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Abstract: In this paper we deal with a discrete optimization problem, which, among many other such problems, is 
computationally intractable. Since the existence of an exact solution algorithm for our problem is highly unlikely, the 
development of heuristic and approximation algorithms is of a great importance. Here we briefly discuss this issue and 
describe a robust 2-approximation heuristic that is used for getting an approximation solution for the problem of 
scheduling jobs with release times and due-dates on a single machine to minimize the maximum job lateness. 
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INTRODUCTION 

It is common in our everyday life a desire to 
optimize time, to do our duties in a due time or to 
arrange as many things as possible in a limited time. 
Sometimes optimization of our time is a purely personal 
matter, but often it depends on the factors and the 
environment around us. We wish to arrange them in a 
way which would be beneficial for us. As an example 
we give a problem which many of us encounter daily. A 
family with n members lives in an apartment with a 
single bathroom, shower, iron and a mirror. Each 
member of the family daily gets up at a fixed time, 
needs a prescribed time units in the bathroom, in the 
shower, in front of the mirror and he (she) also needs 
the iron for the prescribed time units (to arrange the 
cloths to ware on this day). The bathroom, shower, iron 
and the mirror are our resources and can be used by at 
most one person at a time. Since each member of the 
family has to leave home at a prescribed time (in order 
the reach the job/school on time), we face an 
optimization problem, how to arrange the activities of 
each member of the family on each of the above 
resources to minimize the overall time needed for all 
members of the family to complete all activities. These 
types of problems are dealt with in discrete 
optimization, in particular, in scheduling theory. 

Discrete optimization (DO) problems constitute a 
significant class of practical problems with a discrete 
nature. They have emerged in late 40-s of 20th 
century. With a rapid grow of the industry, the new 
demands in the optimal solution of the newly emerged 
resource management and distribution problems have 
a risen. For the development of effective solution  
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methods, these problems were formalized and 
addressed mathematically. 

DO PROBLEMS AND APPROXIMATION 

A DO problem is characterized by a finite set of the 
so-called feasible solutions, defined by a given set of 
restrictions, and an objective function for these feasible 
solutions, which typically needs to be optimized, i.e., 
minimized or maximized: the problem is to find an 
optimal solution, that is, one minimizing the objective 
function. Typically, the number of feasible solutions is 
finite. Thus theoretically, finding an optimal solution is 
trivial: just enumerate all the feasible solutions 
calculating for each of them the value of the objective 
function and select any one with the optimal objective 
value. However, this brutal enumeration of all feasible 
solutions may be impossible in practice. Even for 
problems with a moderate size (say, 30 cities for a 
classical traveling salesman problem or 10 jobs on 10 
machines in job-shop scheduling problem), such a 
complete enumeration may take hundreds of centuries 
on the modern computers. Moreover, this situation will 
not be essentially changed if in the future, much faster 
computers will be developed. 

The DO problems are partitioned into two basic 
types, type P, which are polynomially solvable ones, 
and NP-hard problems. Intuitively, there exist efficient 
(polynomial in the size of the problem) solution 
methods or algorithms for the problems from the first 
class, whereas no such algorithms exist for the 
problems of the second class (informally, the size of 
the problem is the the amount of the computer memory 
necessary to represent the problem data/parameters). 
Furthermore, all NP-hard problems, ones from the 
second class, have a similar computational (time) 
complexity, in the sense that if there will be found an 
efficient polynomial-time algorithm for any of them, 
such an algorithm would yield another polynomial-time 
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algorithm for any other NP-hard problem. At the same 
time, it is believed that it’s very unlikely that an NP-hard 
problem can be solved in polynomial time. 

Whereas an exact polynomial-time algorithm with a 
reasonable real time behavior exists for a problem in 
class P, such an algorithm is highly unlikely to exist for 
an NP-hard problem. Hence, one chooses a 
compromise to solve such a problem approximately. 
Heuristic algorithms can be used for the exact solution 
of a problem in class P and for an approximate solution 
of an NP-hard problem. A heuristic algorithm is an 
efficient polynomial-time algorithm that creates one or 
more feasible schedules. A greedy algorithm is a 
heuristic that typically works on n (external) iterations, 
were n is the number of objects in the given problem. 
Since the size of a discrete optimization problem is a 
polynomial in n, the number of iterations in a greedy 
algorithm is also polynomial in the size of the problem. 
Such an algorithm creates a complete destiny feasible 
solution iteratively, extending the current partial 
solution by some yet unconsidered object at each 
iteration. In this way, the search space is reduced to a 
single possible extension at each iteration, from all the 
theoretically possible potential extensions. This type of 
“rough” reduction of the whole solution space may lead 
us to the loss of an optimal or near-optimal solution. 

