
38 Journal of Computer Science Technology Updates, 2016, 3, 38-44

 E-ISSN: 2410-2938/16 © 2016 Cosmos Scholars Publishing House

A Simple Heuristic for Basic Vehicle Routing Problem

Nodari Vakhania1,*, Jose Alberto Hernandez2, Federico Alonso-Pecina2 and Crispin Zavala2

1Centro de Investigación en Ciencias, UAEM or, Mexico
2Facultad de Contaduría, Administración e Informática UAEM or, Mexico#

Abstract: The vehicle routing problem is an important real-life transportation problem. We propose a two-phase
construction heuristic for the solution of the classical Euclidean (uncapacitated) vehicle routing problem in which the
minimum cost k distinct vehicle tours are to be formed for the given n customer locations. At the first phase we
construct a polygon in the 2-dimensional Euclidean space that girds all the given points (customer locations and the
depot). The second phase consists of two stages. At the first stage the interior polygon area is partitioned into k triangle
areas, and at the second stage the k tours for each of these areas are constructed.

Keywords: Vehicle routing problem, Heuristic algorithm, Euclidean distance, Weighted graph.

1. INTRODUCTION

The Vehicle Routing Problems (VRP) arise in vast
amount of practical circumstances when the goods are
to be distributed to the customers using a limited
number of vehicles. In general, the transportation
problems form a significant part of practical real-life
problems (see, for example, Rodrigue et al. [11])
formalized as mathematical combinatorial optimization
problems. They are typically intractable, hence one
often looks for some heuristic methods for their
solution.

One of the most practical and also complex
combinatorial optimization problems is the Vehicle
Routing Problem (proposed first by Dantzig and
Ramser in early 1959). The basic (uncapacitated)
version of this problem can be stated as follows. We
are given an undirected weighted (complete) graph
G = (V,E) with edge weights we , for all e!E , a
distinguished node vd from set V (called depot) and a
positive integer number k . (i, j) !E is the edge
connecting node i with node j . For any Y ! V

containing node dv , a tour TY defined by set Y is a
directed cycle that starts at that node, visits every node
in Y exactly once and returns to the same node vd ; in
other words, TY = (i1, i2 ,…, il ,1) , where (i2 ,…,l) is an
enumeration of the nodes in set Y not including node
vd and i1 = vd . The cost of tour TY , c(TY) is the sum
of the weights of the edges on this cycle, i.e.,

 c(TY) = w(i1, i2) + w(i2 , i3) +…+ w(il ,1) . VRP aims to

*Address correspondence to this author at the Centro de Investigación en
Ciencias, UAEMor, Mexico; Tel +52 777 329 70 40;
Fax: +52 777 329 70 40; E-mail: nodari@uaem.mx

#
A preliminary version of this work was presented at the Int. Conference on

Abstract and Applied Analysis (ABAPAN 2016)

find the partition of nodes from set V \ {vd } into k
subsets V1,…,Vk with the minimal possible total cost;

that is, with the minimal
 i=1,2,…,k! c(Vi) .

VRP is a generalization of a well-known Traveling
Salesman’s Problem (TSP): VRP with k = 1 becomes
TSP. Multiple TSP, a generalization of TSP with k -
tours, k -TSP, is a VRP with k vehicles.

We deal with geometric two-dimensional version of
the problem when edge weights represent Euclidean
distances between the nodes, considering the nodes
themselves as points (cities or customers) in the two-
dimensional Euclidean space. The corresponding
problem with already 1 vehicle, i.e., the corresponding
1-TSP is already NP-hard Papadimitriou [10].
Therefore, we do not pretend to solve our VRP
optimally but rather suggest an efficient heuristic for its
solution.

Giving a practical interpretation to VRP, assume we
have k identical distinct resources or vehicles (one for
each of the subsets Vi) that can travel in between the
cities. The weight w(i, j) is the distance between
nodes i and j . We aim to minimize the total travel
distance (time) of all the vehicles. There are a number
of extensions of VRP, the most common of which is the
capacitated version in which every vehicle has a given
capacity that cannot be exceeded during its tour.

