
8 Journal of Computer Science Technology Updates, 2015, 2, 8-18

 E-ISSN: 2410-2938/15 © 2015 Cosmos Scholars Publishing House

Formalism Describing the Object Models for Domains on a Unified
Metamodel of Object-Oriented Database Applications Terms

Pavel P. Oleynik*

Shakhty Institute (branch) of Platov South Russian State Polytechnic University (NPI), Russia, Rostov-on-
Don, Russia

Abstract: This article presents a formal description of object models in terms of unified object-oriented database
applications metamodel. The metamodel was developed by the author and independent of the domain area. The
metamodel is realized by the author in own environment of development SharpArchitect RAD (Rapid Application
Development) Studio. On the basis of the metamodel we using set theory proposed formal approach to the description of
the model application domains.

Keywords. Object-Oriented programming, Object-Oriented databases, Object system metamodel, Formal
description of object models.

1. INTRODUCTION

Dominant methodology used in developing
applications is currently the object-oriented approach.
This article presents a formal description of object
models applied domains in terms of unified object-
oriented database applications metamodel. In this case
describes all kinds of metaclasses, which allow to
describe all kinds of entities in the object system, as
well as the composition and structure of each
metaclass. In addition, attention is paid to the
constraints imposed on the formal model, and a list of
valid values in the case where it is possible. In the
formal model of drawbacks of many existing works, a
brief description is presented in this article. The
metamodel is realized by the author in own
environment of development SharpArchitect RAD
Studio.

The article describes the current version of the
unified metamodel. Will describe main types of
metaclasses to represent classes, attributes, validation
rules, and visualization, methods and events entities
allocated developer with object-oriented design.

2. REVIEW OF EXISTING PUBLICATIONS

The object-oriented paradigm is the most popular
approach currently applied in the development of
various applications, including database applications.
This paradigm appeared for a long time, but in contrast
to other approaches (eg. relational data model) has no

*Address correspondence to this author at the Shakhty Institute (branch) of
Platov South Russian State Polytechnic University (NPI), Russia, Rostov-on-
Don, Russia; Tel: +7 (908) 507-80-61;
E-mail: xsl@list.ru

precise formal description. However, there are many
attempts of formalization.

In [1] the authors propose a formal model of
language Z as a set of operators representing a
notation for object-oriented language. The authors
introduce a technique based on model specifications
that describe the transformation of the input database
schemes to the output. Wherein said many of steps
and rules of such a transformation. Set of operators
allows us to describe the various operations that can
be combined to produce applications. These operators
are combined according to the rules set theory and the
theory of the predicate calculus, which makes the
resulting approach is intuitive and easy to use.

In [2] presents an approach which used
formalization UML (Unified Modeling Language) class
diagrams using the Z notation. Feature of the work is
that in addition to the static component (the property
values of class instances) paid attention to the
description of the behavior of objects. Given a formal
model of the dynamic component provided in the
object-oriented paradigm in the form of class methods,
which reflect a variety of options on lot of resulting
values. Also in the article there is a description of the
important features, called class inheritance allows
simplify the reuse of pre-built components.

In [3] the authors present their own algebra for
object-oriented databases is used. Main feature of
OODB (Object-Oriented Database) is the identification
of objects which based on object identifiers. Because
these OIDs (Object Identifier) are unique, then it is
possible to determine object which uniquely associated
with the identifier. This is the approach used by the

Domains on a Unified Metamodel of Object-Oriented Database Applications Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 9

authors, which address a variety of identifiers as a key
element of the model. Then the authors extend their
algebra of operators on the set theory and classical
operators like union, intersection and difference of sets
in the form of the operators of the algebra of object
identifiers, which resulted in a new set of objects.Other
algebraic theory of object-oriented applications is
described in [4]. This work is based on the notion of an
abstract data type (ADT), consisting of nested objects
connected to the outer class using associations. Key
concepts are the sorts that allow us to describe the set
of all existing objects (instances of classes) and a set
of operations that manipulate the elements of sort.
Based on these concepts, the authors make a number
of definitions, which allow them to be designed as
conventional structures such as sets, lists, arrays, and
combinations thereof unlimited nesting (e.g. an array of
sets).

In [5] attempts to provide an object model in the
form of theories. Theoretic-based approach proposed
by the authors involves description of the various data
structures (eg. arrays) in the form of specifications,
which have different sections to describe the static
(data fields) and behavioral components (operations
used over-specified structure). The authors were able
to present even multiple inheritance, and some
semblance of events, the concept of which
corresponded to the time of writing (1995). In this case,
attention is paid to the principles of building a graphical
user interface and the subsequent transformation of the
current user in the operators of library theories.

Another theory-based approach to the formalization
of object-oriented models for application domains in [6]
is presented. This work significantly extends the results
of [5] and introduces a number of additional sections in
the description of the ADT (which in terms of the author
likes the class programming language). The work paid
attention to formalizing description of operations,
methods, and events, which acts as the basis the
predicate calculus. This approach allowed the authors
to present only the most simple operation, but it is
enough in most cases. To describe the behavioral
component was used a finite state machine with a
deterministic set of states described in the class
specific section of the specification. Also paid much
attention to describes associations, such as the
composition and aggregation. This is a significant step
forward, because allows to simulate the relationship of
the form "part-whole" and manage the lifecycle of
embedded objects.

