
22 Journal of Computer Science Technology Updates, 2016, 3, 22-32

 E-ISSN: 2410-2938/16 © 2016 Cosmos Scholars Publishing House

Neural Network for Large-Scale Problems, with Application to
Human Motion

Mohammad Bataineh1,* and Timothy Marler2

1Humana Inc.; Louisville, KY 40202, USA
2RAND Corporation; Santa Monica, CA 90401, USA

Abstract: As the potential applications for artificial intelligence, and thus neural networks expand, and as the prevalence
of big data increases, the need for improved training in neural networks that leverage data sets efficiently will soon
surface. In addition, research in the field of human simulation has led to significant advancements in quality, time, and
cost management for products like military and athletic equipment and vehicles. There is, however, a critical need for
human simulation models to run in real time, especially those with large-scale problems like motion prediction (a single
motion problem involves prediction of between 500-700 outputs). Hence, this work addresses both challenges by
introducing a modified training process for an artificial neural network (ANN) that is capable of mitigating memory issues
and improving accuracy with large scale problems that involve minimal taring data. The new modified ANN design is
successfully tested on two common human-motion tasks, walking and going prone. Through comparison with a
benchmark ANN, the results of the new network are shown to be accurate objectively and subjectively.

Keywords: Artificial neural network, Optimization, Digital human modeling, Motion prediction, Large-scale
problems.

1. INTRODUCTION

With a growing dependence on, and availability of
big data, methods for solving large-scale problems are
becoming increasingly important with far reaching
applications. Within this context, designing systems for
machine learning that have limited training sets
presents a particularly challenging problem for typical
neural networks. Thus, this paper presents a new
artificial neural network (ANN) that is specifically
designed for such problems. This network is applied to
computational problems for predicting dynamic human
motion. To be sure, there are many methods for
simulating tasks and scenarios as executed by a digital
human model (DHM). One such method is called
predictive dynamics (PD), which is used to predict
dynamic human motion [1]. Predictive dynamics is a
physics-based algorithm that consists of an
optimization problem with hundreds of design variables
and thousands of constraints.

Although PD simulations can be useful, they can
also be computationally expensive, and more complex
tasks can not necessarily be simulated in real time.
Furthermore, even small changes to the task
conditions, can affect the run time significantly. Thus, in
cases where PD is used to train an ANN, the number of
training cases can be limited due to the computational
time and cost associated with collecting training data.

*Address correspondence to this author at the Humana Inc.; Louisville, KY
40202, USA; Tel: +1-319-333-2433; Fax: +1-502-580-1041;
E-mail: bataineh.moe@gmail.com; tmarler@rand.org

The necessary manual post-processing procedures
can also be prohibitive.

In addition to being computationally demanding, PD
problems are often relatively large with respect to the
number of outputs; hundreds of outputs (500-700) are
required in order to predict a single problem (i.e., one
motion task). Thus, there is a need for a computational
model that can provide accurate simulations of
dynamic human motion in real time, based on PD
results.

In response to the special needs of large-scale
DHM problems with limited training data available, this
work proposes the use of a newly developed radial-
basis network (RBN), called Opt_RBN, [2]. Although
the Opt_RBN design is proven to provide accurate
prediction results for applications with a reduced
number of training cases, applying this design to large-
scale applications requires additional enhancements.
Opt_RBN experiences a memory issue during the
optimization step. Therefore, this work introduces new
modified algorithms for the Opt_RBN training process
in order to address the memory issue without affecting
the network performance. The resulting modified
Opt_RBN provides real-time prediction of a PD motion
problem that can be trained on any PC.

In general, the use of ANN and other machine
learning techniques for large-scale problems focuses
on problems that have a large number of training data
[3-6] due to the recent advancement in online web
services, software, and devices that provide massive

Neural Network for Large-Scale Problems Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 23

amounts of data for training purposes. That is, the term
large-scale typically refers to the size of the training
data set. There is limited use of ANNs in applications
that have limited numbers of training data like those
produced from high-fidelity finite element analysis
models or complex optimization and image processing
systems [7-11]. Although these applications have
recently been expanded to make them faster with
advanced techniques like parallel algorithms [12-14],
they still experience running delays that make them
difficult torunin real time without the assistance of
predictive models like ANN. Thus, ANNs and other
techniques have been investigated and widely used in
the recent years to help address various complicated
practical problems. Such advancement is notable
primarily in large-scale image classifications and video
analysis [5, 15-18] to replace the original
computationally expensive or limited-accuracy models.
In these works, the goal is to find the most appropriate
approaches that increase the results’ accuracy, given
that there is always enough data to train and evaluate
the models. Consequently, the remaining issue is the
trade-off between the available training cases and the
accuracy level of the resulting model [19]. However, it
is still crucial to solve the same problems, and with
comparable accuracy, but when limited training cases
are available. There is minimal work that targets
increased accuracy with limited available data.

With respect to the use of ANNs in applications
related to motion prediction, recent advancements
have been achieved in machines and humanoid
interfaces [20-23]. Although various types of ANNs
have been successfully used for predicting motion and
movements, the humanoid and animations that are
produced in these applications involve relatively simple
models with a small number of degrees of freedom
(DOF). Full-DOF human motion prediction is still an
active area of research due to the complexity of
designing and simulating the actual human models.
The proposed work focuses on simulating the motions
of the Santos DHM [24]. The general regression
network (GRN) has been shown to predict acceptable
motion simulations for a specific task using few training
cases (in the range of tens) [25]. The GRN can
simulate the motion of a complete DHM model under
various conditions, different loads, and anthropometric
variables.

