
38 Journal of Computer Science Technology Updates, 2015, 2, 38-45

 E-ISSN: 2410-2938/15 © 2015 Cosmos Scholars Publishing House

An Efficient Heuristic for a Discrete Optimization Problem

Nodari Vakhania*, Elisa Chinos and Crispin Zavala

Centro de Investigación en Ciencias, UAEMor, Mexico
Abstract: In this paper we deal with a discrete optimization problem, which, among many other such problems, is
computationally intractable. Since the existence of an exact solution algorithm for our problem is highly unlikely, the
development of heuristic and approximation algorithms is of a great importance. Here we briefly discuss this issue and
describe a robust 2-approximation heuristic that is used for getting an approximation solution for the problem of
scheduling jobs with release times and due-dates on a single machine to minimize the maximum job lateness.

Keywords: Discrete optimization, Feasible solution, Scheduling, Heuristic, Approximation algorithm.

INTRODUCTION

It is common in our everyday life a desire to
optimize time, to do our duties in a due time or to
arrange as many things as possible in a limited time.
Sometimes optimization of our time is a purely personal
matter, but often it depends on the factors and the
environment around us. We wish to arrange them in a
way which would be beneficial for us. As an example
we give a problem which many of us encounter daily. A
family with n members lives in an apartment with a
single bathroom, shower, iron and a mirror. Each
member of the family daily gets up at a fixed time,
needs a prescribed time units in the bathroom, in the
shower, in front of the mirror and he (she) also needs
the iron for the prescribed time units (to arrange the
cloths to ware on this day). The bathroom, shower, iron
and the mirror are our resources and can be used by at
most one person at a time. Since each member of the
family has to leave home at a prescribed time (in order
the reach the job/school on time), we face an
optimization problem, how to arrange the activities of
each member of the family on each of the above
resources to minimize the overall time needed for all
members of the family to complete all activities. These
types of problems are dealt with in discrete
optimization, in particular, in scheduling theory.

Discrete optimization (DO) problems constitute a
significant class of practical problems with a discrete
nature. They have emerged in late 40-s of 20th
century. With a rapid grow of the industry, the new
demands in the optimal solution of the newly emerged
resource management and distribution problems have
a risen. For the development of effective solution

*Address correspondence to this author at the Centro de Investigación en
Ciencias, UAEM or, Mexico; Tel: 52 777 329 70 20;
Fax: 52 777 329 70 40; E-mail: nodari@uaem.mx

methods, these problems were formalized and
addressed mathematically.

DO PROBLEMS AND APPROXIMATION

A DO problem is characterized by a finite set of the
so-called feasible solutions, defined by a given set of
restrictions, and an objective function for these feasible
solutions, which typically needs to be optimized, i.e.,
minimized or maximized: the problem is to find an
optimal solution, that is, one minimizing the objective
function. Typically, the number of feasible solutions is
finite. Thus theoretically, finding an optimal solution is
trivial: just enumerate all the feasible solutions
calculating for each of them the value of the objective
function and select any one with the optimal objective
value. However, this brutal enumeration of all feasible
solutions may be impossible in practice. Even for
problems with a moderate size (say, 30 cities for a
classical traveling salesman problem or 10 jobs on 10
machines in job-shop scheduling problem), such a
complete enumeration may take hundreds of centuries
on the modern computers. Moreover, this situation will
not be essentially changed if in the future, much faster
computers will be developed.

The DO problems are partitioned into two basic
types, type P, which are polynomially solvable ones,
and NP-hard problems. Intuitively, there exist efficient
(polynomial in the size of the problem) solution
methods or algorithms for the problems from the first
class, whereas no such algorithms exist for the
problems of the second class (informally, the size of
the problem is the the amount of the computer memory
necessary to represent the problem data/parameters).
Furthermore, all NP-hard problems, ones from the
second class, have a similar computational (time)
complexity, in the sense that if there will be found an
efficient polynomial-time algorithm for any of them,
such an algorithm would yield another polynomial-time

An Efficient Heuristic for a Discrete Optimization Problem Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 39

algorithm for any other NP-hard problem. At the same
time, it is believed that it’s very unlikely that an NP-hard
problem can be solved in polynomial time.

