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Abstract: As the potential applications for artificial intelligence, and thus neural networks expand, and as the prevalence 
of big data increases, the need for improved training in neural networks that leverage data sets efficiently will soon 
surface. In addition, research in the field of human simulation has led to significant advancements in quality, time, and 
cost management for products like military and athletic equipment and vehicles. There is, however, a critical need for 
human simulation models to run in real time, especially those with large-scale problems like motion prediction (a single 
motion problem involves prediction of between 500-700 outputs). Hence, this work addresses both challenges by 
introducing a modified training process for an artificial neural network (ANN) that is capable of mitigating memory issues 
and improving accuracy with large scale problems that involve minimal taring data. The new modified ANN design is 
successfully tested on two common human-motion tasks, walking and going prone. Through comparison with a 
benchmark ANN, the results of the new network are shown to be accurate objectively and subjectively. 
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1. INTRODUCTION 

With a growing dependence on, and availability of 
big data, methods for solving large-scale problems are 
becoming increasingly important with far reaching 
applications. Within this context, designing systems for 
machine learning that have limited training sets 
presents a particularly challenging problem for typical 
neural networks. Thus, this paper presents a new 
artificial neural network (ANN) that is specifically 
designed for such problems. This network is applied to 
computational problems for predicting dynamic human 
motion. To be sure, there are many methods for 
simulating tasks and scenarios as executed by a digital 
human model (DHM). One such method is called 
predictive dynamics (PD), which is used to predict 
dynamic human motion [1]. Predictive dynamics is a 
physics-based algorithm that consists of an 
optimization problem with hundreds of design variables 
and thousands of constraints. 

Although PD simulations can be useful, they can 
also be computationally expensive, and more complex 
tasks can not necessarily be simulated in real time. 
Furthermore, even small changes to the task 
conditions, can affect the run time significantly. Thus, in 
cases where PD is used to train an ANN, the number of 
training cases can be limited due to the computational 
time and cost associated with collecting training data. 
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The necessary manual post-processing procedures 
can also be prohibitive. 

In addition to being computationally demanding, PD 
problems are often relatively large with respect to the 
number of outputs; hundreds of outputs (500-700) are 
required in order to predict a single problem (i.e., one 
motion task). Thus, there is a need for a computational 
model that can provide accurate simulations of 
dynamic human motion in real time, based on PD 
results. 

In response to the special needs of large-scale 
DHM problems with limited training data available, this 
work proposes the use of a newly developed radial-
basis network (RBN), called Opt_RBN, [2]. Although 
the Opt_RBN design is proven to provide accurate 
prediction results for applications with a reduced 
number of training cases, applying this design to large-
scale applications requires additional enhancements. 
Opt_RBN experiences a memory issue during the 
optimization step. Therefore, this work introduces new 
modified algorithms for the Opt_RBN training process 
in order to address the memory issue without affecting 
the network performance. The resulting modified 
Opt_RBN provides real-time prediction of a PD motion 
problem that can be trained on any PC. 

In general, the use of ANN and other machine 
learning techniques for large-scale problems focuses 
on problems that have a large number of training data 
[3-6] due to the recent advancement in online web 
services, software, and devices that provide massive 
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amounts of data for training purposes. That is, the term 
large-scale typically refers to the size of the training 
data set. There is limited use of ANNs in applications 
that have limited numbers of training data like those 
produced from high-fidelity finite element analysis 
models or complex optimization and image processing 
systems [7-11]. Although these applications have 
recently been expanded to make them faster with 
advanced techniques like parallel algorithms [12-14], 
they still experience running delays that make them 
difficult torunin real time without the assistance of 
predictive models like ANN. Thus, ANNs and other 
techniques have been investigated and widely used in 
the recent years to help address various complicated 
practical problems. Such advancement is notable 
primarily in large-scale image classifications and video 
analysis [5, 15-18] to replace the original 
computationally expensive or limited-accuracy models. 
In these works, the goal is to find the most appropriate 
approaches that increase the results’ accuracy, given 
that there is always enough data to train and evaluate 
the models. Consequently, the remaining issue is the 
trade-off between the available training cases and the 
accuracy level of the resulting model [19]. However, it 
is still crucial to solve the same problems, and with 
comparable accuracy, but when limited training cases 
are available. There is minimal work that targets 
increased accuracy with limited available data. 

