
 Journal of Computer Science Technology Updates, 2016, 3, 1-9 1

 E-ISSN: 2410-2938/16 © 2016 Cosmos Scholars Publishing House

Characterizing Faults on Real-Time Systems Based on Grid
Automata

Adilson Luiz Bonifacio* and Gilson Doi

Computing Department, University of Londrina P.O. Box 6.001, 86.051-980, Londrina, PR, Brazil
Abstract: Real-time systems are, in general, critical systems that interact with the environment through input and output
events regulated by time constraints. The testing activity on systems of this nature requires rigorous approaches due to
their critical aspects. Model-based testing approaches rely on formalisms that provide more reliability to testing activities.
However, a model-based testing approach for real-time systems depends on techniques that can deal with continuous
evolution of time appropriately. Several testing approaches apply discretization techniques in order to represent
continuous behavior of timed models. Test suites can then be extracted from discretized models to support conformance
testing between specifications and their respective implementations. Therefore an evaluation of test suites considering a
fault coverage is an important task, but rarely addressed by model-based testing approaches for real-time systems. In
this work we propose a systematic strategy to identify faults in TIOA models based on their corresponding discretized
models. We precisely define a fault model to support model-based testing activities such as coverage analysis and test
case generation.

Keywords: Real-time systems, Model-based testing, TIOA, Grid automata, Fault model.

1. INTRODUCTION

Critical systems [16], where a failure can cause
severe or irreparable damage, require rigorous
methods to support activities of software development
process, especially the activity of testing. Model-based
testing [3, 19] is an approach that relies on well defined
formalisms to specify and to test system requirements.
These formalisms avoid misinterpretations on system
requirements and provide more reliability to the product
by reducing drastically failures in the testing
procedures [14].

Although model-based testing is a promising
approach and largely studied its application to deal with
continuous time evolution when modeling real-time
systems [15, 17] is still a challenge. A typical problem
that can arise on validating systems of this nature is the
combinatorial explosion on their state space
representation. The system state space grows expo-
nentially as the number of state variables that model
the continuous behavior increases in the system [7].

Some model-based testing approaches for real-time
systems [4, 9, 10, 18] apply discretization techniques to
cope with the continuous time evolution. Discretized
models allow us to specify system requirements with
time aspects in a finite state space but still exponential.
Testing activities such as test suite generation,
conformance verification and fault coverage an

*Address correspondence to this author at the Computing Department,
University of Londrina P.O. Box 6.001, 86.051-980, Londrina, PR, Brazil;
Tel:+55(43)3371-4678; Fax: +55(43)3371-4294;
E-mail: adilsonbonifacio@gmail.com

alysis can be performed based on these discretized
models.

The conformance relation between an
implementation and its specification can be verified
according to a fault model [5, 17]. A fault model [6, 11]
gives the basis to detect faults and also to evaluate the
capability of a certain test suite on finding all faults due
to disagreements between specifications and their
respective implementations.

This work proposes a fault model based on grid
automata which, in turn, are obtained by discretization
methods for Timed Input/Output Automata (TIOA). The
TIOA model specifies real-time systems that interacts
with the environment. This fault model aids to identify
classes of fault on TIOA models through their
corresponding grid automata. Testing activities can
then be performed using grid automata such as a fault
coverage analysis of test suites for real-time systems.

This paper is organized as follows. In Section 2
some related works are summarized. The definition of
fault model and the fault models for Finite State
Machines (FSM) and TIOA models are presented in
Section 3. Section 4 generalizes the representation of
the continuous time evolution on grid automata. Such
generalization then supports the fault characterization
following the fault model described in Section 5. The
concluding remarks and some future directions are
given in Section 6.

2. RELATED WORK

Some model-based testing approaches have been
applied on real-time systems using their discretized

2 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 1 Bonifacio and Doi

models to specify TIOA models. However, testing
approaches based on TIOA have been lacking due to
time aspects and their reactive nature. Test generation
methods based on TIOA model generally derive large
test suites that are unfeasible in practice. Some works
have been proposed to obtain more compact test
suites by establishing discretization techniques.
Considering practical limitations on testing real-time
systems, fault characterization and identification
techniques have been used on discretized models.

Springintveld et al. [18] propose a discretization
approach where the granularity is based on the number
of clock variables present in a TIOA model. Test suites
are obtained applying an extension of the W-method [6]
which generates extremely large test suites in size.
They use a tight relation between the chosen
granularity and the number of clocks. Thus the state
space grows quickly according to the number of clocks
which becomes unfeasible in practice. Their approach
does not accomplish a precise fault coverage analysis,
particularly for timing faults.