A greedy/heuristic algorithm may create an optimal 
solution for a problem in class P (though not any 
problem in class P may optimally be solved by a 
heuristic method). However, this is not the case for an 
NP-hard problem, i.e., no greedy or heuristic algorithm 
can solve optimally an NP-hard problem (unless P = 
NP, which is very unlikely). Since the majority of DO 
problems are NP-hard, a compromise accepting a 
solution worse than an optimal one is hence 
unavoidable. On this way, it is natural and also 
practical to think about the design and analysis of 
polynomial-time approximation algorithms, i.e., ones 
which deliver a solution with a guaranteed deviation 
from an optimal one in polynomial time. Since the 
simplest polynomial-time algorithms are greedy, a 
greedy algorithm is a simplest approximation algorithm. 

The performance ratio of an approximation 
algorithm A measures the quality of this approximation 
algorithm. It is the ratio of the value of the objective 
function delivered by algorithm A to the optimal value. 
A κ-approximation algorithm is one with the worst-case 
performance ratio κ. Another commonly used measure 
is the absolute error which is just the difference 

between the value of the objective function delivered by 
algorithm A and the optimal objective value. 

SCHEDULING PROBLEMS 

Heuristic and approximation algorithms are common 
and important, in particular, for the scheduling 
problems. These problems deal with a finite set of 
requests called jobs to be performed (or scheduled) on 
a finite (and limited) set of resources called machines 
(or processors). The aim is to choose the order of 
processing the jobs on machines so as to meet a given 
objective criteria. In our family example, to go to the 
bathroom, to take a shower, to iron and to brush the 
hair in front of the mirror are examples of requests; the 
bathroom, shower, iron and mirror are examples of 
resources. A job in a factory or a program in a 
computer system or a lesson at school are other 
examples of requests. A machine in a factory or a 
processor in a computer system or a teacher in a 
school are other examples of resources. Each job has 
its processing time, i.e., it needs a prescribed time on a 
machine, and a machine cannot handle more than one 
request at a time (for example, a teacher cannot give 
two different lessons simultaneously). Besides, there is 
a limited number of machines (which are expensive in 
use) and time is limited. We need to arrange an order 
in which the jobs are handled by the machines to 
minimize or maximize some important, often time, 
criterion or objective functions. 

A scheduling problem might be a single-stage, for 
instance, single-machine or multiprocessor scheduling 
problems, or a multi-stage shop scheduling problem. 
There are three basic type of multiprocessor 
scheduling problems with identical, uniform and 
unrelated parallel processor environments. The first 
two are characterized by an operation-independent 
speed function (for identical machines every machine 
has the same speed). A group of unrelated machines 
has no uniform speed characteristic, i.e., a machine 
speed is operation-dependent. There are also three 
basic shop scheduling problems, which are open-shop, 
flow-shop and job-shop scheduling problems. 

More formally, a multiprocessor is a triple 
constituted by the sets of jobs J and machines M and a 
processing time function f, a mapping from J × M to R, 
where the value of this function for a pair J,M is the 
processing time (length) of job J on machine M 
denoted by M(J). A multiprocessor without any 
restriction on its processing time function is called a 
system of unrelated processors. In a system of 
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identical processors for each P and Q from M and for 
each J ∈ J, P(J) = Q(J). 

There are three basic shop scheduling problems. 
We let J,M stand for a shop scheduling instance with 
the set of jobs J = {J1,...,Jn} and the set of machines M 
= {M1,...,Mm}. In an instance of the job-shop J//Cmax 

each job from J is an ordered set of elements called 
operations. 1 Each operation is to be scheduled on one 
particular machine from M. Ji

j is the operation of job Jj 

to be performed on machine Mi (we shall deal with job-
shops in which every job has no more than one 
operation to be scheduled on one particular machine). 
We will write Ji

j → Jk
j if Ji

j immediately precedes Jk
j 

according to the operation order in Jj. Operation Ji
j has 

a processing time or length pj
i, which is the amount of 

time it takes on machine Mi. Ji
j is a dummy operation of 

job Jj on machine Mi if pj
i = 0. 