With respect to the use of ANNs in applications 
related to motion prediction, recent advancements 
have been achieved in machines and humanoid 
interfaces [20-23]. Although various types of ANNs 
have been successfully used for predicting motion and 
movements, the humanoid and animations that are 
produced in these applications involve relatively simple 
models with a small number of degrees of freedom 
(DOF). Full-DOF human motion prediction is still an 
active area of research due to the complexity of 
designing and simulating the actual human models. 
The proposed work focuses on simulating the motions 
of the Santos DHM [24]. The general regression 
network (GRN) has been shown to predict acceptable 
motion simulations for a specific task using few training 
cases (in the range of tens) [25]. The GRN can 
simulate the motion of a complete DHM model under 
various conditions, different loads, and anthropometric 
variables. 

However, the prediction capability of the GRN is 
limited, because it is susceptible to adverse effects 
from local optima and poor heuristic settings [26, 27]. A 
new RBN-based network, called Opt_RBN, has been 

introduced recently for improved performance with 
limited available training cases [2]. Opt_RBN entails 
multi-stage training approaches that produce more 
objective settings of the network parameters. In 
addition, it provides improved efficiency with limited 
training data. 

The goals of this work are to: 1) introduce a 
modified Opt_RBN training process that is capable of 
being trained for large-scale problems with minimal 
training data, and 2) apply the new modified Opt_RBN 
design for real-time prediction of PD tasks for a full-
human model. The proposed modified algorithms are 
tested with two PD tasks: walking and going prone. 
Although this work presents modification to the 
Opt_RBN driven by its potential use with PD, the 
consequent ANN design can be used with a broad 
range of large-scale problems; PD is simply a well-
studied example problem for the proposed 
developments. 

2. BACKGROUND 

Predictive dynamics is a physics-based motion 
simulation algorithm for DHM [1]. The PD method is 
distinguished from other motion simulation tools, 
because it produces simulations that reflect the effects 
of any changes in the DHM conditions, like 
anthropometric data and loads on the body. This can 
be particularly useful, as it allows one to study the 
effects of various conditions on task performance and, 
for instance, potential injuries. 

PD involves solving a nonlinear optimization 
problem in order to find motion profiles (i.e., control 
points for B-splines that represent joint-angles over 
time) for all body DOFs, while adhering to the equation 
of motion and considering various physical limits and 
other motion-related constraints. Since its development 
by [1], PD has been used to simulate different motion 
tasks and scenarios [28-33]. Successful validation of 
the PD results has been provided using motion capture 
systems [34]. 

The control points that are found by optimization in 
PD eventually form B-splines for DOFs that simulate 
the motion in a DHM model. Each DOF has a 
corresponding B-spline. Having more control points in a 
B-spline, where their appropriate numbers are 
determined by the task developer, produces more 
accurate motion simulation. However, it is 
computationally more expensive. Although many 
conditions (i.e., inputs) are common in all tasks, like 
loading and clothing, others are task specific, like 
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speed in the walking task, box height in the jumping-
on-the-box task, etc. The details of PD settings are 
provided by [29, 30]. 

The PD algorithm in this work is applied to the 
Santos DHM [24]. Santos is a full-body DHM with 109 
DOFs. For the purposes of this study 55 DOF are 
predicted with PD. This work uses Santos with various 
loading conditions and various limits on range-of-
motion. As suggested, creating a relatively large 
number of simulated motions (from different task 
conditions) for trade-off analyses can be 
computationally demanding and thus time consuming. 
The running time for each case, even with minor 
changes in initial conditions, can take minutes to hours 
to complete and produce the simulation. Not only does 
this inhibit trade-off analyses, but it inhibits potential 
training of ANNs. Hence, an ANN is needed that 
requires only minimal training data. 

In addition to the challenging concerning run time, 
PD problems are relatively large with regards to the 
number of outputs (control points). The number of 
outputs in a PD task is approximately 500-700, 
depending on the number of control points in each 
task. Therefore, running a PD algorithm to create new 
simulations, either for direct use or for use as one of 
many training cases, requires the use of special 
optimization software that is designed to solve large-
scale optimization problems. If the Opt_RBN design is 
used to simulate a PD task, one stage of the network 
training process that includes solving the optimization 
problem will not work due to the largescale of the 
problem (as will be shown in Section 3.1). Thus, new 
refinements are proposed and tested to resolve this 
issue. 