The vehicle routing problems have been extensively
studied, the most of the solutions methods in the
literature being heuristic (see, for example, Laporte and
Semet [7], Gendreau et al. [4] and Mester and Braysy
[9]). There are a few enumerative algorithms as well
that work on small instances relatively good (see, for

A Simple Heuristic for Basic Vehicle Routing Problem Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 39

example Lysgaard et al. [8] and Fukasawa et al. [3]).
Here we do not pretend to cover all the enormous
related work, we rather refer the interested reader to
the book edited by Toth and Vigo [12], a newer
overview book edited by Golden et al. [5], review
papers by Christofides et al. [1], Laporte [6] and
Cordeau et al. [2].

In this paper, we propose a two-phase construction
heuristic for the the classical Euclidean (uncapacitated)
version of the problem. At the first phase we construct
a polygon in the 2-dimensional Euclidean space that
girds all the given points (customer locations and the
depot). The second phase consists of two stages. At
the first stage the interior polygon area is partitioned
into k triangle areas, and at the second stage the k
tours for each of these areas are constructed.

To form the above partition of the interior polygon
area, we determine auxiliary k distinct border points on
the polygon associating with them vectors directed
from depot to each of these points in 2-dimensional
Euclidean space. These k vectors define the k
triangle areas of the interior of the polygon. The tour
corresponding to a given triangle area is formed
somewhat “across” the vectors defining this area: the
close-by region sorrowing these vectors is a “most
dance” zone within that triangle area (in the sense that
it contains “the most” of the nodes of the triangle area).
The density is measured by a specially introduces
density parameter. If all the formed in this way k tours
cover all the nodes, then our heuristic halts with the
created solution. Otherwise, it updates the density
parameter and adds more nodes to the current tours
according to the new value of the density parameter.
This procedure is repeated until all the nodes are
included into the k created tours.

In the next section we describe our procedure for
the construction of the polygon girding whole tour area.
In Section 2 we describe the partitioning and routing
phase, and in Section 3 we give a few final remarks.

2. PHASE 1: THE CONSTRUCTION OF THE
GIRDING POLYGON

Without loss of generality and for the commodity,
we assume that the given n points from set V have
non-negative coordinates (otherwise, we can shift them
uniformly without changing the distances between
them).

Our task at phase 1 is to determine a special kind of
a (closed) convex polygon that contains all the nodes
from set V girding in this way the whole tour area. No
node from set V may be left outside the area of such a
polygon, and, of course, there are many such
polygons. Though, we are interested in the minimal
such convex polygon with its edges containing the
maximal possible number of nodes from set V . We
shall refer to this particular polygon as the girding
polygon for set V and denote it by P = P(V) .

It follows that all vertices of polygon P(V) are
nodes from set V . Besides these vertices, polygon P
may contain nodes from set V as the interior points of
its edges, whereas the rest of the nodes from set V
are within the internal area of the polygon. In Figure 1
we illustrate polygon P for a problem instance of VRP
with 30 customers and one depot.

Figure 1: Polygon with 12 vertices and 19 nodes from its
internal area.

Before we describe our procedure for the
construction of polygon P(V) , we define special types
of nodes from set V that pertain to polygon P(V) .
These are the uppermost, lowermost, leftmost and
rightmost points from V . Formally, we call a point in
set V with the maximum (minimum, respectively) y -
coordinate an uppermost (a lowermost, respectively)
node. Likewise, we call a point in set V with the
maximum (minimum, respectively) x -coordinate a
rightmost (a leftmost, respectively) node.

We shall refer to these four types of nodes as
extreme points in set V . From all the extreme points of
the same type (if there are two or more such nodes),
we call exterior nodes the two nodes with the maximum

40 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 Vakhania et al.

and minimum co-coordinate, and the rest of the nodes
the interior nodes of that type. The two exterior nodes
are the endpoints of the corresponding edge on
polygon P . In general, we may have more than two
nodes from set V lying on the same edge of polygon
P , two exterior ones of which are endpoints of that
edge.

The next observation is straightforward.

Observation 1

All extreme points belong to polygon P , whereas all
extreme points of the same type belong to the same
edge of that polygon. In particular, the two edges
containing all the uppermost and all the lowermost
nodes are parallel to the x -axes, and the two edges
containing all the rightmost and all the leftmost nodes
are parallel to the y -axes.