Whereas an exact polynomial-time algorithm with a
reasonable real time behavior exists for a problem in
class P, such an algorithm is highly unlikely to exist for
an NP-hard problem. Hence, one chooses a
compromise to solve such a problem approximately.
Heuristic algorithms can be used for the exact solution
of a problem in class P and for an approximate solution
of an NP-hard problem. A heuristic algorithm is an
efficient polynomial-time algorithm that creates one or
more feasible schedules. A greedy algorithm is a
heuristic that typically works on n (external) iterations,
were n is the number of objects in the given problem.
Since the size of a discrete optimization problem is a
polynomial in n, the number of iterations in a greedy
algorithm is also polynomial in the size of the problem.
Such an algorithm creates a complete destiny feasible
solution iteratively, extending the current partial
solution by some yet unconsidered object at each
iteration. In this way, the search space is reduced to a
single possible extension at each iteration, from all the
theoretically possible potential extensions. This type of
“rough” reduction of the whole solution space may lead
us to the loss of an optimal or near-optimal solution.

A greedy/heuristic algorithm may create an optimal
solution for a problem in class P (though not any
problem in class P may optimally be solved by a
heuristic method). However, this is not the case for an
NP-hard problem, i.e., no greedy or heuristic algorithm
can solve optimally an NP-hard problem (unless P =
NP, which is very unlikely). Since the majority of DO
problems are NP-hard, a compromise accepting a
solution worse than an optimal one is hence
unavoidable. On this way, it is natural and also
practical to think about the design and analysis of
polynomial-time approximation algorithms, i.e., ones
which deliver a solution with a guaranteed deviation
from an optimal one in polynomial time. Since the
simplest polynomial-time algorithms are greedy, a
greedy algorithm is a simplest approximation algorithm.

The performance ratio of an approximation
algorithm A measures the quality of this approximation
algorithm. It is the ratio of the value of the objective
function delivered by algorithm A to the optimal value.
A κ-approximation algorithm is one with the worst-case
performance ratio κ. Another commonly used measure
is the absolute error which is just the difference

between the value of the objective function delivered by
algorithm A and the optimal objective value.

SCHEDULING PROBLEMS

Heuristic and approximation algorithms are common
and important, in particular, for the scheduling
problems. These problems deal with a finite set of
requests called jobs to be performed (or scheduled) on
a finite (and limited) set of resources called machines
(or processors). The aim is to choose the order of
processing the jobs on machines so as to meet a given
objective criteria. In our family example, to go to the
bathroom, to take a shower, to iron and to brush the
hair in front of the mirror are examples of requests; the
bathroom, shower, iron and mirror are examples of
resources. A job in a factory or a program in a
computer system or a lesson at school are other
examples of requests. A machine in a factory or a
processor in a computer system or a teacher in a
school are other examples of resources. Each job has
its processing time, i.e., it needs a prescribed time on a
machine, and a machine cannot handle more than one
request at a time (for example, a teacher cannot give
two different lessons simultaneously). Besides, there is
a limited number of machines (which are expensive in
use) and time is limited. We need to arrange an order
in which the jobs are handled by the machines to
minimize or maximize some important, often time,
criterion or objective functions.

A scheduling problem might be a single-stage, for
instance, single-machine or multiprocessor scheduling
problems, or a multi-stage shop scheduling problem.
There are three basic type of multiprocessor
scheduling problems with identical, uniform and
unrelated parallel processor environments. The first
two are characterized by an operation-independent
speed function (for identical machines every machine
has the same speed). A group of unrelated machines
has no uniform speed characteristic, i.e., a machine
speed is operation-dependent. There are also three
basic shop scheduling problems, which are open-shop,
flow-shop and job-shop scheduling problems.

More formally, a multiprocessor is a triple
constituted by the sets of jobs J and machines M and a
processing time function f, a mapping from J × M to R,
where the value of this function for a pair J,M is the
processing time (length) of job J on machine M
denoted by M(J). A multiprocessor without any
restriction on its processing time function is called a
system of unrelated processors. In a system of

40 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 Vakhania et al.

identical processors for each P and Q from M and for
each J ∈ J, P(J) = Q(J).