In the following section, after the fundamental 
design of the proposed Opt_RBN is presented, new 
specific methodologies are developed to guarantee 
successful running of its training process. The 
consequent modified Opt_RBN design produces 
accurate and real-time simulation of the large-scale PD 
problem and can be trained with any optimization 
algorithm on any PC. 

3. METHOD 

3.1. Fundamental Design 

The fundamental model in this work is based on the 
new RBN (Opt_RBN) for reduced training sets [2]. 
Opt_RBNis chosen because it outperforms other 

typical ANN models, especially for applications with a 
limited amount of training data. However, as stated 
earlier, the new Opt_RBN design experiences a 
memory issue when being trained to predict a relatively 
large number of outputs [2]. In the case of the PD 
problem, the original Opt_RBN design cannot be 
trained when the problem has more than 200 outputs. 
Hence, for successful training and simulation of the PD 
problem, this work illustrates modifications to the 
training process that resolve this issue. The 
modifications basically allow the training process to be 
performed by typical algorithms and software, 
especially for the optimization step of the process, 
without the need for a special large-scale optimization 
program or a computer with special processing 
capabilities. Although the modification to the Opt_RBN 
is driven by the use of PD, the consequent ANN design 
can be used for other similar large-scale problems with 
reduced training sets. 

Before it can be used, any ANN needs to be trained 
on the task being modeled. A detailed description of 
the fundamental RBN design used is provided in the 
literature [2]. In summary, the training process in that 
design consists of four main steps. First, inputs of 
training cases are all normalized by standardization in 
order to rescale all inputs to be within a scaleof -1 to 1. 
Next, preliminary values for the network basis function 
(i.e., Gaussian) spreads ! 0  are set for all potential 
basis functions using the root-mean-square-distance 
(RMSD). Then, the number of network basis functions 
Q, their centers U , and preliminary values for 
connection weights W o    are set usingthe orthogonal 
least square (OLS) approach. Finally, optimal values 
for W  and !  are calculated based on the formulation 
in Equation 1. This optimization problem incorporates 
the network parameters (W ) as additional design 
variables. Equation 1 represents a problem with 
multiple outputs (N). 

Minimize: f ! ,W( ) = 1
N n=1

N" tnm # ynm( )2m=1

M"        (1) 

  = 1
N n=1

N! tnm " hmq #wnqq=1

Q!( )( )2m=1

M!  

Subject to: 0 < ! q ; q "R
Q  

In Equation 1, W = [w1 w2 ...wN ] is a matrix of output 
weight vectors for all N outputs. Each vector  
Wn = [w1 w2 ...wQ ]

T  represents the connections 

between all Q basis functions with the nth  output; tnm   is 
the true mth  training value of the nth  network output; 
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ynm  is the predicted mth  training value of the nth  
network output; hmq    (Equation 2) is the qth  basis 

function output for the mth  training case; and wnq  is the 

output connection weight between the qth  basis 
function and nth  output. 
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hmq  is inversely proportional to the distance 

between network’s input x !R1( )  and umq  which is the 

qth  basis-function center for the mth  training case. hqm  

equals 1 at its maximum, when " equal umq , and it 
equals zero at its minimum. The function width ! q  (the 
Gaussian spread) is the primary tuning parameter with 
a RBN, along with the number of basis functions (i.e., 
neurons, Q) in the hidden layer. 

With respect to the aforementioned Opt_RBN 
training process, the optimization step has tens of 
thousands of design variables (approximately 40,000 
on average) when applied to PD problems [2]. Thus, 
typical CPU memory cannot handle this matrix size all 
at once, and optimization algorithms cannot solve this 
large problem. Therefore, the proposed enhancements 
for the Opt_RBN design in this paper focus on the 
steps of setting the preliminary basis function spreads 
! 0  and calculating the optimal basis function spreads 
and connection weights W. These modifications are 
necessary to let the division of the original optimization 
step be performed in multiple runs for various groups of 
outputs. Each consequent optimization run has a much 
smaller problem size (approximately 300-1,000 design 
variables) than in the original optimization problem 
(Equation 1). The aggregate solution provided by the 
proposed multiple optimization problems is exactly the 
same as the solution obtained with the original single 
optimization problem (as will be shown in Section 
3.2.2). The proposed design modifications are 
illustrated next. 