However, the prediction capability of the GRN is
limited, because it is susceptible to adverse effects
from local optima and poor heuristic settings [26, 27]. A
new RBN-based network, called Opt_RBN, has been

introduced recently for improved performance with
limited available training cases [2]. Opt_RBN entails
multi-stage training approaches that produce more
objective settings of the network parameters. In
addition, it provides improved efficiency with limited
training data.

The goals of this work are to: 1) introduce a
modified Opt_RBN training process that is capable of
being trained for large-scale problems with minimal
training data, and 2) apply the new modified Opt_RBN
design for real-time prediction of PD tasks for a full-
human model. The proposed modified algorithms are
tested with two PD tasks: walking and going prone.
Although this work presents modification to the
Opt_RBN driven by its potential use with PD, the
consequent ANN design can be used with a broad
range of large-scale problems; PD is simply a well-
studied example problem for the proposed
developments.

2. BACKGROUND

Predictive dynamics is a physics-based motion
simulation algorithm for DHM [1]. The PD method is
distinguished from other motion simulation tools,
because it produces simulations that reflect the effects
of any changes in the DHM conditions, like
anthropometric data and loads on the body. This can
be particularly useful, as it allows one to study the
effects of various conditions on task performance and,
for instance, potential injuries.

PD involves solving a nonlinear optimization
problem in order to find motion profiles (i.e., control
points for B-splines that represent joint-angles over
time) for all body DOFs, while adhering to the equation
of motion and considering various physical limits and
other motion-related constraints. Since its development
by [1], PD has been used to simulate different motion
tasks and scenarios [28-33]. Successful validation of
the PD results has been provided using motion capture
systems [34].

The control points that are found by optimization in
PD eventually form B-splines for DOFs that simulate
the motion in a DHM model. Each DOF has a
corresponding B-spline. Having more control points in a
B-spline, where their appropriate numbers are
determined by the task developer, produces more
accurate motion simulation. However, it is
computationally more expensive. Although many
conditions (i.e., inputs) are common in all tasks, like
loading and clothing, others are task specific, like

24 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 Bataineh and Marler

speed in the walking task, box height in the jumping-
on-the-box task, etc. The details of PD settings are
provided by [29, 30].

The PD algorithm in this work is applied to the
Santos DHM [24]. Santos is a full-body DHM with 109
DOFs. For the purposes of this study 55 DOF are
predicted with PD. This work uses Santos with various
loading conditions and various limits on range-of-
motion. As suggested, creating a relatively large
number of simulated motions (from different task
conditions) for trade-off analyses can be
computationally demanding and thus time consuming.
The running time for each case, even with minor
changes in initial conditions, can take minutes to hours
to complete and produce the simulation. Not only does
this inhibit trade-off analyses, but it inhibits potential
training of ANNs. Hence, an ANN is needed that
requires only minimal training data.

In addition to the challenging concerning run time,
PD problems are relatively large with regards to the
number of outputs (control points). The number of
outputs in a PD task is approximately 500-700,
depending on the number of control points in each
task. Therefore, running a PD algorithm to create new
simulations, either for direct use or for use as one of
many training cases, requires the use of special
optimization software that is designed to solve large-
scale optimization problems. If the Opt_RBN design is
used to simulate a PD task, one stage of the network
training process that includes solving the optimization
problem will not work due to the largescale of the
problem (as will be shown in Section 3.1). Thus, new
refinements are proposed and tested to resolve this
issue.

In the following section, after the fundamental
design of the proposed Opt_RBN is presented, new
specific methodologies are developed to guarantee
successful running of its training process. The
consequent modified Opt_RBN design produces
accurate and real-time simulation of the large-scale PD
problem and can be trained with any optimization
algorithm on any PC.

3. METHOD

3.1. Fundamental Design

The fundamental model in this work is based on the
new RBN (Opt_RBN) for reduced training sets [2].
Opt_RBNis chosen because it outperforms other

typical ANN models, especially for applications with a
limited amount of training data. However, as stated
earlier, the new Opt_RBN design experiences a
memory issue when being trained to predict a relatively
large number of outputs [2]. In the case of the PD
problem, the original Opt_RBN design cannot be
trained when the problem has more than 200 outputs.
Hence, for successful training and simulation of the PD
problem, this work illustrates modifications to the
training process that resolve this issue. The
modifications basically allow the training process to be
performed by typical algorithms and software,
especially for the optimization step of the process,
without the need for a special large-scale optimization
program or a computer with special processing
capabilities. Although the modification to the Opt_RBN
is driven by the use of PD, the consequent ANN design
can be used for other similar large-scale problems with
reduced training sets.

