detail how the 
genetic, nutritional, and environmental factors affect 
sweet sorghum growth, development and yield. This 
contrasts the approach presented in grain sorghum 
growth model [2], which only focuses on capturing one 
aspect of its morphological architecture, making it 
difficult to understand the physical and physiological 
characteristics in complex processes of light 
interception [27], photosynthesis, respiration, and water 
use.  

In addition to interactive simulation, at individual 
plant and stand scale it is possible to test different 
hypotheses by and analyzing the integrated morpholo- 
gical and physiological responses to a stressful virtual 
situation.  

The stochastic process model of sweet sorghum 
relies on a set of techniques that aim to simplify 
calculation and simulation to reduce parameter 
uncertainty. These approaches do not necessarily 
explore the underlying mechanisms in morphogenetic 
processes.  

Structural complexity of plant population will to 
some extent lead to a lot of additional challenges of 

 

Figure 5: Simulation of the expansion of a spike from 
terminal flower bud. 
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simulation due to the uniqueness of each individual 
plant. For example, for calculation of light interception 
efficiency of plant population, a detailed representation 
of each leaf will take considerable computational time 
because of large number of variables [24]. A structural 
simplification method of plant population by its 
geometric and/or topological variables may address the 
issue. 

3D model may improve our understanding of plant 
architectural characteristics and can be used for 
educational purposes and as a method for non-
graphical computer calculations [25]. Real-time 
interactive visualization for realistic data-specific plant 
simulation provides an opportunity for learning about 
the life cycle of a plant, environmental factors that 
influence vegetative and reproductive growth and what 
can be done to promote optimum conditions for 
cultivation during the stage of growth and development, 
thus assisting in determination of breeding strategies 
for plants. 
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