We use the following notation for the four
distinguished extreme points. (1) v1 is the right exterior
uppermost node (i.e., among all the uppermost nodes
v1 has the maximum x -coordinate); (2) vl is the
lowest exterior leftmost node (i.e., among all the
leftmost nodes vl has the minimum y -coordinate); (3)
vo the right exterior lowermost node (i.e., among all the
lowermost nodes, vo has the minimum x -coordinate);
(4) vr is the lowest exterior rightmost node (i.e., among
all the rightmost nodes vr has the minimum y -
coordinate).

The procedure POLYGON that forms the polygon
P , first determines all the extreme points verifying the
corresponding coordinates in the straightforward way.
The construction of polygon P goes on the following
four stages (which are independent and can be carried
out in parallel).

At stage 1 the construction proceeds in the “right-to-
left” downward fashion that moves from vertex v1
towards vertex vl completing the upper left border of
polygon P . At stage 2 the construction proceeds also
in the “right-to-left” but upward fashion that moves from
vertex vo towards vertex vl completing the lower left
border of polygon P . At stage 3 the construction
proceeds in the “left-to-right” upward fashion that
moves from vertex vo towards vertex vr completing
the lower right border of polygon P . At stage 4 the
construction moves also in the “left-to-right” but
downward fashion that moves from vertex v1 towards
vertex vr completing the upper right border of polygon
P . Below we describe these stages in more details.

At stage 1 (“right-to-left” downward) we add points
to the left of the latest added so far point to polygon P ,
initially, to the left of vertex v1 . We first determine the
next to v1 vertex v2 to the left of vertex v1 (i.e.,
x2 < x1) on the projected border of polygon P . v2 is
the uppermost closest to v1 vertex on its left hand side.
In other words, among all nodes in set V with no-
larger than y1 y -coordinate and no-larger than x1 x -
coordinate, v2 has the maximum y -coordinate (note
that by the definition of the initial node v1 , no other
node in set V may have a larger than y1 y -
coordinate). If it turns out that y2 = y1 , the
corresponding edge of polygon P (one containing
nodes v1 and v2) is parallel to x -axes. The next point
v3 on the border of polygon is similarly defined, where

we restart now from node 2v (replacing of node 1v),
which is now the next node in set V with the maximum
y -coordinate. If y3 = y2 then all three nodes v1, v2 , v3
lie on the same edge of polygon P and node v2 turns
out to be an intermediate point on that edge, i.e., it is
not a vertex of polygon P , but it belongs to its border.
Observe that v1 is a vertex of polygon P , whereas
whether v3 is a vertex of polygon P or not, depends
on whether for the next point v4 , y4 is equal to or is
less than y3 (it cannot be more).

The “right-to-left” downwards pass of stage 1 ends
by adding the leftmost vertex (verices) (ones with the
minimum x -coordinate) to polygon P ; if there are
several such nodes in set V , polygon P possesses
an edge parallel to the y -axes containing all these
nodes (Observation 1), which is the leftmost edge of
the polygon. All of these nodes are successively added
and stage 1 ends by adding the lowermost such node
(one with the smallest y -coordinate), which we
denoted by vl .

Stage 4 works as stage 1 with the only difference
that the construction here moves in the “left-to-right”
(instead of “right-to-left”) downward fashion from vertex
v1 now to vertex vr . In the description of stage 1
above, we merely replace “left” with “right” and vertex
vl with vertex vr .

At stage 2 (“right-to-left” upward) we add points to
the left of the latest added so far point to polygon P ,
starting from vertex vo . We determine the next to vo
vertex v! to the left of vertex vo on the projected
border of polygon P . v! is now the lowermost closest
to v1 vertex on its left hand side. In other words,

A Simple Heuristic for Basic Vehicle Routing Problem Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 41

among all nodes in set V with no-smaller than oy y -

coordinate and no-larger than ox x -coordinate, !v
has the minimum y -coordinate. As at stage 1, it may
again turn out that y! = yo , in which case we have an
edge in polygon P parallel to x -axes. The next point
on the projected border of polygon P is similarly
defined, where we restart now from node v! (replacing
of node vo), which is now the next node in set V with
the minimum y -coordinate. Proceeding in this way, the
construction at stage 2 ends by matching the latest
added vertex with vertex vl (by the construction, this
event will clearly take the place).