A timed extension of the Wp-method [12], called
Timed-Wp method [9] for real-time systems, generates
discretized models based on the number of clock
variables. Thereby it results again on a exponentially
large state space since clock regions are obtained
according to the number of clocks comprised in the
TIOA model. Furthermore the fault coverage analysis is
conducted according to a fault model based on region
automata [11]. Again, it causes the state space
problem which hinders a precise fault identification
process and the coverage analysis.

Other works [8, 10] deal with discretization
approaches where granularities are chosen on fixed
points obtained by traversing guards and invariant
conditions over the TIOA. In these approaches the
state space of discretized models becomes more
manageable and they lean on the number of transitions
in the original model. However few fixed points over the
enabled time interval of the transition may not be
reasonable to represent the continuous time evolution
in a general case. Further there is no mechanism to
systematically detect faults in these approaches.

In a more recent work [4] a testing framework is
proposed to discretize TIOA models. This approach
allows for more flexible choices of granularities but still
guarantees that the original model simulates
homomorphically the corresponding grid automaton
and conversely. In this case the state space becomes

more manageable which opens the possibility for
applying this method in practical experiments. However
the fault coverage analysis is based on test purposes
which restrains the fault detection and hence the
efficiency of this method.

Devising more efficient methods of testing that deal
with real-time systems we propose a fault model to
TIOA formalism based on grid automata. The aim is to
characterize classes of potential faults in
implementations modeled by TIOA models. The
proposed fault model supports the fault detection for
real-time systems based on grid automata.

3. FAULT MODELS

The fault detection analysis results from the
application of test suites to computational systems. The
efficiency of a fault detection or the accuracy of a test
suite to finding faults depends on systematic strategies
to allow test automation. Then the concept of fault must
be well-defined in a specific scope to automating
model-based testing approaches.

The fault detection process can be classified in two
analyses: quantitative or qualitative. A fault detection
based on fault models [6, 11] addresses an quantitative
analysis whereas test purposes are considered
qualitative. A fault model classifies potential faults in a
system under test where each class of faults can be
generally characterized to detect any fault within a
particular scope. In contrast, test purposes detect
particular faults and fall short for finding general faults.
So an approach based on a fault model results more
effectiveness when finding faults on systems. Note that
specific faults of a system are encompassed by faults
detected using a more general fault model under the
same test assumptions.

The coverage analysis of the W-method [6] follows
a fault model defined for FSMs. A FSM is a formalism
widely applied due to its plainness and expressiveness
on modeling systems [13, 20]. That work classifies the
fault model in classes of faults: operation faults,
transfer faults and faults of extra/missing states. An
operation fault occurs when the operation function
gives rise an output action in the specification distinct
to that yielded by the implementation. A transfer fault
occurs when a transfer function leads the
implementation to a distinct state from that modeled in
the specification. Faults of extra/missing states occur
when the implementation may be changed by adding or
removing states to be in conformance to the

Characterizing Faults on Real-Time Systems Based on Grid Automata Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 1 3

specification. Nonetheless FSMs do not specify
continuous time evolution and, further, input and output
actions are strongly associated which means reactive
aspects can not be captured appropriately by the
formalism.

A TIOA can model continuous time evolution and
also reactive aspects where output actions produced
by systems are uncontrolled. A TIOA [1, 2] is formally
defined by a tuple M = (S,s0,!,C," 0, Inv,T) , where S is

a set of states, 0s is the initial state, and YX !" = is
a set of actions. In order to capture the reactive
behavior, ! is partitioned in a set of input actions X
and in a set of output actions Y with !" =YX . A set
of clock variables C describes the continuous time
evolution through the notion of clock interpretations.
The initial clock interpretation is given by 0! . The set of
invariant conditions CSInv !": is defined as a
mapping from the set of states S to the set of clock
constraints C! . A TIOA keeps in a state while its
invariant condition is satisfied continuously. The set of
transitions is defined by
where is a reset operation that maps a set of
clocks to their respective values in the domain of non-
negative rationals. Note that clock variables evolve
synchronously unless a reset operation occurs over the
clock variables. So the meaning for a transition

),,,,(rzs !" is that the machine can move to state r
from state s over the symbol z provided that the
guard ! is enabled. Further, upon moving to state r ,
the mapping indicates which clocks are
reset and to which values. The set of all clock
conditions, C! , is comprised by all expressions ! that
can be finitely generated using the rules

,||||true:= 21 !!!""! #¬$$ cc where c is a clock
variable and !"Q# is a time instant. A clock
interpretation over C is a partial function from C into

!Q . A total clock interpretation over C is a clock
interpretation over C whose domain is C . The set of
all clock interpretations over C is denoted by

, and][!"QC denotes the set of all total
clock interpretations over C . A precise definition of the
TIOA semantics can be found in [4].