3.2. New Approaches for Opt_RBN Training 
Process 

3.2.1. Setting Basis Function Spreads 

In the original Opt_RBN design, along with the 
output weights W = [w1 w2 ...wN ]( ) corresponding to N 
outputs, the vector of the basis function spreads, ! , is 
included as a design variable in the optimization step 

(Equation 1). Unlike the weights, the spreads !  are 
coupled and cannot be separated for different 
optimization runs. In other words, all !    elements 
contribute in producing all network outputs, while each 
vector of W    contributes in producing one of the 
network outputs independently from the other vectors. 
That said, in order to be able to formulate multiple 
smaller optimization problems, !  needs to be removed 
from the optimization problem as a vector of design 
variables. 

Removing !  from the optimization necessitates 
introducing more rigorous setting of its preliminary 
values ! 0 , because these values will be used as the 
final values and will no longer be optimized. This new 
approach is especially important for an application with 
either too limited or too many training cases, in order to 
avoid any excessively large or small spread values. As 
stated, in the original design, ! 0  elements are set by 
using RMSD between the normalized inputs of the 
neighboring training points. However, the RMSD can 
be approximately zero when there is a relatively large 
number of training cases, because the training points 
are close to each other which can produce too small 
RMSD. When only minimal training cases exist, the 
calculated ! 0  based on the RMSD can be too large, 
which produces a network with less accurate results. If 
the spreads are removed from the optimization step, 
their values need to be determined using a more 
intelligent method compared to that used to set their 
preliminary values in the Opt_RBN, in order to use the- 
se values in the final network design. Therefore, a new 
approach for calculating !    is shown in Equation 3. 
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Setting !  for large-scale problems depends on the 
Manhattan distance  (! u j k ! 1)  [35, 36] between the 
input vectors of two adjacent training cases and the 
ratio of the number of training cases to the number of 

inputs M
I

!
"#

$
%&  This step assumes all available training 

cases are used as potential basis functions [2]. Thus, a 
spread value is set for each available training case. 
Then, the spreads that correspond to the selected 
training cases, which are essentially the basis functions 
selected by the OLS approach, are used in the final 
network design. 

In Equation 3, ! j  is the spread of the j th  training 
case when its input is selected as the basis function. I  
is the size of input vector (i.e., the number of elements 
in the input vector). M   is the number of training cases. 
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 ! u j k ! 1   represents the Manhattan distance between the 

inputs of the j th training case and its closest Kth  
training cases. u ji  is the ith  input element of the j th  

training case. u j ,ki  is the ith  input element of the Kth  

training case that is closest to the j th  training case. 

In this context, the Manhattan distance  (! u j k ! 1) is 
the sum of absolute distances between two points 
(vectors) in all dimensions. Note that in a higher 
dimensional space, this distance provides more 
accurate representation of the actual distance between 
two points compared to that provided by the Euclidean 

distance. With respect to the ratio M
I

!
"#

$
%& , it accounts for 

the training size and input dimension of the application 
in order to provide appropriate !  values for any 
problem. Preliminary work was performed by 
investigating multiple approaches for various ratios 
based on the network and problem parameters that 

lead to the ratio M
I

 as an acceptable heuristic setting. 

In general, if the input size (i.e., the number of input 
parameters)   I  increases, more training cases M are 
required to provide more combinations of these 
parameters. The increase in   I    is implicitly considered 
by increasing M . Even when I  increases with fixed 
M , the resulting  ! u j k ! 1  is larger, because typically the 
training points are further from each other in higher 
dimensional space. The larger  ! u j k ! 1  compensates for 

the fixed M  producing larger   ! j . Hence, the ratio M
I
. 

provides an appropriate factor for any problem to 
produce proper % values in order to handle a problem 
of any size. In addition, this ratio reduces the 
propensity for prohibitively small % values. Even when 
the problem has a relatively large number of training 
cases (in the hundreds or thousands), the % values will 
not be too small, because the possible too small 

 ! u j k ! 1  value is multiplied by large ratio M
I

. 

The heuristic-based !  values in the new method 
are used as the final values. The new method is 
appropriate for setting a value !  that depends on the 

 ! u j k ! 1    value and various combinations of training 
cases and inputs. 