Stage 3 works as stage 2 with the only difference
that the construction here moves in the “left-to-right”
(instead of “right-to-left”) upward fashion from vertex vo
now to vertex vr . In the description of stage 2 above,
we merely replace “left” with “right” and vertex vl with
vertex vr .

This completes the description of procedure
POLYGON. It straightforwardly follows from the
construction that the obtained polygon is convex and
contains all the nodes from set V either on its border
or within it, and among all such polygons it is minimal.
Hence, it is the girding polygon P(V) .

The brutal sequential time complexity of procedure
POLYGON is O(n2) . Indeed, initially, the selection of
each of the extreme nodes v1, vl , vo , vr takes time
O(n) . At all stages, the determination of every next
added vertex takes also time O(n) , and since there are
no more than n added points to the constructed
polygon, we get a brutal sequential overall time of
O(n2) .

Thus we have proved the following result.

Theorem 1

Procedure POLYGON creates the girding polygon
P(V) in brutal sequential time O(n2) .

3. PHASE 2: THE PARTITION AND ROUTING

In this section we describe how we form the k
vehicle tours using the girding polygon P(V)
constructed at phase 1. For the convenience, assume
for now that the depot vd is within the internal area of
polygon P (it normally shares the central area in
between the rest of the nodes).

3.1. Partition stage

Let x be any node on the borderline of polygon P .
We define an auxiliary edge (vd , x) and associate with
it the corresponding vector in the 2-dimensional
Euclidean space (will shall refer to both, the edge and
the corresponding vector interchangeably).

Denote by m be the number of the nodes from set
V which are on the borderline of polygon P .

An auxiliary edge (vd , x) is called a separator edge
if x !V . The m separator edges partition the interior
area of polygon P into the m corresponding triangle
areas (see Figure 2). Every such triangle area is
uniquely defined by two neighboring separator edges.
In general, a pair of auxiliary edges define a triangle
area. We shall specify a bit later how we determine the
k auxiliary edges that delineate the destiny k triangle
areas.

Let the weight of an auxiliary edge (vd , x) be the
length of the corresponding vector in the 2-dimensional
plane.

Figure 2: Polygon of Figure 1 with separator edges

Lemma 1

Twice the minimal separator edge weight plus the
length of the border of polygon P(V) is a lower bound
L(V) on the optimal solution.

Proof. Immediately follows from an easily seen
observation that the above magnitude is the optimal
tour length for the case k = 1 and for the subset of V
containing only the nodes of polygon P and the depot.

42 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 Vakhania et al.

 As it is not difficult to see, the total length of a tour
including a border node v !V is at least 2w(vd , v) .
Intuitively, it is reasonable to include in a tour that visits
node v also the nodes from the interior of polygon P
lying “close-by” edge (vd , v) and also “close-by” border
node(s) of polygon P . If, for instance, we include in
that tour i ! 1 neighboring border nodes of the polygon
then the nodes from the corresponding i triangle areas
will be joined together in one unified triangle areas (one
of the destiny k subsets of set V).

For every triangle area, we define one or more
auxiliary edges across which the tour(s) within that
area will be generated. Some of the nodes from that
area will be visited on the way from depot to a border
node x , whereas the rest of them on the way back to
the depot. We describe the construction in the following
subsections. Before, we need some definitions.

The number k , the length of edge (vd , x) , w(vd , x) ,
its “relative length” which we let to be the ratio of the
average separator edge length (i.e., the sum of weights
of all the m separator edges divided by m) and
w(vd , v) , and the lower bound L(V) from Lemma 1 (a
magnitude, greater than the perimeter of polygon P)
are the parameters used in our definition of the
closeness of two nodes. The magnitude b , our
closeness measure, in one way or another takes into
account these parameters (in practice, we try different
kinds of combinations of these parameters for
calculating the closeness measure b).

For a given auxiliary edge e , the b -close set of
nodes is formed by all the nodes from set V which are
within the distance b from vector e . We denote the b -
close set for an edge e by B(e) .