En-Nouaary et. al. [9] proposes a fault model for
TIOA based on region automata to support the
coverage analysis using the Timed Wp-method. A
region automaton is extracted from a TIOA model
based on the number of clock regions [1]. A state of a
region automaton is composed by a respective state in
the corresponding TIOA and a reachable clock region.
Transitions are labeled with actions according to the
reachability analysis over clock regions of the TIOA. A

fault is detected when an implementation is modeled by
a distinct region automaton of its specification. The
proposed fault model can detect faults in a TIOA
generating different region automatons based on the
specification region automaton.

In their work faults are classified in non-timing faults
and timing faults. Non-timing faults resemble operation
and transfer faults proposed by [6] on FSM models. On
the other hand, timing faults are closely related to the
semantics of continuous time evolution and they can be
classified in restriction faults of clock conditions,
widening faults of clock conditions and reset faults.

A restriction fault of a clock condition occurs in a
transition with an input action that implements a tighter
clock condition. Otherwise, a tighter condition in a
transition with output action does not incur in a
restriction fault because output actions are uncontrolled
and since the enabled time interval is included in the
specified time interval. On the other hand, a widening
fault occurs in a transition that implements a more
relaxed clock condition. Note that restriction and
widening faults over clock conditions change the
reachable clock regions of the implementation. Thus
those faults can be detected by test cases that cover all
states of region automaton. Faults of reset clocks occur
when the set of clocks to be reset in a specified
transition is not correctly implemented. These faults are
also classified in two cases, when a specified reset is
not implemented and some clocks keep evolving on
time or when a non specified reset is implemented in
such a way that boundary values of the system are not
explored. Their work also assumes a special action
ResetClock to set up a clock reset. This action
identifies clock resets in implementations and also
which clocks are reset. Faults of clock resets can be
then detected by the occurrence of the ResetClock
action. However an implementation under test is a
black-box and thus, in general, reset actions can not be
observed in practical applications. The reset fault
detection in their approach is highly limited to a specific
scope where implementations enclose observable
actions on clock resets.

Furthermore, the fault model proposed by En-
Nouaary et. al. [9] does not provide the identification of
every class of faults. Verdicts of faults over
implementations are not enough to identify the fault
class based on a specific fault. Then their approach
only allows the fault detection by pointing out a
disagreement between an implementation and its
specification given by their respective region
automatons.

4 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 1 Bonifacio and Doi

4. GENERALIZING THE TIME DISCRETIZATION

The proposed fault model is based on grid automata
obtained by discretizing TIOA specifications. A grid
automaton is composed by a set of states and a set of
discrete transitions. A transition in a grid can be labeled
with an input or output action that represents a discrete
transition in the corresponding TIOA or it can be
labeled with a granularity to represent the time
evolution. Then a grid simulates its corresponding
TIOA through a sequence of movements that
represents the interacting with the environment and
also the time evolution [4].

A more generalized analysis of a TIOA requires a
generalization over the grid representation. Such
generalizations support the characterization of timing
faults described in Section 5.

A discretization of the continuous time evolution in a
state s of a TIOA derives a infinite number of
configurations. Configurations are pairs of states and
clock interpretations that give rise to corresponding grid
states according to the chosen granularity. Then a set
of grid states are generated from s with different clock
interpretations. Thus a sequence of n !! grid
transitions labeled with g !!" models the continuous
time delay gn ! in the state s . This sequence of grid
transitions is called time line. A maximal time line is the
sequence of transitions that models the greatest time
delay starting at a reachable state s up to the upper
bound of its invariant condition. The notion of time line
allows us to identify whether a set of grid states
represents a continuous time interval within a TIOA
state.