There are three basic shop scheduling problems.
We let J,M stand for a shop scheduling instance with
the set of jobs J = {J1,...,Jn} and the set of machines M
= {M1,...,Mm}. In an instance of the job-shop J//Cmax

each job from J is an ordered set of elements called
operations. 1 Each operation is to be scheduled on one
particular machine from M. Ji

j is the operation of job Jj

to be performed on machine Mi (we shall deal with job-
shops in which every job has no more than one
operation to be scheduled on one particular machine).
We will write Ji

j → Jk
j if Ji

j immediately precedes Jk
j

according to the operation order in Jj. Operation Ji
j has

a processing time or length pj
i, which is the amount of

time it takes on machine Mi. Ji
j is a dummy operation of

job Jj on machine Mi if pj
i = 0.

The open-shop O//Cmax is a special case of the job-
shop in which there is no precedence order between
the operations of any job, these operations can be
processed in an arbitrary order on their corresponding
machines. The flow-shop F//Cmax is another special
case of job-shop scheduling problem in which the
operation order in all jobs is the same, i.e., every job is
processed by the machines in the same predetermined
order.

JACKSON’S HEURISTIC FOR SCHEDULING JOBS
WITH RELEASE TIMES AND DUE-DATES

One of the oldest and commonly used (on-line)
heuristics in scheduling theory is that of Jackson [14]. It
was first suggested for scheduling jobs with release
times and due dates on a single machine to minimize
the maximum job lateness. In general, variations of
Jackson’s heuristic are widely used to construct
feasible solutions for scheduling jobs with release and
delivery times on a single machine or on a group of
parallel machines. Besides, Jackson’s heuristic is
efficiently used in the solution of more complicated
shop scheduling problems including job-shop
scheduling, in which the original problem occurs as an
auxiliary one and is applied to obtain lower estimations
in implicit enumeration algorithms (although even this

1

We use the standard three-field notation for scheduling problems originally

introduced in [12]

latter problem is strongly NP-hard, see Garey and
Johnson [8]). As we will see a bit later, in the worst-
case, Jackson’s heuristic will deliver a solution which is
twice worse than an optimal one.

THE PROBLEM FORMULATION

In our single-machine scheduling problem 1|rj|Lmax

(Graham et al. [12]) we are given n jobs in {1,2,...,n}.
Each job j has (non-interruptible) processing time pj,
release time rj and due-date dj. The n jobs are to be
scheduled on a single machine that can process at
most one job at a time. The release time of job j, rj, is
the time moment when job j arrives to the system
hence becomes available for processing on the
machine, whereas its due-date dj is the desired
completion time for job j.

A feasible schedule S is a mapping that assigns to
each job j a starting time tj(S), such that tj(S) ≥ rj and
tj(S) ≥ tk(S) + pk, for any job k included earlier in S (for
notational simplicity, we use S also for the
corresponding jobset); the first inequality says that a
job cannot be started before its release time, and the
second one reflects the restriction that the machine can
handle only one job at any time. cj(S) = tj(S) + pj is the
completion time of job j. We aim to find out if there is a
schedule which meets all job due-dates, i.e., every j is
completed by time dj. If there is no such schedule then
we look for an optimal schedule, i.e., one minimizing
the maximum job lateness Lmax = max {j|cj − dj}. We
denote by L(S) (Lj(S), respectively) for the maximum
lateness in S (the lateness of job j in S, respectively).

There is an equivalent formulation of the above
problem in which the due-dates are replaced by the
delivery times and the maximum job completion time is
minimized. In this setting, n jobs have to be scheduled
on a single machine. Each job j again becomes
available at its release time rj. A released job can be
assigned to the machine that has to process job j for pj

time units. The machine can handle at most one job at
a time. Once it completes j this job still needs a
(constant) delivery time qj for its full completion (the
jobs are delivered by an independent unit and this
takes no machine time). Here our objective is to find a
job sequence on the machine that minimizes the
maximum job full completion time.