The density factor of an auxiliary edge e , ! (e) as
the number of nodes in set B(e) divided by the length
of the corresponding vector. We tend to direct our tours
across the auxiliary edges with higher density factors.
The total number of the auxiliary edges that we will
create depends on the number k (the total number of
tours that we need to construct).

If k > m then triangle areas determined by
neighboring separator edges might be joined together;
if k < m then an extra amount of auxiliary edges might
be created within a single triangle area, as we describe
in the next two subsections.

3.1.1. Creating extra triangle areas for k > m

When k > m (the number of edges of polygon P is
less than k), to organize k tours, we create k ! m

extra triangle areas by introducing extra k ! m border
points of polygon P . These border points give rise to
new auxiliary edges, which, in turn, define extra triangle
areas.

The k ! m extra auxiliary edges are selected within
the most dance regions in the current triangle areas so
that the formed edges will have the highest density
factors.

3.1.2. Unifying triangle areas for k < m

The unification of different triangle areas for the
case k < m is accomplished by eliminating the m ! k
separator edges with smallest density factors. As a
result, we are left with k triangle areas.

3.2 Routing stage

We describe now how we form the tour
corresponding to a given a triangle area from one of
the formed k areas (as described in the previous
section). Let v and u be the border points
corresponding to that area, with auxiliary edges
e = (vd , v) and !e = (vd ,u) .

The tour, roughly, is formed by two basic sub-tours
determined by vectors e and !e , correspondingly: the
first one is directed from node vd towards node v , and
the second one from node u towards node vd . Each of
these sub-tours includes the (close-by) nodes from sets
B(e) and B(!e) , correspondingly.

We first describe how we form the sub-tour across
vector e . For the commodity in this presentation, we
assume that vector e lies on the y -axes of the
coordinate system and node vd coincides with the
origin (0,0) (we rotate the whole polygon area by the
necessary angle and shift, without altering any problem
data).

We need to create a sub-tour that includes nodes
vd and v and all the rest of the (intermediate) nodes
from set B(e) . This tour has a zigzag type trajectory
and consists of a number of “slices”.

Every slice defines a local tour on the left or right
side of vector e and is restricted by a fixed magnitude
! called the thickness factor, we let ! ="b , for some
real ! > 0 (we normally let ! <1). Roughly, the
thickness factor determines the amplitude within which
the nodes will be included in the generated local tour.
We define below such local tours.

A Simple Heuristic for Basic Vehicle Routing Problem Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 43

Let y1 be the furthest point from node vd in set
B(e) whose y -coordinate is at most ! more than that
of node vd . If there is no such a point, i.e., the
minimum y -coordinate of a job from set B(s) \ {vd } is
more than ! more than that of node vd , we
(repeatedly) replace point vd with the point (0, i!) on
the y -axes, for the minimum integer i , as long as that
point remains within the area of polygon P (i.e., it is on
vector e) until point y1 is determined (or point (0, i!)
turns out to be outside of the the area of polygon P).
Denote the determined in this way point by !v . Without
loss of generality and for the purpose of this
description, assume node y1 has a positive x -
coordinate, i.e., it is on the right-hand side of vector e .

The vector (!v , y1) forms the skeleton of the local
tour from point !v to node y1 , i.e., it is directed across
that vector. Let !("v , y1) denote the set of nodes from
B(e) which are within the distance ! from vector
(!v , y1) on the same side of vector e . In a local partial
tour defined by the former vector, all the nodes from set
!("v , y1) are visited in the order of the closeness from
node !v . In other words, if we let i1, i2 ,…, il , il = y1 , be
an enumeration of nodes in set !("v , y1) in the non-
decreasing order of their distances from node !v , then
the node i1 is visited from node vd , then node i2 is
visited from node i1 , and so on, node y1 = il is visited
from node il!1 . Note that the latest visited node in this
local tour is y1 and that it included all the nodes in set
B(e) located below vector (!v , y1) .

Now we replace point !v with the next point !!v of
the same form (0, i!) and defined similarly as point !v ,
and carry out a similar construction. I.e., we determine
the next furthest point y2 now from point !!v with the
y -coordinate no more than i! (for the newly
determined value of i), form vector ((0, i!), y2) and the
next local tour (on the right or the left hand side of
vector e , depending on the potion of point y2).