The enable time interval in TIOA transitions is also
an aspect that must be generalized in the discretization
process. A transition t of a TIOA is enabled in a time
interval while clock conditions are satisfied on the
transition. The TIOA transition is modeled by a set of
grid transitions T ! labeled with the same action for all
time interval where conditions are satisfied since there
are no clock conditions in the grid. Then there is a
transition in T ! for each grid state corresponding to a
configuration that enables the clock condition at t . As
more relaxed is the enabling time interval in t more
grid transitions are required in the grid to model t ,
whereas tighter time intervals in t give rise to a smaller
number of transitions in the grid.

When an action of a transition occurs in a TIOA,
clock interpretations can also be changed by reset
functions. A set of resets in a transition may change the

target states of this transition representation in the grid.
The grid representation of clock resets can be
generalized by three cases: when there is no clock to
be reset; when a proper subset of clocks is reset; and if
all clocks in the TIOA is reset. In the first case the clock
interpretation at target state must be the same when
the action occurs. Hence the TIOA transition is
modeled by two transitions going out of the states
obtained on the subsequent time instants. Similarly, it
also takes place at target states of those transitions. In
the second case for all time interval whenever the
action can occur in the TIOA will result on a different
combination of all clock interpretations. Hence all
possible combinations over clock variables result in
several time lines at the target state. In the last case
the configuration at the target state of the transition is
the same for all time interval whenever the action can
occur according to the clock conditions in the TIOA.
Then each transition in the grid that models the TIOA
transition leads to the same single target state in the
grid.

5. CHARACTERIZING FAULTS BASED ON GRID
AUTOMATA

A more precise coverage analysis allows us to
finding faults in a system using a fault model. A fault
model drives the identification process over candidate
implementations according to a particular specification.

In the fault model proposed in [11] region automata
are used to characterize timing faults on TIOA models.
The coverage analysis for the Timed-Wp method is
based on region automata. However, it does not
precisely identify classes of faults over region
automata. As known a infinite number of equivalent
clock interpretations is represented by a single clock
region. Therein it is not possible get the precise time
instant whenever a fault occurs.

A state of a grid automaton is derived from a TIOA
configuration and composed by a TIOA state and a
clock interpretation. Therefore a detection analysis
based on grid automata can identify not only its fault
class but also the precise time instant when the fault
occurs. In this section we propose a fault model based
on grids obtained by more flexible discretizations [4].
Thus, our detection approach can be applied to
discretized models based on clock regions. In contrast,
however, the fault model based on region automata
can not deal with grid automata and so the fault
detection can not be applied to grids derived from
flexible discretizations.

Characterizing Faults on Real-Time Systems Based on Grid Automata Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 1 5

This fault model characterizes the classes of fault
for TIOA models using grid automata. We formally
define a fault analysis for timed models. We then
classify faults in two main groups: non-timing and
timing faults. Non-timing faults are characterized by
action and transfer faults whereas timing faults lead to
restriction and widening faults of clock conditions as
well as faults of clock reset.

Similarly to other approaches we assume some test
hypothesis to set out a detection scope and to
characterize these classes of fault.

Assumption 1 The fault model assumes that:

1. the alphabet of actions are the same in the
implementation and the specification;

2. the implementation behaviors can be modeled
by a TIOA g -adjusted and L -bounded [4];

3. the TIOA specification and implementation are
complete, that is, for every state there is only
one transition for each input action;

4. the TIOA specification is deterministic, that is, for
every state there is a unique transition for each
input action;

5. the TIOA specification is isolated output, that is,
for every state only one transition is labeled with
an output action.

5.1. Non-Timing Faults

Non-timing faults occur on syntactical elements of
transitions and actions in a TIOA. An action fault occurs
when a transition in the set T ! which represents a
TIOA transition, as shown in Section 4, is labeled by a
distinct action with respect to the specification. We
guarantee that the observable action in the
implementation does not correspond to another
transition from this state since the TIOA is output
isolated. Also for every input action from a single state
of the implementation there must be a transition with
the same input action in the specification since the
TIOA is complete. Hence there is no action fault in
transitions labeled by input actions. Definition 1
formalizes the characterization of action fault.

Definition 1. Let),,,,,,(= 0 TInvCsSM !" be a
specification TIOA and let),,,(= GGGGG TsSM ! be the
corresponding grid. Also let !MG = (!SG , !sG , !"G , !TG) be the

grid automaton of a candidate implementation. Assume
that GTT !" is the set of transitions representing a
transition Tsst ji !),,,,(= "#$. Let Tqq ji !"),,(# and
let ! be a set of grid words such that for each !"#

we get and , where !qi " !SG . A action
fault takes place in t when for at least one !"# ,
there exists (!qi , !" , !qj)# !TG , where !qj " !SG , !" # !$G \ g
and we have that !! "# .