3.2.2. Grouped Optimization of Network Output 
Weights 

After the spreads !  are removed as design 
variables from the original optimization problem, the 
weights W  remain as the only design variables. The 
weights W = [w1 w2 ...wN ] for different outputs can then 

be decoupled, because each vector of output weights 
Wn = [w1,w2 ,...wQ ]

T  is independent from the others 
used to produce the network outputs (as shown in 
Equation 1). Thus, this section details a new grouped 
optimization step for each group of outputs that are 
related to each other (Equation 4). Multiple grouped 
optimization runs are then performed, and each 
includes the weights corresponding to the outputs that 
are related to 1 DOF (i.e., each group of outputs 
denotes the control points of 1 DOF in the PD 
problem). There are 55 separate optimization runs 
corresponding to the 55 predicted DOFs of the DHM. In 
contrast to the original optimization problem, which 
involves finding all vectors of W  in a single run, the 
new optimization involves multiple runs, each for a 
smaller group of vectors Wg  The new optimization is 
also simpler compared to that in Equation 1, because it 
is unconstrained. Note that since each vector in W    is 
independent from the others, Equation 4 can be 
generalized and rewritten to suite any problem with any 
number of outputs.  

Find: Wg = [w1 w2 ...wD ]; g = 1,2, ..., G  

Minimize: f Wg( ) = 1
D d=1

D! m=1

M! tg,d ,m " yg,d ,m( )2  

  = 1
D d=1

D! m=1

M! tg,d ,m " q=1

Q! hm,q #wg,d ,q$% &'( )2   (4) 

In Equation 4, G  is the number of optimization 
problems to be solved (55). Wg = [wg,1,wg,2 ,...wg,D ]  is 
the connection-weight matrix that corresponds to the 
gth  group of outputs Wg !R

D( ) . 

Wg,d = [wg,d ,1,wg,d ,2 ,...wg,d ,Q ]
T  is the connection-weight 

vector that corresponds to the dth  output in the gth  
group. D is the number of outputs in each gth  group. 
tg,d ,m  is the true value for the dth  output of the mth  

training case in the gth  group. yg,d ,m  is the predicted 

(network) value for the dth output of the mth  training 
case in the gth  group. hm,q  is the qth  basis function 

output when considering the input of the mth  training 
case wg,d ,q    is the connection-weight value between the 

qth  basis function and the dth  output in the gth  group of 
optimization. 

The memory and run-time issues are resolved by 
using this new grouped optimization approach. As an 
example to demonstrate that, a comparison of the 
running time is performed between the single 
optimization and the grouped optimization for the PD 
problem. In this case, the network is trained to simulate 
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part of the PD outputs, since 200 outputs is the 
maximum number of outputs the optimization can solve 
in a single run as opposed to approximately 500 to 700 
outputs in a full-PD problem. For a PD problem with 
200 outputs, the running time in the new grouped 
optimization is approximately 20 minutes, while it is 
approximately 24 minutes for the single optimization 
(the optimization is solved on a Windows 7 computer 
with an Intel® Core™ i7 processor and 16 GB of RAM). 
The solutions from both problems are exactly the 
same, which reassures the independencies among W  
vectors. 

4. RESULTS 

The new modified Opt_RBN is tested using two PD 
task-simulations that are created for the Santos 
software. The tasks are walking forward and going 
prone. These tasks are selected, because they differ in 
terms of complexity and behavior. The modified 
Opt_RBN performance is evaluated objectively by 
calculating test error and comparing the error with the 
results of a typical RBN design [37, 38]. In addition, 
subjective evaluation of the visual results is provided. 

4.1. Example 1: Walking Task 

The walking task is a common and basic task often 
discussed in the field of DHM. In this work, the task 
includes 42 inputs, which represent the loading 
conditions (16 inputs), joint ranges of motion (24 
inputs), weapon point-location on the hands (1 input), 
and walking speed (1 input). The loading conditions 
include the total weight of the added equipment on the 
back, and the body-segment centers-of-mass in three 
dimensions. The ranges of motion (ROM) include 
normal and reduced ranges for the bending, extension-
flexion, and rotation for four of the DHM’s spinal joints. 
Although other ROMs can be included as extra inputs 
in the task, this work includes these spinal ROMs 
specifically to evaluate the effects of various loadings, 
which are mainly added on the back, and on the spinal 
joints. The task has 9 control points for each DOF, 
which translates into a total of 495 outputs. 399 training 
cases are collected, representing various combinations 
of inputs. The network training time is approximately 41 
minutes. The final network includes 74 basis functions 
(i.e., neurons). 