At the stage in the above tour when the border node
v is reached, another local tour, determined by vector
(v,u) is formed, quite similarly as for vector e . Once
node u is included to that local tour, the sub-tour
determined by vector !e is similarly formed. The whole
tour completes once the depot is again reached.

Once all the k triangle areas is processed as
above, if all the nodes from set V are included in one
of the k generated tours then our heuristic completes

with the created solution. Otherwise, some of the
formed tours are completed with the remained nodes at
the successive iterations with modified values for
parameters b and ! .

CONCLUDING REMARKS

We have described a simple heuristic algorithm for
the basic (uncapacitated) vehicle routing problem.
Based on the proposed framework, more sophisticated
heuristic algorithms might be derived due to its
flexibility: the parameters of the heuristic can be
calculated and defined in different ways (adapting, in
particular, to the nature of the input problem instances).

REFERENCES

[1] Christofides N, Mingozzi A and Toth P. The vehicle routing
problem. In N. Christofides, A. Mingozzi, P. Toth, and C.
Sandi, editors, Combinatorial Optimization, chapter John
Wiley & Sons 1979; 11: 315-338.

[2] Cordeau JF, Gendreau M, Hertz A, Laporte G and Sormany
JS. New heuristics for the vehicle routing problem. In
Logistics Systems: Design and Optimization, GERAD
(Chapter) 2005; 279-297.
https://doi.org/10.1007/0-387-24977-x_9

[3] Fukasawa R, Lysgaard J, de Aragão MP, Reis M, Uchoa E
and Werneck RF. Robust branchand-cut-and-price for the
capacitated vehicle routing problem. In Proceedings of IPCO
X. Columbia University 2004.

[4] Gendreau M, Laporte G and Potvin JY. Metaheuristics for the
capacitated vrp. In P. Toth and D. Vigo, editors, The Vehicle
Routing Problem, volume 9 of SIAM Monographs on Discrete
Mathematics and Applications, chapter 6, pages 129â€“154,
SIAM, Philidelphia 2002.
https://doi.org/10.1137/1.9780898718515.ch6

[5] Golden Bruce L, Raghavan S, Wasil Edward A. (Eds.) The
Vehicle Routing Problem: Latest Advances and New
Challenges. Springer (www.springer.com/us/book/
9780387777771) (2008)

[6] Laporte G. The vehicle routing problem: An overview of exact
and approximate algorithms. European Journal of
Operational Research 1992; 59(3): 345-358.
https://doi.org/10.1016/0377-2217(92)90192-C

[7] Laporte G and Semet F. Classical heuristics for the
capacitated vrp. In P. Toth and D. Vigo, editors, The Vehicle
Routing Problem, volume 9 of SIAM Monographs on Discrete
Mathematics and Applications, SIAM, Philidelphia 2002; 5:
pages 109-128.
https://doi.org/10.1137/1.9780898718515.ch5

[8] Lysgaard AN. Letchford, and RW. Eglese. A new branch-
and-cut algorithm for the capacitated vehicle routing problem.
Mathematical Programming, Ser. A 2004; 100: 423-445.

[9] Mester D and Braysy O. Active guided evolution strategies
for large-scale vehicle routing problems with time windows.
Computers and Operations Research 2005; 32: 1593-1614.
https://doi.org/10.1016/j.cor.2003.11.017

[10] Papadimitriou CH. The Euclidean traveling salesman
problem is NP-complete. Theoretical Computer Science
1977; 4: 237-244.
https://doi.org/10.1016/0304-3975(77)90012-3

[11] Rodrigue JP, Comtois C and Slack B. The geography of
transport systems. Routledge, Taylor & Francis 2009.

44 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 Vakhania et al.

[12] Toth P, Vigo D. (editors) Vehicle routing problem SIAM
monographs on discrete mathematics and applications 386

SIAM, Philidelphia 2002.

Received on 29-11-2016 Accepted on 22-12-2016 Published on 29-12-2016

http://dx.doi.org/10.15379/2410-2938.2016.03.02.04

© 2016 Vakhania et al.; Licensee Cosmos Scholars Publishing House.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium,
provided the work is properly cited.