The open-shop O//Cmax is a special case of the job-
shop in which there is no precedence order between 
the operations of any job, these operations can be 
processed in an arbitrary order on their corresponding 
machines. The flow-shop F//Cmax is another special 
case of job-shop scheduling problem in which the 
operation order in all jobs is the same, i.e., every job is 
processed by the machines in the same predetermined 
order. 

JACKSON’S HEURISTIC FOR SCHEDULING JOBS 
WITH RELEASE TIMES AND DUE-DATES 

One of the oldest and commonly used (on-line) 
heuristics in scheduling theory is that of Jackson [14]. It 
was first suggested for scheduling jobs with release 
times and due dates on a single machine to minimize 
the maximum job lateness. In general, variations of 
Jackson’s heuristic are widely used to construct 
feasible solutions for scheduling jobs with release and 
delivery times on a single machine or on a group of 
parallel machines. Besides, Jackson’s heuristic is 
efficiently used in the solution of more complicated 
shop scheduling problems including job-shop 
scheduling, in which the original problem occurs as an 
auxiliary one and is applied to obtain lower estimations 
in implicit enumeration algorithms (although even this 

                                            

1 

We use the standard three-field notation for scheduling problems originally 

introduced in [12] 

latter problem is strongly NP-hard, see Garey and 
Johnson [8]). As we will see a bit later, in the worst-
case, Jackson’s heuristic will deliver a solution which is 
twice worse than an optimal one. 

THE PROBLEM FORMULATION 

In our single-machine scheduling problem 1|rj|Lmax 

(Graham et al. [12]) we are given n jobs in {1,2,...,n}. 
Each job j has (non-interruptible) processing time pj, 
release time rj and due-date dj. The n jobs are to be 
scheduled on a single machine that can process at 
most one job at a time. The release time of job j, rj, is 
the time moment when job j arrives to the system 
hence becomes available for processing on the 
machine, whereas its due-date dj is the desired 
completion time for job j. 

A feasible schedule S is a mapping that assigns to 
each job j a starting time tj(S), such that tj(S) ≥ rj and 
tj(S) ≥ tk(S) + pk, for any job k included earlier in S (for 
notational simplicity, we use S also for the 
corresponding jobset); the first inequality says that a 
job cannot be started before its release time, and the 
second one reflects the restriction that the machine can 
handle only one job at any time. cj(S) = tj(S) + pj is the 
completion time of job j. We aim to find out if there is a 
schedule which meets all job due-dates, i.e., every j is 
completed by time dj. If there is no such schedule then 
we look for an optimal schedule, i.e., one minimizing 
the maximum job lateness Lmax = max {j|cj − dj}. We 
denote by L(S) (Lj(S), respectively) for the maximum 
lateness in S (the lateness of job j in S, respectively). 

There is an equivalent formulation of the above 
problem in which the due-dates are replaced by the 
delivery times and the maximum job completion time is 
minimized. In this setting, n jobs have to be scheduled 
on a single machine. Each job j again becomes 
available at its release time rj. A released job can be 
assigned to the machine that has to process job j for pj 

time units. The machine can handle at most one job at 
a time. Once it completes j this job still needs a 
(constant) delivery time qj for its full completion (the 
jobs are delivered by an independent unit and this 
takes no machine time). Here our objective is to find a 
job sequence on the machine that minimizes the 
maximum job full completion time. 

According to the conventional three-field notation 
(Graham et al. [12]) this version is abbreviated as 
1|rj,qj|Cmax: in the first field the single-machine 
environment is indicated, the second field specifies job 
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parameters, and in the third field the objective criteria is 
given. 

Given an instance of 1|rj,qj|Cmax, one can obtain an 
equivalent instance of 1|rj|Lmax as follows. Take a 
suitably large constant K (no less than the maximum 
job delivery time) and define due-date of every job j as 
dj = K − qj. Vice-versa, given an instance of 1|rj|Lmax, an 
equivalent instance of 1|rj,qj|Cmax can be obtained by 
defining job delivery times as qj = D − dj, where D is a 
suitably large constant (no less than the maximum job 
due date). It is straightforward to see that the pair of 
instances defined in this way are equivalent; i.e., 
whenever the makespan for the version 1|rj,qj|Cmax is 
minimized, the maximum job lateness in 1|rj|Lmax is 
minimized, and vice-versa (see Bratley et al. [1] for 
more details). 