Before it can be used, any ANN needs to be trained
on the task being modeled. A detailed description of
the fundamental RBN design used is provided in the
literature [2]. In summary, the training process in that
design consists of four main steps. First, inputs of
training cases are all normalized by standardization in
order to rescale all inputs to be within a scaleof -1 to 1.
Next, preliminary values for the network basis function
(i.e., Gaussian) spreads ! 0 are set for all potential
basis functions using the root-mean-square-distance
(RMSD). Then, the number of network basis functions
Q, their centers U , and preliminary values for
connection weights W o are set usingthe orthogonal
least square (OLS) approach. Finally, optimal values
for W and ! are calculated based on the formulation
in Equation 1. This optimization problem incorporates
the network parameters (W) as additional design
variables. Equation 1 represents a problem with
multiple outputs (N).

Minimize: f ! ,W() = 1
N n=1

N" tnm # ynm()2m=1

M" (1)

 = 1
N n=1

N! tnm " hmq #wnqq=1

Q!()()2m=1

M!

Subject to: 0 < ! q ; q "R
Q

In Equation 1, W = [w1 w2 ...wN] is a matrix of output
weight vectors for all N outputs. Each vector
Wn = [w1 w2 ...wQ]

T represents the connections

between all Q basis functions with the nth output; tnm is
the true mth training value of the nth network output;

Neural Network for Large-Scale Problems Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 25

ynm is the predicted mth training value of the nth
network output; hmq (Equation 2) is the qth basis

function output for the mth training case; and wnq is the

output connection weight between the qth basis
function and nth output.

hmq = exp
! ! x ! umq !

2

2" 2
q

#

$

%
%
%
%

&

'

(
(
(
(

 (2)

hmq is inversely proportional to the distance

between network’s input x !R1() and umq which is the

qth basis-function center for the mth training case. hqm

equals 1 at its maximum, when " equal umq , and it
equals zero at its minimum. The function width ! q (the
Gaussian spread) is the primary tuning parameter with
a RBN, along with the number of basis functions (i.e.,
neurons, Q) in the hidden layer.

With respect to the aforementioned Opt_RBN
training process, the optimization step has tens of
thousands of design variables (approximately 40,000
on average) when applied to PD problems [2]. Thus,
typical CPU memory cannot handle this matrix size all
at once, and optimization algorithms cannot solve this
large problem. Therefore, the proposed enhancements
for the Opt_RBN design in this paper focus on the
steps of setting the preliminary basis function spreads
! 0 and calculating the optimal basis function spreads
and connection weights W. These modifications are
necessary to let the division of the original optimization
step be performed in multiple runs for various groups of
outputs. Each consequent optimization run has a much
smaller problem size (approximately 300-1,000 design
variables) than in the original optimization problem
(Equation 1). The aggregate solution provided by the
proposed multiple optimization problems is exactly the
same as the solution obtained with the original single
optimization problem (as will be shown in Section
3.2.2). The proposed design modifications are
illustrated next.

3.2. New Approaches for Opt_RBN Training
Process

3.2.1. Setting Basis Function Spreads

In the original Opt_RBN design, along with the
output weights W = [w1 w2 ...wN]() corresponding to N
outputs, the vector of the basis function spreads, ! , is
included as a design variable in the optimization step

(Equation 1). Unlike the weights, the spreads ! are
coupled and cannot be separated for different
optimization runs. In other words, all ! elements
contribute in producing all network outputs, while each
vector of W contributes in producing one of the
network outputs independently from the other vectors.
That said, in order to be able to formulate multiple
smaller optimization problems, ! needs to be removed
from the optimization problem as a vector of design
variables.

Removing ! from the optimization necessitates
introducing more rigorous setting of its preliminary
values ! 0 , because these values will be used as the
final values and will no longer be optimized. This new
approach is especially important for an application with
either too limited or too many training cases, in order to
avoid any excessively large or small spread values. As
stated, in the original design, ! 0 elements are set by
using RMSD between the normalized inputs of the
neighboring training points. However, the RMSD can
be approximately zero when there is a relatively large
number of training cases, because the training points
are close to each other which can produce too small
RMSD. When only minimal training cases exist, the
calculated ! 0 based on the RMSD can be too large,
which produces a network with less accurate results. If
the spreads are removed from the optimization step,
their values need to be determined using a more
intelligent method compared to that used to set their
preliminary values in the Opt_RBN, in order to use the-
se values in the final network design. Therefore, a new
approach for calculating ! is shown in Equation 3.

! j =

M
I

"
#$

%
&' ! u j k ! =

M
I

uji (u j ,k i
i=1

I

) , j *"M (3)

Setting ! for large-scale problems depends on the
Manhattan distance (! u j k ! 1) [35, 36] between the
input vectors of two adjacent training cases and the
ratio of the number of training cases to the number of

inputs M
I

!
"#

$
%& This step assumes all available training

cases are used as potential basis functions [2]. Thus, a
spread value is set for each available training case.
Then, the spreads that correspond to the selected
training cases, which are essentially the basis functions
selected by the OLS approach, are used in the final
network design.

In Equation 3, ! j is the spread of the j th training
case when its input is selected as the basis function. I
is the size of input vector (i.e., the number of elements
in the input vector). M is the number of training cases.

26 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 Bataineh and Marler

 ! u j k ! 1 represents the Manhattan distance between the

inputs of the j th training case and its closest Kth
training cases. u ji is the ith input element of the j th

training case. u j ,ki is the ith input element of the Kth

training case that is closest to the j th training case.