According to the conventional three-field notation
(Graham et al. [12]) this version is abbreviated as
1|rj,qj|Cmax: in the first field the single-machine
environment is indicated, the second field specifies job

An Efficient Heuristic for a Discrete Optimization Problem Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 41

parameters, and in the third field the objective criteria is
given.

Given an instance of 1|rj,qj|Cmax, one can obtain an
equivalent instance of 1|rj|Lmax as follows. Take a
suitably large constant K (no less than the maximum
job delivery time) and define due-date of every job j as
dj = K − qj. Vice-versa, given an instance of 1|rj|Lmax, an
equivalent instance of 1|rj,qj|Cmax can be obtained by
defining job delivery times as qj = D − dj, where D is a
suitably large constant (no less than the maximum job
due date). It is straightforward to see that the pair of
instances defined in this way are equivalent; i.e.,
whenever the makespan for the version 1|rj,qj|Cmax is
minimized, the maximum job lateness in 1|rj|Lmax is
minimized, and vice-versa (see Bratley et al. [1] for
more details).

Because of the above equivalence, one can use
both above formulations interchangeably. We may just
briefly mention here that the version with delivery times
naturally occurs in implicit enumeration algorithms for
job-shop scheduling problem and is used for the
calculation of lower bounds.

DESCRIPTION OF THE HEURISTIC AND SOME
RELATED WORK

Jackson’s heuristic iteratively, at each scheduling
time t (given by job release or completion time), among
the jobs released by time t schedules one with the
largest delivery time (or smallest due-date). For the
sake of conciseness Jackson’s heuristic has been
commonly abbreviated as EDD-heuristic (Earliest Due-
Date) or alternatively, LDT-heuristic (Largest Delivery
Time). In more details, the heuristic distinguishes n
scheduling times, the time moments at which a job is
assigned to the machine. Initially, the earliest
scheduling time is set to the minimum job release time.
Among all jobs released by that time a job with the
minimum due-date (the maximum delivery time,
alternatively) is assigned to the machine (ties being
broken by selecting a longest job). Iteratively, the next
scheduling time is either the completion time of the
latest assigned so far job to the machine or the
minimum release time of a yet unassigned job,
whichever is more (as no job can be started before the
machine gets idle nether before its release time). And
again, among all jobs released by this scheduling time
a job with the minimum due-date (the maximum
delivery time, alternatively) is assigned to the machine.
Note that the heuristic creates no gap that can be
avoided always scheduling an already released job

once the machine becomes idle, whereas among yet
unscheduled jobs released by each scheduling time it
gives the priority to a most urgent one (i.e., one with
the smallest due-date, alternatively, with the largest
delivery time).

Since the number of scheduling times is O(n) and at
each scheduling time search for a minimal/maximal
element in an ordered list is accomplished, the time
complexity of the heuristic is O(nlogn).

A number of efficient algorithms are variations of
Jackson’s heuristic. For instance, Potts [17] has
proposed a modification of this heuristic with for the
problem 1|rj,qj|Cmax. His algorithm repeatedly applies
the heuristic O(n) times and obtains an improved
approximation ratio of 3/2. Hall and Shmoys [13] have
elaborated polynomial approximation schemes for the
same problem, and also an 4/3-approximation an
algorithm for its version with the precedence relations
with the same time complexity of O(n2 logn) as the
above algorithm from [17]. Jackson’s heuristic can be
efficiently used for the solution of shop scheduling
problems. Using Jackson’s heuristic as a schedule
generator, McMahon & Florian [15] and Carlier [3] have
proposed efficient enumerative algorithms for
1|rj,qj|Cmax. Grabowski et al. [11] use the heuristic for
the obtention of an initial solution in another
enumerative algorithm for the same problem. Garey et
al. [9] have applied the same heuristic in an O(nlogn)
algorithm for the feasibility version of this problem with
equal-length jobs (in the feasibility version job due-
dates are replaced by deadlines and a schedule in
which all jobs complete by their deadlines is looked
for). Again using Jackson’s heuristic as a schedule
generator, other polynomial-time direct combinatorial
algorithms were described. In [21] was proposed an
O(n2 logn) algorithm for the minimization version of the
latter problem with two possible job processing times,
and in [22] an O(n3 logn) algorithm that minimizes the
number of late jobs with release times on a single-
machine when job preemptions are allowed. Without
preemptions, two polynomial-time algorithms for equal-
length jobs on single machine and on a group of
identical machines were proposed in [24] and [23],
respectively, with time complexities O(n2 log n) and
O(n3 log n log pmax), respectively.