A transfer fault occurs when a transition is
implemented by a distinct target state with respect to
the specification. This fault is characterized on grids by
using the notion of characterization set, a set of input
sequences that is able to identify states on the model
[6, 12]. In a transition of a TIOA represented by the set
T ! , as described in Section 4, the transfer fault is
identified by applying a characterization set in the
target state for each transition in T ! . The transfer fault
is then characterized when the sequence of observable
outputs in the implementation is distinguished from the
specification. Definition 2 formalizes the transfer fault.

Definition 2. Let),,,,,,(= 0 TInvCsSM !" be a
specification TIOA and let),,,(= GGGGG TsSM ! be the
corresponding grid. Also let !MG = (!SG , !sG , !"G , !TG) be the
grid automaton of a candidate implementation. Assume
that GTT !" is the set of transitions representing a
transition Tsst ji !),,,,(= "#$. Let Tqq ji !"),,(# and
let ! be a set of grid words such that for each !"#

we get and with !qj " !SG , and W is a
characterization set to GM . A transfer fault takes place
in t when for every !"# , there is a Wwk ! such that

 and , where Gi Sp ! , !pi " !SG , !
and !" are grid words with)(=)(= YYkw !"! ## and

)()(XX !"#! $$.

5.2. Timing Faults

Timing faults occur when disagreements arise from
the semantics of continuous time evolution in a TIOA.
These faults can be detected on clock conditions and
clock resets. A fault of clock condition is also classified
into restriction and widening faults.

A restriction fault of clock condition occurs when a
specified TIOA condition is tighter implemented. Then
this implemented transition may not be enabled for
some time instants that are allowed in the specification.
The detection of restriction fault on clock conditions in a

6 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 1 Bonifacio and Doi

transition t occurs by applying a characterization set
on the target state of each transition within the set T !
which represents t . The detection of this fault
resembles the detection of transfer faults since an input
action is allowed in any state of the model. Thus a
transition is taken with a distinction input action on the
grid implementation whenever such transition is not
enabled in a time interval. Definition 3 formalizes the
restriction fault of clock conditions.

Definition 3. Let),,,,,,(= 0 TInvCsSM !" be a
specification TIOA and let),,,(= GGGGG TsSM ! be the
corresponding grid. Also let !MG = (!SG , !sG , !"G , !TG) be the
grid automaton of a candidate implementation. Assume
that GTT !" is the set of transitions representing a
transition Tsst ji !),,,,(= "#$. Let Tqq ji !"),,(# and
let ! be a set of grid words such that for each !"#

we get and with !qj " !SG , and W is
a characterization set to GM . A restriction fault of clock
conditions takes place in t when there exists a !"!#
such that for every !"#"$, there is a Wwk ! such

that , , where !" and ! are grid

words with)(=)(= YYkw !!" ## and
)()(XX !"#! $$.

We note that restriction faults over clock conditions
are not considered for output actions since they are not
under control of the tester. Output actions are
autonomously yielded by the system under test.
Thereby when these actions occur in any time instant
within the time interval of the specification they will also
be deemed correct in the corresponding implemented
transition.

The widening fault of clock conditions, otherwise,
occurs when a specified clock condition is more
relaxed implemented. In this case the implemented
transition is enabled in a time interval that was not
formerly allowed in the specification. A widening fault of
clock conditions in a transition t is given by extra
transitions labeled with output action on the grid
implementation. Let this extra transition be labeled by
! and going out of a state p to any other state in the
grid implementation. A widening fault can be detected
through the TIOA state that is represented by p
because the grid is output isolated. Then a widening
fault over clock conditions at the TIOA transition going
out of this state with ! is then characterized by an
extra transition. We note that if there is no transition in

the TIOA specification going out of the state with ! ,
i.e. a false condition, we have a relaxed condition at a
transition that is not enabled in the specification.
Definition 4 formalizes the widening fault of clock
condition.

Definition 4. Let),,,,,,(= 0 TInvCsSM !" be a
specification TIOA and let),,,(= GGGGG TsSM ! be the
corresponding grid. Also let !MG = (!SG , !sG , !"G , !TG) be the
grid automaton of a candidate implementation. Assume
that GTT !" is the set of transitions representing a
transition Tsst ji !),,,,(= "#$. Let Tqq ji !"),,(# and
let ! be a set of grid words such that for each !"#

we get and with !qi " !SG , !" a set of

grid words such that for each !"#"$ we get

and with iSq! e GSq !" . A widening fault of
clock conditions takes place in t when there exists at

least one ! ""#""$ such that and ,
with }{gY !"#$ and !"!#! ## = , and we have

!! "# .