In this context, the Manhattan distance (! u j k ! 1) is
the sum of absolute distances between two points
(vectors) in all dimensions. Note that in a higher
dimensional space, this distance provides more
accurate representation of the actual distance between
two points compared to that provided by the Euclidean

distance. With respect to the ratio M
I

!
"#

$
%& , it accounts for

the training size and input dimension of the application
in order to provide appropriate ! values for any
problem. Preliminary work was performed by
investigating multiple approaches for various ratios
based on the network and problem parameters that

lead to the ratio M
I

 as an acceptable heuristic setting.

In general, if the input size (i.e., the number of input
parameters) I increases, more training cases M are
required to provide more combinations of these
parameters. The increase in I is implicitly considered
by increasing M . Even when I increases with fixed
M , the resulting ! u j k ! 1 is larger, because typically the
training points are further from each other in higher
dimensional space. The larger ! u j k ! 1 compensates for

the fixed M producing larger ! j . Hence, the ratio M
I
.

provides an appropriate factor for any problem to
produce proper % values in order to handle a problem
of any size. In addition, this ratio reduces the
propensity for prohibitively small % values. Even when
the problem has a relatively large number of training
cases (in the hundreds or thousands), the % values will
not be too small, because the possible too small

 ! u j k ! 1 value is multiplied by large ratio M
I

.

The heuristic-based ! values in the new method
are used as the final values. The new method is
appropriate for setting a value ! that depends on the

 ! u j k ! 1 value and various combinations of training
cases and inputs.

3.2.2. Grouped Optimization of Network Output
Weights

After the spreads ! are removed as design
variables from the original optimization problem, the
weights W remain as the only design variables. The
weights W = [w1 w2 ...wN] for different outputs can then

be decoupled, because each vector of output weights
Wn = [w1,w2 ,...wQ]

T is independent from the others
used to produce the network outputs (as shown in
Equation 1). Thus, this section details a new grouped
optimization step for each group of outputs that are
related to each other (Equation 4). Multiple grouped
optimization runs are then performed, and each
includes the weights corresponding to the outputs that
are related to 1 DOF (i.e., each group of outputs
denotes the control points of 1 DOF in the PD
problem). There are 55 separate optimization runs
corresponding to the 55 predicted DOFs of the DHM. In
contrast to the original optimization problem, which
involves finding all vectors of W in a single run, the
new optimization involves multiple runs, each for a
smaller group of vectors Wg The new optimization is
also simpler compared to that in Equation 1, because it
is unconstrained. Note that since each vector in W is
independent from the others, Equation 4 can be
generalized and rewritten to suite any problem with any
number of outputs.

Find: Wg = [w1 w2 ...wD]; g = 1,2, ..., G

Minimize: f Wg() = 1
D d=1

D! m=1

M! tg,d ,m " yg,d ,m()2

 = 1
D d=1

D! m=1

M! tg,d ,m " q=1

Q! hm,q #wg,d ,q$% &'()2 (4)

In Equation 4, G is the number of optimization
problems to be solved (55). Wg = [wg,1,wg,2 ,...wg,D] is
the connection-weight matrix that corresponds to the
gth group of outputs Wg !R

D() .

Wg,d = [wg,d ,1,wg,d ,2 ,...wg,d ,Q]
T is the connection-weight

vector that corresponds to the dth output in the gth
group. D is the number of outputs in each gth group.
tg,d ,m is the true value for the dth output of the mth

training case in the gth group. yg,d ,m is the predicted

(network) value for the dth output of the mth training
case in the gth group. hm,q is the qth basis function

output when considering the input of the mth training
case wg,d ,q is the connection-weight value between the

qth basis function and the dth output in the gth group of
optimization.

The memory and run-time issues are resolved by
using this new grouped optimization approach. As an
example to demonstrate that, a comparison of the
running time is performed between the single
optimization and the grouped optimization for the PD
problem. In this case, the network is trained to simulate

Neural Network for Large-Scale Problems Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 27

part of the PD outputs, since 200 outputs is the
maximum number of outputs the optimization can solve
in a single run as opposed to approximately 500 to 700
outputs in a full-PD problem. For a PD problem with
200 outputs, the running time in the new grouped
optimization is approximately 20 minutes, while it is
approximately 24 minutes for the single optimization
(the optimization is solved on a Windows 7 computer
with an Intel® Core™ i7 processor and 16 GB of RAM).
The solutions from both problems are exactly the
same, which reassures the independencies among W
vectors.

4. RESULTS

The new modified Opt_RBN is tested using two PD
task-simulations that are created for the Santos
software. The tasks are walking forward and going
prone. These tasks are selected, because they differ in
terms of complexity and behavior. The modified
Opt_RBN performance is evaluated objectively by
calculating test error and comparing the error with the
results of a typical RBN design [37, 38]. In addition,
subjective evaluation of the visual results is provided.