Jackson’s heuristic has been used in multiprocessor
scheduling problems as well. For example, for the
feasibility version with m identical machines and equal-
length jobs, algorithms with the time complexities O(n3

loglogn) and O(n2m) were proposed in Simons [18] and

42 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 Vakhania et al.

Simons and Warmuth [19], respectively. Using the
same heuristic as a schedule generator in [20] was
proposed an O(qmaxmnlogn+O(mνn)) algorithm for the
minimization version of the latter problem, where qmax is
the maximal job delivery time and ν < n is a parameter.

The heuristic has been successfully used for the
obtainment of lower bounds in job-shop scheduling
problems. In the classical job-shop scheduling problem
the preemptive version of Jackson’s heuristic applied
for a specially derived single-machine problem
immediately gives a lower bound, see, for example,
Carlier [3], Carlier and Pinson [4] and Brinkkotter and
Brucker [2] and more recent works of Gharbi and Labidi
[10] and Della Croce and T’kindt [7]. Carlier and Pinson
[5] have used the extended Jackson’s heuristic for the
solution of the multiprocessor job-shop problem with
identical machines, and it can also be adopted for the
case when parallel machines are unrelated (see [25]).
Jackson’s heuristic can be useful for parallelizing the
computations in scheduling job-shop Perregaard and
Clausen [16], and also for the parallel batch scheduling
problems with release times Condotta et al. [6].

THE WORST-CASE BOUND

In this subsection we will see why the basic
Jackson’s heuristic is a 2-approximation one. Let σ be
the schedule obtained by the application of Jackson’s
heuristic (J-heuristic, for short) to the originally given
problem instance. Schedule σ, and, in general, any
Jackson’s schedule S (J-schedule, for short), i.e., one
constructed by J-heuristic, may contain a gap, which is
its maximal consecutive time interval in which the
machine is idle. We assume that there occurs a 0-
length gap (cj,ti) whenever job i starts at its earliest
possible starting time, that is, its release time,
immediately after the completion of job j; here tj (cj,
respectively) denotes the starting (completion,
respectively) time of job j.

A block in a J-schedule is its consecutive part
consisting of the successively scheduled jobs without
any gap in between preceded and succeeded by a
(possibly a 0-length) gap.

J-schedules have useful structural properties. The
following basic definitions, taken from [20], will help us
to expose these properties.

Given a J-schedule S, let i be a job that realizes the
maximum job lateness in S, i.e., Li(S) = maxj{Lj(S)}. Let,

further, B be the block in S that contains job i. Among
all the jobs in B with this property, the latest scheduled
one is called an overflow job in S (we just note that not
necessarily this job ends block B).

A kernel in S is a maximal (consecutive) job
sequence ending with an overflow job o such that no
job from this sequence has a due-date more than do.
For a kernel K, we let r(K) = mini∈K{ri}.

It follows that every kernel is contained in some
block in S, and the number of kernels in S equals to the
number of the overflow jobs in it. Furthermore, since
any kernel belongs to a single block, it may contain no
gap.

A statement, similar to Lemma 1 can be found in
reference [26] and Lemma 2 in [20]. Lemma 4 is
obtained as a consequence of these two lemmas,
though the related result has been known earlier. For
the sake of completeness of our presentation, we give
all our claims with proofs.

Lemma 1

The maximum job lateness (the makespan) of a
kernel K cannot be reduced if the earliest scheduled
job in K starts at time r(K). Hence, if a J-schedule S
contains a kernel with this property, then it is optimal.