The fault of clock reset occurs by a faulty
implementation on the reset functions. Inappropriate
implementations of reset functions give rise to
unexpected behaviors that can be detected by a
distinct reachable configuration at target state on TIOA
specification.

A reset fault occurs at a transition t of the TIOA if
for every transition in T ! there is a distinct target state
in the grid specification. The target state related to
each clock interpretation is checked through the
obtained behavior since the implementation is a black-
box. However, a characterization set, in this case, can
not aid the detection process. Although target states in
the grid implementation are distinguished from the grid
specification they will represent the same single state
in the TIOA. So there is no guarantee that the
characterization set distinguishes those states.

In order to overcome this problem we apply the
detection approach of reset faults on grids based on
the notion of fault propagation. Although a reset fault in
a transition can not be straight detected on grids they
can be identified by other classes of fault. Assume a
TIOA transition),,,,(= sst iiii !"#$ with a reset fault
over a clock variable ic and a set tT of transitions in
the TIOA that can be enabled after it . Let

),,,,(= rrt jjjj !"#$ be a transition in tT , a reset fault

Characterizing Faults on Real-Time Systems Based on Grid Automata Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 1 7

occurs in it if the reset)()(iii cc !" # results in a clock
interpretation distinct to that one specified. This fault is
propagated for every jt that is enabled after a
sequence of movements when jt does not reset ic
and j! is in the form jii c !! "" . Note that ic != is

represented by jii c !! "" where ij !! = and

jii c !! << is discretized to gcg jii !""+ ## .

When a reset implementation)()(iii cc !" # derives
a clock interpretation greater than that one specified,
the time interval where jt is enabled in the
implementation is smaller than that one established in
the specification. Thus the clock condition at jt is
tighter on the upper bound. If the state r is reachable
with a clock interpretation smaller than the lower bound
of the clock condition that enables the transition jt
after it is taken, then the system continuously evolves
in time at state r up to jt occurs. When the reset

)()(iii cc !" # derives a clock interpretation greater than
that one specified, the time interval will be smaller.
Thus the clock condition at jt is more relaxed on the
lower bound. When a reset implementation

)()(iii cc !" # derives a clock interpretation smaller than
that one specified, the time interval whenever jt is
enabled in the implementation is greater than in the
specification. Thus the clock condition at jt is more
relaxed on the upper bound. Again, if the state r is
reachable with a clock interpretation smaller than the
lower bound of the clock condition that enables the
transition jt after it is taken, then the system
continuously evolves in time at state r up to jt occurs.
When the reset)()(iii cc !" # derives a clock
interpretation smaller than that one specified, the time
interval will be greater. Thus the clock condition at jt is
tighter on the lower bound. The propagation of reset
faults is formalized in Definition 5.

Definition 5 Let),,,,,,(= 0 TInvCsSM !" and
!M = (!S , !s0, !" , !C , !# ,),TvIn !! be two TIOA, the

specification and the candidate implementation,
respectively. Assume kcc iii =)()(!" # , where !"Qk
is a clock interpretation)(ic! after

Trst iiiiii !),,,,(= "#$ is taken, with i! in the form

jii c !! "" and that TTt ! is the subset of transitions

that are enabled after it , where each

tjjjjjj Trst !),,,,(= "#$ with yixj c !!" ##= . Let !

be a timed word such that and let ! be a set

of timed words where for every !"# , . Also
assume that given the projection)(= YX!"# $$, with
!" = (!"1,... !" n) we get !"# Qk with ! k = "#1 + ...+ "# n . A

reset fault occurs in it when !ti = (!si , !" i , !# i , !$ i , !ri)% !T ,
such that ! (ci)" #$ i (ci) = #k , with !"# Qk and we have

kk !" . Such fault is propagated for all
!t j = (!s j , !" j , !# j , !$ j , !rj)% !T with !" j in the form !" i # !ci # !" j

if:

1. kk <! and ikk !<"+ , then with we
get ! ("ci) = "k + # k with kk kk !+!+" < ,

)(>)(kiki kk !+"!+#" $$ and
)(>)(kjkj kk !+"!+#" $$, resulting in a tighter

!" i and a more relaxed !" j .