4.1. Example 1: Walking Task

The walking task is a common and basic task often
discussed in the field of DHM. In this work, the task
includes 42 inputs, which represent the loading
conditions (16 inputs), joint ranges of motion (24
inputs), weapon point-location on the hands (1 input),
and walking speed (1 input). The loading conditions
include the total weight of the added equipment on the
back, and the body-segment centers-of-mass in three
dimensions. The ranges of motion (ROM) include
normal and reduced ranges for the bending, extension-
flexion, and rotation for four of the DHM’s spinal joints.
Although other ROMs can be included as extra inputs
in the task, this work includes these spinal ROMs
specifically to evaluate the effects of various loadings,
which are mainly added on the back, and on the spinal
joints. The task has 9 control points for each DOF,
which translates into a total of 495 outputs. 399 training
cases are collected, representing various combinations
of inputs. The network training time is approximately 41
minutes. The final network includes 74 basis functions
(i.e., neurons).

To evaluate the network performance, five test
cases are used. The test cases are cases that have
never been used to train the network. With regard to
objective evaluation, the root mean square error

(RMSE) for the modified Opt_RBN predicted outputs
are compared with those produced from RBN, which
takes approximately 6 minutes to be trained for this
task. The average RMSE for the five test cases is
0.031 for the Opt_RBN and 0.04 for the RBN. Although
the results are small for both models, the Opt_RBN has
approximately 25% less error. Since the outputs are
calculated in radians, which are the reason for
obtaining apparently small RMSE in both models, direct
conversion to degrees yields an error of approximately
1.78 for the Opt_RBN and 2.3 for the RBN. When
predicting joint angles, reducing the error by 25%, on
average, is a significant improvement, because even
errors as small as 2.3 degrees in each joint angle
profile can result in odd visual motion simulations.

Another objective measurement of the results’
accuracy is the number of outputs each of the network
models (Opt_RBN and RBN) can predict with less error
than the other model (i.e., count the number of outputs
with smaller RMSE for each network). Since the PD
problem involves hundreds of outputs, this
measurement is helpful for evaluating the performance
of the Opt_RBN design. Such a measurement can be
helpful in studying the general trend of the network
when predicting each output.

The average number of the more accurately
predicted outputs among the five test cases is
calculated. The calculated results show that the
Opt_RBN is more accurate than RBN in this task with
an average of 269 outputs compared to 217 for the
RBN. Both networks have the same exact error in 9
outputs. Among the 486 compared outputs, the
Opt_RBN provides less error in 52 more outputs than
the RBN. The performed objective evaluations are
based on the reported RMSEs.

With respect to the subjective evaluation, the
simulation results from the Opt_RBN design are
evaluated visually. The RBN visual results are not
included, because the visual results from both models
do not show obvious difference over the whole motion.
Figure 1 shows the visual results for the Opt_RBN,
where the motions resulting from the five test cases are
simulated for the Santos model. In the figure, Santos
moves from right to left. All of the simulated motions
produced from the Opt_RBN look acceptable,
suggesting the network is generally able to predict
proper simulations for the corresponding input
conditions. Specifically, the effect of heavier loads is
represented in all simulations.

28 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 Bataineh and Marler

In summary, with the walking task, the Opt_RBN
performance is successful in providing high-fidelity
outputs. The small RMSE values for the presented test
cases show the accuracy of the results obtained from
the Opt_RBN design. The visual evaluation also
illustrates acceptable results.

4.2. Example 2: Going-Prone Task

Going prone is another task that is commonly
performed by today’s War fighter. The task has 41
inputs, which represent the loading conditions (16
inputs), joint ROMs (24 inputs), and weapon point-
location on the hands (1 input). The task has the same
inputs used for the walking task, with the exception of
walking speed. There are 550 outputs, since there are
10 control points for each DOF. The task involves 306
training cases. The training process takes
approximately 18 minutes, and the final network
includes 38 basis functions. Five test cases, which
represent five different loading and ROM conditions,
are evaluated. The same subjective and objective
evaluations are performed on the modified Opt_RBN
results.

For the results of predicting the five test cases, the
average RMSE for Opt_RBN predicted outputs is
0.018, while it is 0.026 for RBN, which takes
approximately 4 minutes to be trained for this task. As
with the walking task, when the prediction errors are
converted to degrees, the RMSE is 1.03 for the

Opt_RBN and 1.5 for RBN. This comparison shows an
approximately 30% improvement for the results
produced by Opt_RBN as compared to those from the
RBN. As mentioned, the improvement of seemingly
small errors in the PD task is critical, because of the
necessity for the highest possible accuracy in the
nature of the simulated PD problems. Reducing the
average error for each DOF from 1.5 to 1 degree can
produce a significant difference when these errors
compound for the full 55-DOF DHM. In general,
although the simulated motions in many cases
produced from the Opt_RBN and RBN might not be
visually notable or differ significantly, these differences
could occur in many other cases, especially in cases
where prediction errors are present in most of the
DOFs. In addition, in complicated problems like the PD
tasks, where there are hundreds to thousands of
constraints to be met, any improvements in the
simulated motions, even with seemingly fewer errors,
means fewer violated constraints.

In terms of model comparison based on the number
of outputs with smaller errors, the Opt_RBN design
shows superiority over the RBN with an average count
of 181 for the Opt_RBN versus 172 for the RBN. Even
though the numbers are close, this result provides
further confirmation that the RBN does not outperform
Opt_RBN by any means. The better RMSE value
presented for Opt_RBN than for RBN supports that
conclusion.

Figure 1: Selected key frames for walking task simulation results of test cases 1-5 using the modified Opt_RBN.