To evaluate the network performance, five test 
cases are used. The test cases are cases that have 
never been used to train the network. With regard to 
objective evaluation, the root mean square error 

(RMSE) for the modified Opt_RBN predicted outputs 
are compared with those produced from RBN, which 
takes approximately 6 minutes to be trained for this 
task. The average RMSE for the five test cases is 
0.031 for the Opt_RBN and 0.04 for the RBN. Although 
the results are small for both models, the Opt_RBN has 
approximately 25% less error. Since the outputs are 
calculated in radians, which are the reason for 
obtaining apparently small RMSE in both models, direct 
conversion to degrees yields an error of approximately 
1.78 for the Opt_RBN and 2.3 for the RBN. When 
predicting joint angles, reducing the error by 25%, on 
average, is a significant improvement, because even 
errors as small as 2.3 degrees in each joint angle 
profile can result in odd visual motion simulations. 

Another objective measurement of the results’ 
accuracy is the number of outputs each of the network 
models (Opt_RBN and RBN) can predict with less error 
than the other model (i.e., count the number of outputs 
with smaller RMSE for each network). Since the PD 
problem involves hundreds of outputs, this 
measurement is helpful for evaluating the performance 
of the Opt_RBN design. Such a measurement can be 
helpful in studying the general trend of the network 
when predicting each output. 

The average number of the more accurately 
predicted outputs among the five test cases is 
calculated. The calculated results show that the 
Opt_RBN is more accurate than RBN in this task with 
an average of 269 outputs compared to 217 for the 
RBN. Both networks have the same exact error in 9 
outputs. Among the 486 compared outputs, the 
Opt_RBN provides less error in 52 more outputs than 
the RBN. The performed objective evaluations are 
based on the reported RMSEs. 

With respect to the subjective evaluation, the 
simulation results from the Opt_RBN design are 
evaluated visually. The RBN visual results are not 
included, because the visual results from both models 
do not show obvious difference over the whole motion. 
Figure 1 shows the visual results for the Opt_RBN, 
where the motions resulting from the five test cases are 
simulated for the Santos model. In the figure, Santos 
moves from right to left. All of the simulated motions 
produced from the Opt_RBN look acceptable, 
suggesting the network is generally able to predict 
proper simulations for the corresponding input 
conditions. Specifically, the effect of heavier loads is 
represented in all simulations. 
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In summary, with the walking task, the Opt_RBN 
performance is successful in providing high-fidelity 
outputs. The small RMSE values for the presented test 
cases show the accuracy of the results obtained from 
the Opt_RBN design. The visual evaluation also 
illustrates acceptable results. 

4.2. Example 2: Going-Prone Task 

Going prone is another task that is commonly 
performed by today’s War fighter. The task has 41 
inputs, which represent the loading conditions (16 
inputs), joint ROMs (24 inputs), and weapon point-
location on the hands (1 input). The task has the same 
inputs used for the walking task, with the exception of 
walking speed. There are 550 outputs, since there are 
10 control points for each DOF. The task involves 306 
training cases. The training process takes 
approximately 18 minutes, and the final network 
includes 38 basis functions. Five test cases, which 
represent five different loading and ROM conditions, 
are evaluated. The same subjective and objective 
evaluations are performed on the modified Opt_RBN 
results. 

For the results of predicting the five test cases, the 
average RMSE for Opt_RBN predicted outputs is 
0.018, while it is 0.026 for RBN, which takes 
approximately 4 minutes to be trained for this task. As 
with the walking task, when the prediction errors are 
converted to degrees, the RMSE is 1.03 for the 

Opt_RBN and 1.5 for RBN. This comparison shows an 
approximately 30% improvement for the results 
produced by Opt_RBN as compared to those from the 
RBN. As mentioned, the improvement of seemingly 
small errors in the PD task is critical, because of the 
necessity for the highest possible accuracy in the 
nature of the simulated PD problems. Reducing the 
average error for each DOF from 1.5 to 1 degree can 
produce a significant difference when these errors 
compound for the full 55-DOF DHM. In general, 
although the simulated motions in many cases 
produced from the Opt_RBN and RBN might not be 
visually notable or differ significantly, these differences 
could occur in many other cases, especially in cases 
where prediction errors are present in most of the 
DOFs. In addition, in complicated problems like the PD 
tasks, where there are hundreds to thousands of 
constraints to be met, any improvements in the 
simulated motions, even with seemingly fewer errors, 
means fewer violated constraints. 