Because of the above equivalence, one can use 
both above formulations interchangeably. We may just 
briefly mention here that the version with delivery times 
naturally occurs in implicit enumeration algorithms for 
job-shop scheduling problem and is used for the 
calculation of lower bounds. 

DESCRIPTION OF THE HEURISTIC AND SOME 
RELATED WORK 

Jackson’s heuristic iteratively, at each scheduling 
time t (given by job release or completion time), among 
the jobs released by time t schedules one with the 
largest delivery time (or smallest due-date). For the 
sake of conciseness Jackson’s heuristic has been 
commonly abbreviated as EDD-heuristic (Earliest Due-
Date) or alternatively, LDT-heuristic (Largest Delivery 
Time). In more details, the heuristic distinguishes n 
scheduling times, the time moments at which a job is 
assigned to the machine. Initially, the earliest 
scheduling time is set to the minimum job release time. 
Among all jobs released by that time a job with the 
minimum due-date (the maximum delivery time, 
alternatively) is assigned to the machine (ties being 
broken by selecting a longest job). Iteratively, the next 
scheduling time is either the completion time of the 
latest assigned so far job to the machine or the 
minimum release time of a yet unassigned job, 
whichever is more (as no job can be started before the 
machine gets idle nether before its release time). And 
again, among all jobs released by this scheduling time 
a job with the minimum due-date (the maximum 
delivery time, alternatively) is assigned to the machine. 
Note that the heuristic creates no gap that can be 
avoided always scheduling an already released job 

once the machine becomes idle, whereas among yet 
unscheduled jobs released by each scheduling time it 
gives the priority to a most urgent one (i.e., one with 
the smallest due-date, alternatively, with the largest 
delivery time). 

Since the number of scheduling times is O(n) and at 
each scheduling time search for a minimal/maximal 
element in an ordered list is accomplished, the time 
complexity of the heuristic is O(nlogn). 

A number of efficient algorithms are variations of 
Jackson’s heuristic. For instance, Potts [17] has 
proposed a modification of this heuristic with for the 
problem 1|rj,qj|Cmax. His algorithm repeatedly applies 
the heuristic O(n) times and obtains an improved 
approximation ratio of 3/2. Hall and Shmoys [13] have 
elaborated polynomial approximation schemes for the 
same problem, and also an 4/3-approximation an 
algorithm for its version with the precedence relations 
with the same time complexity of O(n2 logn) as the 
above algorithm from [17]. Jackson’s heuristic can be 
efficiently used for the solution of shop scheduling 
problems. Using Jackson’s heuristic as a schedule 
generator, McMahon & Florian [15] and Carlier [3] have 
proposed efficient enumerative algorithms for 
1|rj,qj|Cmax. Grabowski et al. [11] use the heuristic for 
the obtention of an initial solution in another 
enumerative algorithm for the same problem. Garey et 
al. [9] have applied the same heuristic in an O(nlogn) 
algorithm for the feasibility version of this problem with 
equal-length jobs (in the feasibility version job due-
dates are replaced by deadlines and a schedule in 
which all jobs complete by their deadlines is looked 
for). Again using Jackson’s heuristic as a schedule 
generator, other polynomial-time direct combinatorial 
algorithms were described. In [21] was proposed an 
O(n2 logn) algorithm for the minimization version of the 
latter problem with two possible job processing times, 
and in [22] an O(n3 logn) algorithm that minimizes the 
number of late jobs with release times on a single-
machine when job preemptions are allowed. Without 
preemptions, two polynomial-time algorithms for equal-
length jobs on single machine and on a group of 
identical machines were proposed in [24] and [23], 
respectively, with time complexities O(n2 log n) and 
O(n3 log n log pmax), respectively. 

Jackson’s heuristic has been used in multiprocessor 
scheduling problems as well. For example, for the 
feasibility version with m identical machines and equal-
length jobs, algorithms with the time complexities O(n3 

loglogn) and O(n2m) were proposed in Simons [18] and 
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Simons and Warmuth [19], respectively. Using the 
same heuristic as a schedule generator in [20] was 
proposed an O(qmaxmnlogn+O(mνn)) algorithm for the 
minimization version of the latter problem, where qmax is 
the maximal job delivery time and ν < n is a parameter. 