Neural Network for Large-Scale Problems Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 29

Another significant result regarding the going-prone
task is the fact that both networks produce the same
error values in 197 outputs. This relatively large
number of outputs with the same error values
demonstrates that there is tight motion variability in the
going-prone task, and the task shows fewer effects on
the resulting motion over various changes in loading
conditions compared to the walking task. This in turn
means that the task has some joint DOFs, which are
represented as a group of control points, with minor
changes at various task conditions. Consequently, both
network models are able to predict these 197 slightly
changed outputs with the same high accuracy level.

With respect to the subjective evaluation, the
simulation results from the Opt_RBN design are
evaluated visually for the five test cases of the going-
prone task. Figure 2 provides visual representation for

the simulation results produced from the Opt_RBN.
Again, all simulated motions are acceptable. With fewer
effects of various loads on the resulting motion than in
the walking task, this task shows a unique strategy for
handling different load configurations in each case. In
general, the Opt_RBN is successful in providing high-
fidelity results for the going-prone task, which involves
more outputs to predict and fewer available training
cases than the walking task.

From both objective and subjective perspectives,
the performance of the new Opt_RBN in predicting the
going-prone task is acceptable. The new design
outperforms RBN when they are compared in terms of
the RMSE and in terms of the number of outputs with
lower error values. As with the first task, the visual
evaluation of the produced motion (i.e., outputs) from
Opt-RBN is acceptable in all cases.

4.3. Sensitivity Analysis

A critical aspect of any ANN is its sensitivity to the
amount of training. A primary novelty for the proposed
work is its need for just minimal training; it is effective
even when extensive training data is not available. To
check the sensitivity of Opt_RBN accuracy to the
numbers of training cases, it is trained and evaluated
with various numbers of cases for a walking task, and
its results are compared with those obtained from the
RBN.

The numbers of training cases used in this study
are 44, 132, 198, 399, 918, 1224, and 1529. The
average error results of predicting five test cases for
both networks are presented in Figure 3. The modified
Opt_RBN clearly outperforms the RBN. For example,
when both networks are trained with 132 cases, the

error produced from Opt_RBN is 20% less than that in
RBN, and slightly better than that produced from RBN
when it is trained with 198 cases. Similar results are
produced from both networks when Opt_RBN is trained
with 198 cases and RBN is trained with 918 cases.
These results show that the Opt_RBN can use as few
as 25% of the training cases required by the RBN to
produce the same prediction errors. With problems like
PD, where training data may be limited, the insensitivity
to training data is critical.

In Figure 3, although the minimum RMSE that is
reached by RBN and Opt_RBN when they are trained
with 1529 cases is not significantly different (the RBN
error is 0.031 and Opt_RBN is 0.027), the results
indicate the superiority of the Opt_RBN over the RBN
even when trained with a larger number of training
cases.

Figure 2: Selected key frames for going-prone task simulation results of test cases 1-5 using the modified Opt_RBN.

30 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 Bataineh and Marler

When Opt_RBN is used to predict a PD task, the
presented error analysis can provide an approximation
of the number of training cases needed for the network
training process to produce a model with acceptable
accuracy. The results in Figure 3 show that, after the
Opt_RBN is trained with 918 cases, no significant
improvement is obtained. In addition, given the large
number of cases added to train the network, and
keeping in mind the necessity of training with a minimal
set of cases, the error reduction from 0.029 to 0.027 is
negligible. The reduction in the number of training
cases in the PD application is critical for saving effort,
since collecting each PD case is computationally
costly.

5. DISCUSSIONS AND CONCLUSION

This work presents a new ANN that is designed for
large-scale problems with minimal data sets. As so
called, big data problems continue to surface and
applications of artificial intelligence and machine
learning accelerate, this new network promises far
reaching benefits. Although this work leverages the
recently introduced RBN design, called Opt_RBN, the
enhancements are novel. The original design, which is
intended for applications with a reduced number of
training cases, is modified to work for large-scale
problems in terms of the number of outputs.
Optimization-based prediction of dynamic human
motion is used as an initial, yet challenging example
problem. To be sure, future work includes additional
large problems in various fields

The initial Opt_RBN is proven to improve the
prediction results for applications with a reduced
number of training cases. However, applying this

network to the large-scale PD application experiences
some difficulty. Specifically, the Opt_RBN experiences
a CPU memory issue when solving the internal
optimization problem for the training process. With the
successful implementation of the modified algorithms
within the Opt_RBN design in this work, the network’
scapability for real-time simulation of a PD task is
achieved and all memory issues are resolved. The
proposed network is tested successfully with two tasks
(walking and going prone). In general, the results of the
new network are validated objectively and subjectively.
The objective comparisons for the Opt_RBN results
with those from the RBN show superior performance by
the Opt_RBN design. The reported RMSEs for both
networks indicate more than 25% improvement of the
new network for both presented tasks.

In summary, the main contributions of this work are
as follows:

1. Development of a modified Opt_RBN training
process for use with large-scale problems and
minimal training data.

2. Application of the new modified Opt_RBN design
for real-time prediction of dynamic human
motion.

Although this work presents modification to the
Opt_RBN driven by its potential use with PD, the
consequent ANN design can be used with a broad
range of large-scale problems.