Proof. Recall that all jobs in K are no less urgent
than the overflow job o, and that jobs in K form a tight
sequence (i.e., without any gap). Then since the
earliest job in K starts at its release time, no reordering
of jobs in K can reduce the current maximum lateness,
which is Lo(S). Hence, there is no feasible schedule S0

with L(S0) < Lo(S), i.e., S is optimal.

Thus σ is already optimal if the condition in Lemma
1 holds. Otherwise, there must exist a job less urgent
than o, scheduled before all jobs of kernel K that delays
jobs in K (and the overflow job o). By rescheduling
such a job to a later time moment the jobs in kernel K
can be restarted earlier. We need some extra
definitions to define this operation formally.

Suppose job i precedes job j in ED-schedule S. We
will say that i pushes j in S if ED-heuristic will
reschedule job j earlier whenever i is forced to be
scheduled behind j.

Since the earliest scheduled job of kernel K does
not start at its release time (see Observation 1), it is
immediately preceded and pushed by a job l with dl >

An Efficient Heuristic for a Discrete Optimization Problem Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 43

do. In general, we may have more than one such a job
scheduled before kernel K in block B (one containing
K). We call such a job an emerging job for K, and we
call the latest scheduled one (job l above) the live
emerging job.

From the above definition and Lemma 1 we
immediately obtain the following corollary:

Corollary 1

If S contains a kernel which has no live emerging
job, then it is optimal.

Below we use TS for the makespan (maximum full
job completion time) of Jschedule S, and ,
respectively) for the optimum makespan (lateness,
respectively).

Lemma 2

T ! " T # < Pl Lmax
! " Lmax

< Pl()

where l is the live emerging job for kernel K ∈ σ.

Proof. We need to show that the delay imposed by
job l for the jobs in kernel K in schedule σ is less than
pl. Indeed, σ is a J-schedule. Hence, no job in K could
have been released by the time when job l was started
in σ, as otherwise J-heuristic would have include the
former job instead of l. At the same time, the earliest
job from K is scheduled immediately after job l in σ.
Then the difference between the starting time of the
former job and time moment r(K) is less than p. Now
our claim follows from Lemma 1.

Lemma 2 implicitly defines a lower bound of Tσ−pl

derived from the solution of the non-preemptive
Jackson’s heuristic. This lower bound can further be
strengthen using the following concept. Let the delay
for kernel K ∈ σ, δ(K,l) be cl − r(K) (l (o, respectively)
stand again for the live emerging (overflow,
respectively) job for kernel K).

Lemma 3

L∗ = Tσ −δ(K,l) (Lo(σ)−δ(K,l), respectively) is a lower
bound on the optimal job makespan T* (lateness ,
respectively).

The proof is similar to that of Lemma 2, with an
extra observation that the delay for the earliest
scheduled job of kernel K is defined more accurately by
δ(K,l).

Observe that δ(K,l) < pl, and, in paractice, δ(K,l) can
be drastically smaller than pl.

We can easily derive a performance ratio 2 of J-
heuristic for version 1|rj,qj|Cmax (we note that the
estimation of the approximation for the version with
due-dates with the objective to minimize maximum
lateness is less appropriate: for instance, the optimum
lateness might be negative).

Lemma 4

J-heuristic gives a 2-approximate solution for
1|rj,qj|Cmax, i.e., Tσ/T ∗ < 2.

Proof. If there exists no live emerging job for K ∈ σ
then σ is optimal by Corollary 1. Suppose l exists;
clearly, pl < T ∗ (as job l has to be scheduled in S∗ and
there is at least one more (kernel) job in it). Then by
Lemma 2,

Tσ/T ∗ < (T ∗ + pl)/T ∗ = 1 + pl/T ∗ < 1 + 1 = 2.

A BETTER PRACTICAL BEHAVIOR

The above worst-case bound of 2 might be too
rough in practice, when the solution quality is
important; i.e., solutions with the objective value better
than twice the optimal objective value are required. In
addition, the solutions may need to be created on-line
(any possible off-line modification of the heuristic that
may lead to a better performance would be of not much
use). In this situation, the on-line performance measure
is essentially important.