In terms of model comparison based on the number 
of outputs with smaller errors, the Opt_RBN design 
shows superiority over the RBN with an average count 
of 181 for the Opt_RBN versus 172 for the RBN. Even 
though the numbers are close, this result provides 
further confirmation that the RBN does not outperform 
Opt_RBN by any means. The better RMSE value 
presented for Opt_RBN than for RBN supports that 
conclusion. 

 

Figure 1: Selected key frames for walking task simulation results of test cases 1-5 using the modified Opt_RBN. 
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Another significant result regarding the going-prone 
task is the fact that both networks produce the same 
error values in 197 outputs. This relatively large 
number of outputs with the same error values 
demonstrates that there is tight motion variability in the 
going-prone task, and the task shows fewer effects on 
the resulting motion over various changes in loading 
conditions compared to the walking task. This in turn 
means that the task has some joint DOFs, which are 
represented as a group of control points, with minor 
changes at various task conditions. Consequently, both 
network models are able to predict these 197 slightly 
changed outputs with the same high accuracy level. 

With respect to the subjective evaluation, the 
simulation results from the Opt_RBN design are 
evaluated visually for the five test cases of the going-
prone task. Figure 2 provides visual representation for 

the simulation results produced from the Opt_RBN. 
Again, all simulated motions are acceptable. With fewer 
effects of various loads on the resulting motion than in 
the walking task, this task shows a unique strategy for 
handling different load configurations in each case. In 
general, the Opt_RBN is successful in providing high-
fidelity results for the going-prone task, which involves 
more outputs to predict and fewer available training 
cases than the walking task. 

From both objective and subjective perspectives, 
the performance of the new Opt_RBN in predicting the 
going-prone task is acceptable. The new design 
outperforms RBN when they are compared in terms of 
the RMSE and in terms of the number of outputs with 
lower error values. As with the first task, the visual 
evaluation of the produced motion (i.e., outputs) from 
Opt-RBN is acceptable in all cases. 

4.3. Sensitivity Analysis 

A critical aspect of any ANN is its sensitivity to the 
amount of training. A primary novelty for the proposed 
work is its need for just minimal training; it is effective 
even when extensive training data is not available. To 
check the sensitivity of Opt_RBN accuracy to the 
numbers of training cases, it is trained and evaluated 
with various numbers of cases for a walking task, and 
its results are compared with those obtained from the 
RBN. 

The numbers of training cases used in this study 
are 44, 132, 198, 399, 918, 1224, and 1529. The 
average error results of predicting five test cases for 
both networks are presented in Figure 3. The modified 
Opt_RBN clearly outperforms the RBN. For example, 
when both networks are trained with 132 cases, the 

error produced from Opt_RBN is 20% less than that in 
RBN, and slightly better than that produced from RBN 
when it is trained with 198 cases. Similar results are 
produced from both networks when Opt_RBN is trained 
with 198 cases and RBN is trained with 918 cases. 
These results show that the Opt_RBN can use as few 
as 25% of the training cases required by the RBN to 
produce the same prediction errors. With problems like 
PD, where training data may be limited, the insensitivity 
to training data is critical. 

In Figure 3, although the minimum RMSE that is 
reached by RBN and Opt_RBN when they are trained 
with 1529 cases is not significantly different (the RBN 
error is 0.031 and Opt_RBN is 0.027), the results 
indicate the superiority of the Opt_RBN over the RBN 
even when trained with a larger number of training 
cases. 

 

Figure 2: Selected key frames for going-prone task simulation results of test cases 1-5 using the modified Opt_RBN. 
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When Opt_RBN is used to predict a PD task, the 
presented error analysis can provide an approximation 
of the number of training cases needed for the network 
training process to produce a model with acceptable 
accuracy. The results in Figure 3 show that, after the 
Opt_RBN is trained with 918 cases, no significant 
improvement is obtained. In addition, given the large 
number of cases added to train the network, and 
keeping in mind the necessity of training with a minimal 
set of cases, the error reduction from 0.029 to 0.027 is 
negligible. The reduction in the number of training 
cases in the PD application is critical for saving effort, 
since collecting each PD case is computationally 
costly. 