The heuristic has been successfully used for the 
obtainment of lower bounds in job-shop scheduling 
problems. In the classical job-shop scheduling problem 
the preemptive version of Jackson’s heuristic applied 
for a specially derived single-machine problem 
immediately gives a lower bound, see, for example, 
Carlier [3], Carlier and Pinson [4] and Brinkkotter and 
Brucker [2] and more recent works of Gharbi and Labidi 
[10] and Della Croce and T’kindt [7]. Carlier and Pinson 
[5] have used the extended Jackson’s heuristic for the 
solution of the multiprocessor job-shop problem with 
identical machines, and it can also be adopted for the 
case when parallel machines are unrelated (see [25]). 
Jackson’s heuristic can be useful for parallelizing the 
computations in scheduling job-shop Perregaard and 
Clausen [16], and also for the parallel batch scheduling 
problems with release times Condotta et al. [6]. 

THE WORST-CASE BOUND 

In this subsection we will see why the basic 
Jackson’s heuristic is a 2-approximation one. Let σ be 
the schedule obtained by the application of Jackson’s 
heuristic (J-heuristic, for short) to the originally given 
problem instance. Schedule σ, and, in general, any 
Jackson’s schedule S (J-schedule, for short), i.e., one 
constructed by J-heuristic, may contain a gap, which is 
its maximal consecutive time interval in which the 
machine is idle. We assume that there occurs a 0-
length gap (cj,ti) whenever job i starts at its earliest 
possible starting time, that is, its release time, 
immediately after the completion of job j; here tj (cj, 
respectively) denotes the starting (completion, 
respectively) time of job j. 

A block in a J-schedule is its consecutive part 
consisting of the successively scheduled jobs without 
any gap in between preceded and succeeded by a 
(possibly a 0-length) gap. 

J-schedules have useful structural properties. The 
following basic definitions, taken from [20], will help us 
to expose these properties. 

Given a J-schedule S, let i be a job that realizes the 
maximum job lateness in S, i.e., Li(S) = maxj{Lj(S)}. Let, 

further, B be the block in S that contains job i. Among 
all the jobs in B with this property, the latest scheduled 
one is called an overflow job in S (we just note that not 
necessarily this job ends block B). 

A kernel in S is a maximal (consecutive) job 
sequence ending with an overflow job o such that no 
job from this sequence has a due-date more than do. 
For a kernel K, we let r(K) = mini∈K{ri}. 

It follows that every kernel is contained in some 
block in S, and the number of kernels in S equals to the 
number of the overflow jobs in it. Furthermore, since 
any kernel belongs to a single block, it may contain no 
gap. 

A statement, similar to Lemma 1 can be found in 
reference [26] and Lemma 2 in [20]. Lemma 4 is 
obtained as a consequence of these two lemmas, 
though the related result has been known earlier. For 
the sake of completeness of our presentation, we give 
all our claims with proofs. 

Lemma 1 

The maximum job lateness (the makespan) of a 
kernel K cannot be reduced if the earliest scheduled 
job in K starts at time r(K). Hence, if a J-schedule S 
contains a kernel with this property, then it is optimal. 

Proof. Recall that all jobs in K are no less urgent 
than the overflow job o, and that jobs in K form a tight 
sequence (i.e., without any gap). Then since the 
earliest job in K starts at its release time, no reordering 
of jobs in K can reduce the current maximum lateness, 
which is Lo(S). Hence, there is no feasible schedule S0 

with L(S0) < Lo(S), i.e., S is optimal.  

Thus σ is already optimal if the condition in Lemma 
1 holds. Otherwise, there must exist a job less urgent 
than o, scheduled before all jobs of kernel K that delays 
jobs in K (and the overflow job o). By rescheduling 
such a job to a later time moment the jobs in kernel K 
can be restarted earlier. We need some extra 
definitions to define this operation formally. 

Suppose job i precedes job j in ED-schedule S. We 
will say that i pushes j in S if ED-heuristic will 
reschedule job j earlier whenever i is forced to be 
scheduled behind j. 

Since the earliest scheduled job of kernel K does 
not start at its release time (see Observation 1), it is 
immediately preceded and pushed by a job l with dl > 
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do. In general, we may have more than one such a job 
scheduled before kernel K in block B (one containing 
K). We call such a job an emerging job for K, and we 
call the latest scheduled one (job l above) the live 
emerging job. 

From the above definition and Lemma 1 we 
immediately obtain the following corollary: 

Corollary 1 

If S contains a kernel which has no live emerging 
job, then it is optimal. 

Below we use TS for the makespan (maximum full 
job completion time) of Jschedule S, and , 
respectively) for the optimum makespan (lateness, 
respectively). 