As it was shown in [27] the quality of the solution
delivered by the basic Jackson’s heuristic is essentially
related with the maximum job processing time pmax that
may occur in a given problem instance. In particular,
the interference of a “long” non-urgent job with the
following scheduled urgent jobs affects the solution
quality.

In [27] pmax is expressed as a fraction the optimal
objective value and a much more accurate
approximation ratio than 2 is derived. In some
applications, this kind of relationship can priory be
predicted with a good accuracy. For instance, consider
large-scale production process where the processing
requirement of any individual job is small relative to an
estimated (shortest possible) overall production time T
of all the products (due to a large number of products
and the number of operations required to produce each
product). If this kind of prediction is not possible, by a

44 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 Vakhania et al.

single application of Jackson’s heuristic, we may obtain
a strong lower bound on the optimal objective value
and represent pmax as its fraction κ (instead of
representing it as a fraction of an unknown optimal
objective value). Then in [27] an explicit expression of
the heuristic’s approximation ratio in terms of that
fraction is derived. In particular, it is shown that
Jackson’s heuristic will always deliver a solution within
a factor of 1 + 1/κ of the optimum.

The above estimations may drastically outperform
the earlier known wors-tcase ratio of 2, in practice. Due
to the computational experiments reported in [27], from
200 randomly generated problem instances, more than
half of the instances were solved optimally by
Jackson’s heuristic, as no above interference with a
long job has occurred. For the rest of the instances, the
interference was insignificant, so that the most of them
were solved within a factor of 1.009 of the optimum
objective value, whereas the worst approximation ratio
was less than 1.03. According to the experimental
results, our lower bounds turn out to be quite strong, in
practice.

REFERENCES

[1] Bratley P, Florian M, Robillard P. On sequencing with earliest
start times and due–dates with application to computing
bounds for (n/m/G/Fmax) problem. Naval Res. Logist. Quart
1973; 20: 57-67.
http://dx.doi.org/10.1002/nav.3800200106

[2] Brinkkotter W, Brucker P. Solving open benchmark instances
for the job-shop problem by parallel head–tail adjustments. J
of Scheduling 2001; 4: 53-64.
http://dx.doi.org/10.1002/1099-1425(200101/02)4:1<53::AID-
JOS59>3.0.CO;2-Y

[3] Carlier J. The one–machine sequencing problem. European
J of Operations Research 1982; 11: 42-47
http://dx.doi.org/10.1016/S0377-2217(82)80007-6

[4] Carlier J, Pinson E. An Algorithm for Solving Job Shop
Problem. Management Science 1989; 35: 164-176
http://dx.doi.org/10.1287/mnsc.35.2.164

[5] Carlier J, Pinson E. Jakson's pseudo preemptive schedule
for the Pm/ri,qi/Cmax problem. Annals of Operations
Research 1998; 83: 41-58.
http://dx.doi.org/10.1023/A:1018968332237

[6] Condotta A, Knust S, Shakhlevich NV. Parallel batch
scheduling of equal-length jobs with release and due dates.
Journal of Scheduling, 2010; 13: 463-477.
http://dx.doi.org/10.1007/s10951-010-0176-y

[7] Della Croce F, T'kindt V. Improving the preemptive bound for
the single machine dynamic maximum lateness problem.
Operations Research Letters 2010; 38: 589-591.
http://dx.doi.org/10.1016/j.orl.2010.08.002

[8] Garey MR, Johnson DS. Computers and Intractability: A
Guide to the Theory of NP–completeness. Freeman, San
Francisco 1979.

[9] Garey MR, Johnson DS, Simons BB, Tarjan RE. Scheduling
unit–time tasks with arbitrary release times and deadlines.
SIAM J Comput 1981; 10: 256-269.
http://dx.doi.org/10.1137/0210018

[10] Gharbi A, Labidi M. Jackson's Semi-Preemptive Scheduling
on a Single Machine. Computers & Operations Research
2010; 37: 2082-2088
http://dx.doi.org/10.1016/j.cor.2010.02.008

[11] Grabowski J, Nowicki E, Zdrzalka S. A block approach for
singlemachine scheduling with release dates and due dates.
European J. of Operational Research 1986; 26: 278-285.
http://dx.doi.org/10.1016/0377-2217(86)90191-8