5. DISCUSSIONS AND CONCLUSION 

This work presents a new ANN that is designed for 
large-scale problems with minimal data sets. As so 
called, big data problems continue to surface and 
applications of artificial intelligence and machine 
learning accelerate, this new network promises far 
reaching benefits. Although this work leverages the 
recently introduced RBN design, called Opt_RBN, the 
enhancements are novel. The original design, which is 
intended for applications with a reduced number of 
training cases, is modified to work for large-scale 
problems in terms of the number of outputs. 
Optimization-based prediction of dynamic human 
motion is used as an initial, yet challenging example 
problem. To be sure, future work includes additional 
large problems in various fields 

The initial Opt_RBN is proven to improve the 
prediction results for applications with a reduced 
number of training cases. However, applying this 

network to the large-scale PD application experiences 
some difficulty. Specifically, the Opt_RBN experiences 
a CPU memory issue when solving the internal 
optimization problem for the training process. With the 
successful implementation of the modified algorithms 
within the Opt_RBN design in this work, the network’ 
scapability for real-time simulation of a PD task is 
achieved and all memory issues are resolved. The 
proposed network is tested successfully with two tasks 
(walking and going prone). In general, the results of the 
new network are validated objectively and subjectively. 
The objective comparisons for the Opt_RBN results 
with those from the RBN show superior performance by 
the Opt_RBN design. The reported RMSEs for both 
networks indicate more than 25% improvement of the 
new network for both presented tasks. 

In summary, the main contributions of this work are 
as follows: 

1. Development of a modified Opt_RBN training 
process for use with large-scale problems and 
minimal training data. 

2. Application of the new modified Opt_RBN design 
for real-time prediction of dynamic human 
motion. 

Although this work presents modification to the 
Opt_RBN driven by its potential use with PD, the 
consequent ANN design can be used with a broad 
range of large-scale problems. 

RBN took approximately 2 to 3 minutes to train for 
each task, whereas the new network took 
approximately 18-40 minutes. Both networks run in a 
fraction of a second for the test cases. Given the 

 

Figure 3: Test set RMSE evaluation for the modified Opt_RBN and typical RBN at various numbers of training cases when 
simulating the walking task. 



Neural Network for Large-Scale Problems Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2    31 

improvements in the results and the problem sizes, the 
training times for the new network are acceptable. 
Furthermore, the training time is not as important as 
the run time for test cases for most practical 
applications. 

Sensitivity analysis is performed for the modified 
Opt_RBN and compared with the RBN to check the 
performance at various numbers of training cases. 
Besides providing additional evidence of the superiority 
of Opt_RBN’s performance over RBN’s, the analysis 
introduces a general tool that can be used to guide 
collecting the proper number of training cases. It can 
be useful with other applications to evaluate what level 
of training is necessary for a desired level of accuracy. 

A significant consideration in the field of machine 
learning is the training of the various algorithms. 
Despite increasing media reports of the power of 
artificial intelligence, any cognitive capability- either it is 
human or mathematical- requires training. This paper 
indirectly raises the issue of advantages gained from 
faster and more efficient training. Considering the 
human analogy, large sets of available data can 
essentially accelerate the training that occurs over 
one’s life. ANNs need not exist for a generation in order 
to gain “wisdom”. The data of a lifetime is already 
available in many instances. However, the proposed 
algorithm is a step towards using this data more 
efficiently. 

In addition to providing a new and useful ANN, this 
work has flushed out directions for future work. It will be 
beneficial to investigate finding a proper ratio of outputs 
to inputs and/or number of training cases for improved 
ANN performance in PD applications. Furthermore, 
based on the presented results for the evaluated PD 
tasks, which show that some task outputs have either 
minor changes or no changes at all over various task 
conditions, the ANN can help in developing new tools 
to improve the PD task development process. For 
example, when a PD task is developed, the task could 
have a reduced number of design variables (i.e., 
eliminate the unchanged outputs) or could involve 
fixing certain DOF. That in turn would save 
development time and computational run time. Future 
work also entails additional applications for the 
proposed network. 
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