2. kk <! and ikk !>"+# , then with we
get ! ("ci) = "k + # k with kk kk !+!+" < and

)(>)(kjkj kk !+"!+#" $$, resulting in a more

relaxed !" j .

3. kk >! and ikk !<"+# , then with we
get ! ("ci) = "k + # k , with kk kk !+!+" > ,

)(<)(kiki kk !+"!+#" $$ and
)(<)(kjkj kk !+"!+#" $$, resulting in a more

relaxed !" i and a tighter !" j .

4. kk >! and ikk !>"+ , then with we
get ! ("ci) = "k + # k with kk kk !+!+" > and

)(<)(kjkj kk !+"!+#" $$, resulting in a tighter

!" j .

We notice that if there is no condition over the clock
ic in a transition tj Tt ! then fault propagation does not

occur in jt . When the clock condition is composed in a
transition tj Tt ! , in the form ji !! " , a reset fault is

propagated to jt if the representation of i! and j!
shows fault propagation in a time interval with empty
intersection between both conditions. Otherwise, when
the clock condition is composed in the form ji !! " , a

reset fault is propagated to jt if the representation of

i! and j! shows fault propagation in a common time
interval between both conditions. A fault propagation
on i! and j! is given as in Definitions 5 and 6. Note

that i! and j! can also be composed conditions.

8 Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 1 Bonifacio and Doi

Definition 6 Let),,,,,,(= 0 TInvCsSM !" and
!M = (!S , !s0, !" , !C , !# , In !v , !T) be two TIOA, the

specification and the candidate implementation,
respectively. Assume that Tt ! T is the subset of
transitions that are enabled after ti . A reset fault
occurs in ti when !ti = (!si , !" i , !# i , !$i , !ri)% !T , such that
!(ci)" #$i (ci) = #k , with !k "Q# and we have !k " k .
Such fault is propagated for all !t j with clock condition
in the form:

1. !i "! j , when at least one condition !i or ! j
shows fault propagation that results in a
representation of the enabling time interval
(!i "! j) \ (!i #! j) which is distinguished in the
specification. The fault propagation for !i and
! j is given as in Definitions 5 and 6

2. !i "! j , when at least one condition !i or ! j
shows fault propagation that results in a
representation of the enabling time interval
(!i "! j) which is distinguished from the
specification. The fault propagation for !i and
! j is given as in Definitions 5 and 6.

6. CONCLUDING REMARKS

Model-based testing approaches for real-time
systems have been explored in several works. The
continuous time evolution and the reactive aspects of
such systems are captured by TIOA models. Therefore
a coverage analysis and a fault detection over these
models is an important testing task aiding a fault model
on identifying potential faults in real-time systems.
However, continuous time evolution is a challenge to
deal with, specially, in practical applications.
Discretized models are then used to accomplish an
analysis of fault detection for systems of this nature.
Some works have been proposed in that direction, as
the fault model for TIOAs based on region automata.
But the coverage analysis based on region automata is
restricted since the resulting discretization is tightly
related to the number of clocks in the TIOA. The
discretization approach in that work then incurs in the
well-known state space explosion problem. Other
discretizations for TIOA models have been proposed
based on grid automata rather than region automata.
Regarding these approaches, grid automatons are
derived from TIOA models using an ample range of
choice of granularities giving rise to a more
manageable state space over discretizations. But the
effectiveness of the fault detection in this approach falls

short in specific faults using the notion of test purpose.

In this work, we proposed a fault model to
characterize classes of faults in a TIOA through grid
models. These faults have been classified into action
faults, transfer faults, restriction and widening faults of
clock condition, and faults of clock reset. We note that
this fault model opens the possibility to generalize the
fault detection process for real-time systems modeled
by TIOAs.

As for future works we intend to perform
experiments to show the fault model in practical
applications. We also suggest the development of a
test generation method based on this fault model.
Finally we expect that our work provides the
foundations for further proposals focused on fault
coverage analysis and test suite extraction.