RBN took approximately 2 to 3 minutes to train for
each task, whereas the new network took
approximately 18-40 minutes. Both networks run in a
fraction of a second for the test cases. Given the

Figure 3: Test set RMSE evaluation for the modified Opt_RBN and typical RBN at various numbers of training cases when
simulating the walking task.

Neural Network for Large-Scale Problems Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 31

improvements in the results and the problem sizes, the
training times for the new network are acceptable.
Furthermore, the training time is not as important as
the run time for test cases for most practical
applications.

Sensitivity analysis is performed for the modified
Opt_RBN and compared with the RBN to check the
performance at various numbers of training cases.
Besides providing additional evidence of the superiority
of Opt_RBN’s performance over RBN’s, the analysis
introduces a general tool that can be used to guide
collecting the proper number of training cases. It can
be useful with other applications to evaluate what level
of training is necessary for a desired level of accuracy.

A significant consideration in the field of machine
learning is the training of the various algorithms.
Despite increasing media reports of the power of
artificial intelligence, any cognitive capability- either it is
human or mathematical- requires training. This paper
indirectly raises the issue of advantages gained from
faster and more efficient training. Considering the
human analogy, large sets of available data can
essentially accelerate the training that occurs over
one’s life. ANNs need not exist for a generation in order
to gain “wisdom”. The data of a lifetime is already
available in many instances. However, the proposed
algorithm is a step towards using this data more
efficiently.

In addition to providing a new and useful ANN, this
work has flushed out directions for future work. It will be
beneficial to investigate finding a proper ratio of outputs
to inputs and/or number of training cases for improved
ANN performance in PD applications. Furthermore,
based on the presented results for the evaluated PD
tasks, which show that some task outputs have either
minor changes or no changes at all over various task
conditions, the ANN can help in developing new tools
to improve the PD task development process. For
example, when a PD task is developed, the task could
have a reduced number of design variables (i.e.,
eliminate the unchanged outputs) or could involve
fixing certain DOF. That in turn would save
development time and computational run time. Future
work also entails additional applications for the
proposed network.

ACKNOWLEDGEMENT

This work is funded by the US Office of Naval
Research, and was performed at the University of

Iowa’s Center for Computer Aided Design, where the
authors worked at the time. The authors would like to
thank the team at the University of Iowa’s Virtual
Soldier Research (VSR) program.

REFERENCES

[1] Xiang Y, Chung H-J, Kim JH, Bhatt R, Rahmatalla S, Yang J,
et al. Predictive dynamics: an optimization-based novel
approach for human motion simulation. Structural and
Multidisciplinary Optimization. 2010; 41(3): 465.
https://doi.org/10.1007/s00158-009-0423-z

[2] Bataineh M. New neural network for real-time human
dynamic motion prediction.PhD thesis, University of Iowa
2015.

[3] Collobert R, Bengio S, Bengio Y. A parallel mixture of SVMs
for very large scale problems. Neural Comput 2002; 14(5):
1105-14.
https://doi.org/10.1162/089976602753633402

[4] Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, et
al., editors. Large scale distributed deep networks. Advances
in Neural Information Processing Systems; 2012.

[5] Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R,
Fei-Fei L, editors. Large-scale video classification with
convolutional neural networks. Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on; 2014: IEEE.

[6] Bottou L. Large-scale machine learning with stochastic
gradient descent. Proceedings of COMPSTAT'2010:
Springer; 2010. p. 177-86.
https://doi.org/10.1007/978-3-7908-2604-3_16

[7] Rao R, Savsani V, Vakharia D. Teaching–learning-based
optimization: an optimization method for continuous non-
linear large scale problems. Inf Sci 2012; 183(1): 1-15.
https://doi.org/10.1016/j.ins.2011.08.006

[8] Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang
Y, et al. A large-scale model of the functioning brain science
2012; 338(6111): 1202-5.

[9] Simonyan K, Zisserman A. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:
14091556. 2014.

[10] Arndt O, Barth T, Freisleben B, Grauer M. Approximating a
finite element model by neural network prediction for facility
optimization in groundwater engineering. European journal of
operational research 2005; 166(3): 769-81.
https://doi.org/10.1016/j.ejor.2003.09.039

[11] Zadpoor AA, Campoli G, Weinans H. Neural network
prediction of load from the morphology of trabecular bone.
Applied Mathematical Modelling 2013; 37(7): 5260-76.
https://doi.org/10.1016/j.apm.2012.10.049

[12] Leighton FT. Introduction to parallel algorithms and
architectures: Arrays· trees· hypercubes: Elsevier; 2014.

[13] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed
optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trends® in
Machine Learning 2011; 3(1): 1-122.
https://doi.org/10.1561/2200000016

[14] Garland M, Le Grand S, Nickolls J, Anderson J, Hardwick J,
Morton S, et al. Parallel computing experiences with CUDA.
IEEE micro 2008(4): 13-27.
https://doi.org/10.1109/MM.2008.57

[15] Ciresan DC, Meier U, Gambardella LM, Schmidhuber J.
Deep, big, simple neural nets for handwritten digit
recognition. Neural Comput 2010; 22(12): 3207-20.
https://doi.org/10.1162/NECO_a_00052

[16] Krizhevsky A, Sutskever I, Hinton GE, editors. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems; 2012.