[12] Graham RL. Lawler EL, Lenstra JL, Rinnooy AHG. Kan.
Optimization and approximation in deterministic sequencing
and scheduling: a servey. Ann Discrete Math 1979; 5: 287-
326.
http://dx.doi.org/10.1016/S0167-5060(08)70356-X

[13] Hall LA, Shmoys DB. Jackson's rule for single-machine
scheduling: Making a good heuristic better, Mathematics of
Operations Research 1992; 17: 22-35
http://dx.doi.org/10.1287/moor.17.1.22

[14] Jackson JR. Schedulig a production line to minimize the
maximum tardiness. Manegement Scince Research Project,
University of California, Los Angeles, CA (1955)

[15] McMahon G, Florian M. On scheduling with ready times and
due dates to minimize maximum lateness. Operations
Research 1975; 23: 475-482.
http://dx.doi.org/10.1287/opre.23.3.475

[16] Perregaard M, Clausen J. Parallel branch-and-bound
methods for the job-shop scheduling problem. Annals of
Operations Research 1998; 83: 137-160.
http://dx.doi.org/10.1023/A:1018903912673

[17] Potts CN. Analysis of a heuristic for one machine sequencing
with release dates and delivery times. Operations Research
1980; 28: 1436-1441.
http://dx.doi.org/10.1287/opre.28.6.1436

[18] Simons B. Multiprocessor scheduling of unit-time jobs with
arbitrary release times and deadlines. SIAM J. Comput 1983;
12: 294-299.
http://dx.doi.org/10.1137/0212018

[19] Simons B, Warmuth M. A fast algorithm for multiprocessor
scheduling of unit-length jobs. SIAM J. Comput 1989; 18:
690-710.
http://dx.doi.org/10.1137/0218048

[20] Vakhania N. A better algorithm for sequencing with release
and delivery times on identical processors. Journal of
Algorithms 2003; 48: 273-293
http://dx.doi.org/10.1016/S0196-6774(03)00072-5

[21] Vakhania N. Single-Machine Scheduling with Release Times
and Tails. Annals of Operations Research 2004; 129: 253-
271.
http://dx.doi.org/10.1023/B:ANOR.0000030692.69147.e2

[22] Vakhania N. "Scheduling jobs with release times
preemptively on a single machine to minimize the number of
late jobs". Operations Research Letters 2009; 37: 405-410.
http://dx.doi.org/10.1016/j.orl.2009.09.003

[23] Vakhania N. Branch less, cut more and minimize the number
of late equal-length jobs on identical machines. Theoretical
Computer Science 2012; 465: 49-60
http://dx.doi.org/10.1016/j.tcs.2012.08.031

[24] Vakhania N. A study of single-machine scheduling problem
to maximize throughput. Journal of Scheduling 2013; 16(4):
395-403.
http://dx.doi.org/10.1007/s10951-012-0307-8

[25] Vakhania N, Shchepin E. Concurrent operations can be
parallelized in scheduling multiprocessor job shop, J.
Scheduling 2002; 5: 227-245.
http://dx.doi.org/10.1002/jos.101

[26] Vakhania N, Werner F. Minimizing maximum lateness of jobs
with naturally bounded job data on a single machine in
polynomial time. Theoretical Computer Science 2013; 501:
7281.
http://dx.doi.org/10.1016/j.tcs.2013.07.001

An Efficient Heuristic for a Discrete Optimization Problem Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 45

[27] Vakhania N, Perez D, Carballo L. Theoretical Expectation
versus Practical Performance of Jackson's Heuristic.
Mathematical Problems in Engineering Volume 2015, Article

ID 484671, 10 pages
http://dx.doi.org/10.1155/2015/484671

Received on 05-12-2015 Accepted on 31-12-2015 Published on 05-01-2016

http://dx.doi.org/10.15379/2410-2938.2015.02.02.05

© 2015 Vakhania et al.; Licensee Cosmos Scholars Publishing House.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium,
provided the work is properly cited.