REFERENCES

[1] AR Dill DL. A theory of timed automata. Theor. Comput Sci
1994; 126: 183-235
http://dx.doi.org/10.1016/0304-3975(94)90010-8

[2] Alur R. Timed automata. In: Proceedings of the 11th
International Conference on Computer Aided Verification.
Springer-Verlag, London, UK (1999); 99: 8-22.
http://dx.doi.org/10.1007/3-540-48683-6_3

[3] Blackburn M, Busser R and Nauman A. Why model-based
test automation is different and what you should know to get
started. In: International Conference on Practical Software
Quality and Testing. PSQT/PSTT'2004 East, Washington,
DC, USA (2004)

[4] Bonifacio AL and Moura AV. A new method for testing timed
systems. Softw. Test, Verif Reliab 2013; 23(2): 91-117.
http://dx.doi.org/10.1002/stvr.454

[5] Cardell-oliver R. Conformance testing of real-time systems
with timed automata specifications. Formal Aspects of
Computing 2000; 12(5): 350-371.
http://dx.doi.org/10.1007/s001650070009

[6] Chow TS. Testing software design modeled by finite-state
machines. IEEE Trans Softw Eng 1978; 4(3): 178-187.
http://dx.doi.org/10.1109/TSE.1978.231496

[7] Clarke EM, Klieber W, Novácek M and Zuliani P. Model
checking and the state explosion problem. In: Tools for
Practical Software Verification, LASER, International
Summer School 2011, Elba Island, Italy, Revised Tutorial
Lectures. 2011; 1-30.

[8] En-Nouaary A. A scalable method for testing real-time
systems. Software Quality Control 2008; 16: 3-22.
http://dx.doi.org/10.1007/s11219-007-9021-8

[9] En-Nouaary A. Dssouli R and Khendek F. Timed wp-method:
Testing real-time systems. IEEE Trans Softw Eng 2002; 28:
1023-1038 (November), http://portal.acm.org/
citation.cfm?id=630831.631295

[10] En-Nouaary A and Hamou-Lhadj A. A boundary checking
technique for testing real-time systems modeled as timed
input output automata (short paper). In: Quality Software,
2008. QSIC '08. The Eighth International Conference on
2008; 209-215.

[11] En-Nouaary A, Khendek F and Dssouli R. Fault coverage in
testing real-time systems. In: Real-Time Computing Systems
and Applications, 1999. RTCSA '99. Sixth International

Characterizing Faults on Real-Time Systems Based on Grid Automata Journal of Computer Science Technology Updates, 2016, Vol. 3, No. 1 9

Conference on. 1999; 150-157.
http://dx.doi.org/10.1109/rtcsa.1999.811206

[12] Fujiwara S, von Bochmann G, Khendek F, Amalou M and
Ghedamsi A. Test selection based on finite state models.
IEEE Trans. Softw. Eng 1991; 17: 591-603.
http://portal.acm.org/citation.cfm?id=126218.126234
http://dx.doi.org/10.1109/32.87284

[13] Gill A. Introduction to the theory of finite-state machines.
McGraw-Hill electronic sciences series, McGraw-Hill (1962),
http://books.google.com.br/books?id=IDhSAAAAMAAJ

[14] Hierons R, Bogdanov K, Bowen J, Cleaveland R, Derrick J,
Dick J et al. Using formal specifications to support testing.
ACM Comput. Surv 2009; 41(2): 1-76.
http://dx.doi.org/10.1145/1459352.1459354

[15] Huth M and Ryan M. Logic in Computer Science: Modelling
and Reasoning About Systems. Cambridge University Press,
New York, NY, USA (2004)
http://dx.doi.org/10.1017/CBO9780511810275

[16] Knight JC. Safety critical systems: Challenges and directions.
In: Proceedings of the 24th International Conference on
Software Engineering 2002; 547-550. ICSE '02, ACM, New
York, NY, USA .

[17] Krichen M, Tripakis S. Black-box conformance testing for
real-time systems. In: Model Checking Software: 11th
International SPIN Workshop. pp. 109-126. No. 2989 in
Lecture Notes in Computer Science, Barcelona, Spain (2004)
http://dx.doi.org/10.1007/978-3-540-24732-6_8

[18] Springintveld J, Vaandrager F and D'Argenio PR. Testing
timed automata. Theor. Comput. Sci 2001; 254: 225-257.
http://dx.doi.org/10.1016/S0304-3975(99)00134-6

[19] Utting M and Legeard B. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (2007)

[20] Wagner F. Modeling Software With Finite State Machines:
Practical Approach. Modeling Software with Finite State
Machines: A Practical Approach, CRC PressINC (2006)

Received on 11-12-2015 Accepted on 27-01-2016 Published on 14-06-2016

http://dx.doi.org/10.15379/2410-2938.2016.03.01.01

© 2016 Bonifacio and Doi; Licensee Cosmos Scholars Publishing House.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium,
provided the work is properly cited.