32 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 2 Bataineh and Marler

[17] Ciresan D, Meier U, Schmidhuber J, editors. Multi-column
deep neural networks for image classification. Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on; 2012: IEEE.

[18] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,
et al. Going deeper with convolutions. arXiv preprint arXiv:
14094842. 2014.

[19] Bousquet O, Bottou L, editors. The tradeoffs of large scale
learning. Advances in neural information processing
systems; 2008.

[20] Chalodhorn R, MacDorman KF, Asada M. Humanoid robot
motion recognition and reproduction. Advanced Robotics
2009; 23(3): 349-66.
https://doi.org/10.1163/156855308X397569

[21] Calinon S, Guenter F, Billard A. On learning, representing,
and generalizing a task in a humanoid robot. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on
2007; 37(2): 286-98.
https://doi.org/10.1109/TSMCB.2006.886952

[22] Bu N, Okamoto M, Tsuji T. A hybrid motion classification
approach for EMG-based human–robot interfaces using
bayesian and neural networks. Robotics, IEEE Transactions
on 2009; 25(3): 502-11.
https://doi.org/10.1109/TRO.2009.2019782

[23] Reinhart RF, Steil JJ, editors. Reaching movement
generation with a recurrent neural network based on learning
inverse kinematics for the humanoid robot iCub. Humanoid
Robots, 2009 Humanoids 2009 9th IEEE-RAS International
Conference on 2009: IEEE.

[24] Abdel-Malek K, Yang J, Kim JH, Marler T, Beck S, Swan C,
et al. Development of the virtual-human SantosTM. Digital
Human Modeling: Springer 2007; 490-9.
https://doi.org/10.1007/978-3-540-73321-8_57

[25] Bataineh M, Marler T, Abdel-Malek K, Arora J. Neural
network for dynamic human motion prediction. Expert
Systems with Applications 2015.

[26] Masters T, Land W, editors. A new training algorithm for the
general regression neural network. Systems, Man, and
Cybernetics, 1997 Computational Cybernetics and
Simulation, 1997 IEEE International Conference on 1997:
IEEE.

[27] Tomandl D, Schober A. A modified general regression neural
network (MGRNN) with new, efficient training algorithms as a
robust 'black box'-tool for data analysis.Neural Networks
2001; 14(8): 1023-34.
https://doi.org/10.1016/S0893-6080(01)00051-X

[28] Xiang Y, Arora JS, Rahmatalla S, Marler T, Bhatt R, Abdel-
Malek K. Human lifting simulation using a multi-objective

optimization approach. Multibody System Dynamics 2010;
23(4): 431-51.
https://doi.org/10.1007/s11044-009-9186-y

[29] Xiang Y, Arora JS, Abdel-Malek K. Physics-based modeling
and simulation of human walking: a review of optimization-
based and other approaches. Structural and Multidisciplinary
Optimization 2010; 42(1): 1-23.
https://doi.org/10.1007/s00158-010-0496-8

[30] Xiang Y, Arora JS, Abdel-Malek K. Hybrid predictive
dynamics: a new approach to simulate human motion.
Multibody System Dynamics 2012; 28(3): 199-224.
https://doi.org/10.1007/s11044-012-9306-y

[31] Kwon H-J, Xiang Y, Bhatt R, Rahmatalla S, Arora JS, Abdel-
Malek K. Backward walking simulation of humans using
optimization. Structural and Multidisciplinary Optimization.
2014: 1-11.
https://doi.org/10.1007/s00158-013-1039-x

[32] Kim JH, Xiang Y, Bhatt R, Yang J, Chung H-J, Patrick A, et
al., editors. Efficient ZMP formulation and effective whole-
body motion generation for a human-like mechanism. ASME
2008 International Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference; 2008: American Society of Mechanical
Engineers.

[33] Kim JH, Xiang Y, Yang J, Arora JS, Abdel-Malek K. Dynamic
motion planning of overarm throw for a biped human
multibody system. Multibody System Dynamics 2010; 24(1):
1-24.
https://doi.org/10.1007/s11044-010-9193-z

[34] Rahmatalla S, Xiang Y, Smith R, Meusch J, Bhatt R. A
validation framework for predictive human
models.International journal of human factors modelling and
simulation 2011; 2(1): 67-84.
https://doi.org/10.1504/IJHFMS.2011.041638

[35] Köthe G, Garling DJH. Topological vector spaces: Springer
1969.

[36] Schaefer HH, Wolff MP. Locally Convex Topological Vector
Spaces: Springer; 1999.
https://doi.org/10.1007/978-1-4612-1468-7

[37] Beale MH, Hagan MT, Demuth HB. Neural network toolbox
for use with Matlab user's guide version 4.The Mathworks
2001.

[38] Chen S, Cowan CFN, Grant PM. Orthogonal least squares
learning algorithm for radial basis function networks. Neural
Networks, IEEE Transactions on 1991; 2(2): 302.
https://doi.org/10.1109/72.80341

Received on 29-10-2016 Accepted on 28-11-2016 Published on 24-12-2016

http://dx.doi.org/10.15379/2410-2938.2016.03.02.02

© 2016 Bataineh and Marler; Licensee Cosmos Scholars Publishing House.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium,
provided the work is properly cited.