Lemma 2 

T ! " T # < Pl Lmax
! " Lmax

# < Pl( )  

where l is the live emerging job for kernel K ∈ σ. 

Proof. We need to show that the delay imposed by 
job l for the jobs in kernel K in schedule σ is less than 
pl. Indeed, σ is a J-schedule. Hence, no job in K could 
have been released by the time when job l was started 
in σ, as otherwise J-heuristic would have include the 
former job instead of l. At the same time, the earliest 
job from K is scheduled immediately after job l in σ. 
Then the difference between the starting time of the 
former job and time moment r(K) is less than p. Now 
our claim follows from Lemma 1.  

Lemma 2 implicitly defines a lower bound of Tσ−pl 

derived from the solution of the non-preemptive 
Jackson’s heuristic. This lower bound can further be 
strengthen using the following concept. Let the delay 
for kernel K ∈ σ, δ(K,l) be cl − r(K) (l (o, respectively) 
stand again for the live emerging (overflow, 
respectively) job for kernel K). 

Lemma 3 

L∗ = Tσ −δ(K,l) (Lo(σ)−δ(K,l), respectively) is a lower 
bound on the optimal job makespan T* (lateness , 
respectively). 

The proof is similar to that of Lemma 2, with an 
extra observation that the delay for the earliest 
scheduled job of kernel K is defined more accurately by 
δ(K,l). 

Observe that δ(K,l) < pl, and, in paractice, δ(K,l) can 
be drastically smaller than pl. 

We can easily derive a performance ratio 2 of J-
heuristic for version 1|rj,qj|Cmax (we note that the 
estimation of the approximation for the version with 
due-dates with the objective to minimize maximum 
lateness is less appropriate: for instance, the optimum 
lateness might be negative). 

Lemma 4 

J-heuristic gives a 2-approximate solution for 
1|rj,qj|Cmax, i.e., Tσ/T ∗ < 2. 

Proof. If there exists no live emerging job for K ∈ σ 
then σ is optimal by Corollary 1. Suppose l exists; 
clearly, pl < T ∗ (as job l has to be scheduled in S∗ and 
there is at least one more (kernel) job in it). Then by 
Lemma 2, 

Tσ/T ∗ < (T ∗ + pl)/T ∗ = 1 + pl/T ∗ < 1 + 1 = 2. 

A BETTER PRACTICAL BEHAVIOR 

The above worst-case bound of 2 might be too 
rough in practice, when the solution quality is 
important; i.e., solutions with the objective value better 
than twice the optimal objective value are required. In 
addition, the solutions may need to be created on-line 
(any possible off-line modification of the heuristic that 
may lead to a better performance would be of not much 
use). In this situation, the on-line performance measure 
is essentially important. 

As it was shown in [27] the quality of the solution 
delivered by the basic Jackson’s heuristic is essentially 
related with the maximum job processing time pmax that 
may occur in a given problem instance. In particular, 
the interference of a “long” non-urgent job with the 
following scheduled urgent jobs affects the solution 
quality. 

In [27] pmax is expressed as a fraction the optimal 
objective value and a much more accurate 
approximation ratio than 2 is derived. In some 
applications, this kind of relationship can priory be 
predicted with a good accuracy. For instance, consider 
large-scale production process where the processing 
requirement of any individual job is small relative to an 
estimated (shortest possible) overall production time T 
of all the products (due to a large number of products 
and the number of operations required to produce each 
product). If this kind of prediction is not possible, by a 
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single application of Jackson’s heuristic, we may obtain 
a strong lower bound on the optimal objective value 
and represent pmax as its fraction κ (instead of 
representing it as a fraction of an unknown optimal 
objective value). Then in [27] an explicit expression of 
the heuristic’s approximation ratio in terms of that 
fraction is derived. In particular, it is shown that 
Jackson’s heuristic will always deliver a solution within 
a factor of 1 + 1/κ of the optimum. 

The above estimations may drastically outperform 
the earlier known wors-tcase ratio of 2, in practice. Due 
to the computational experiments reported in [27], from 
200 randomly generated problem instances, more than 
half of the instances were solved optimally by 
Jackson’s heuristic, as no above interference with a 
long job has occurred. For the rest of the instances, the 
interference was insignificant, so that the most of them 
were solved within a factor of 1.009 of the optimum 
objective value, whereas the worst approximation ratio 
was less than 1.03. According to the experimental 
results, our lower bounds turn out to be quite strong, in 
practice. 
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