Despite a number of advantages, all the works were
written a long time before and devoted to the general
description of minimal design of object-oriented
paradigm. However, progress is not in place,
programming languages evolve, they appear new
syntax. For example, currently use event is an integral
part of any larger information system. All the above
works do not pay enough attention. In addition,
validation has become an essential element in any
complex system, since helps to avoid errors when the
user inputs data and saving into database in a
consistent state in accordance with corporate business
rules, which can not be implemented on the side of the
DBMS. Described work does not pay attention to the
creation of a formal description of the validation rules.

For the user, the information system is very
important to a convenient location on the form of
graphic elements and visual color and highlight
important data. Mechanisms are needed to describe
the rules of visualization. In the reviewed articles that
are not neglected.

The development of applications increasingly being
used design patterns [4]. Often in design used pattern
Model-View-Controller (MVC), which allows to describe
the behavior controllers to control the application. The
formalization of these controllers is not considered in
the works.

At a present day, the reports are an integral part of
many information systems. They are formed by the
user on the basis of information available in the
system. Description formal model for reporting missing
in the described works.

All the missing elements are very important in the
modern world application, what why it pays attention to
the unified object-oriented applications metamodel
whuch used for implementation of object-oriented
database applications. Formal model used to describe
the application of the program domains described in
the following sections. At the same time used publicly
available set theory, which is used by the authors to
analyze the work before.

3 UNIFIED OBJECT-ORIENTED APPLICATIONS
METAMODEL

In this section a brief look at the metamodel used in
the unified environment of rapid development of
corporate information systems which called
SharpArchitect RAD Studio [7]. In [8-14] was presented
complete class diagram metamodel and detailed

10 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 Pavel P. Oleynik

assignment of classes. Here we consider only the
relevant parts for this article. Figure 1 shows a
fragment of a unified object system metamodel with the
showing of key associations that are important for
further discussion.

Consider some of the main hierarchies of
metaclasses. Figure 2 is a diagram of the basic
metaclasses used to represent different kinds of
classes used to describe the entity classes that are
present in the domain model.

The root of hierarchy is an abstract metaclass
Class, having inherited two: 1) InheritableClass is used
to represent the metaclasses that can be inherited,
which support inheritance; 2) NotInheritableClass is
used to represent metaclasses that can not be
inherited. Metaclass Enum allows to describe enums or
sets which have values of a simple type.

Abstract base metaclass CustomAttributeClass
used to represent the metaclasses that can have the
attributes. DomainClass metaclass is used to represent
domain classes. Instances of domain allow us to
describe persistent entity classes (such as Customers,
Products, Sales), which objects (e.g. Ivanov, Bread)
are stored in the database. To simplify the description
will be called instances of the domain just domain
classes (if not assumed otherwise).

Abstract ComputationalClass<TBaseClass>
metaclass is the base for all calculated metaclasses
those classes, copies of which are not stored in the
database and are evaluated at runtime (transient). For
example, the Turnover-Balance Sheet is not stored
directly in the database, and is calculated based on
inventory, receipts and expenditures (which are the
domain class and represents an instance of
DomainClass metaclass).

Figure 1: Fragment of a unified object system metamodel.

Domains on a Unified Metamodel of Object-Oriented Database Applications Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 11

MethodParameterClass metaclass is used
represent a class-parameter methods. In
SharpArchitect RAD Studio implemented a design
pattern which called Parameter object, the essence of
which is the transfer of a set parameters in the method
as a single object instead of multiple variables with
atomic data type.

Abstract CodeComputationalClass<TBase Class>
metaclass is the base for calculated metaclasses
implemented using software code in C#. QueryClass is
metaclass for present query, allowing to form on the
basis of the result of database queries (often based on
LINQ-qeury, but possible, and direct sending SQL-
queries). HelperClass used represent the subsidiary
metaclasses that can be displayed in the user interface
and used for internal purposes in the implementation of
business logic.

We now consider the metaclass used to describe
the attributes of the classes and shown in Figure 3.

Root abstract metaclass represents an attribute is
AbstractAttribute. Inherited from the VirtualAttribute

classes are used to represent the attributes that were
not created by the developer of IS for the application
domain, and were presented to the system. They are
necessary for an understanding of the metamodel and
simplify the software development process.
SystemAttribute allows us to describe the attributes
that are present in the system and in C# language.
GeneratedAttribute class is used to represent attributes
that are automatically generated by the system. For
example, if you inherit from a base class is
automatically added to the tree attribute Node, which
allows to get the child nodes and thus form a
hierarchical structure.

For presentation attributes whose values can be set
by end user, will used an abstract base
ConcreteAttribute metaclass. Since the system is
implemented in language C#, when we can save the
values in the database used by the data types of the
language. To describe this moment added
parameterized metaclass
TypedAttribute<TDefaultValue>. TypeAttribute used to
represent a property whose value can preserve the
value of the data type of C# language.

Figure 2: Basic metaclasses used to represent classes of entities from the domain model.

12 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 Pavel P. Oleynik

ClassedValueAttribute<TValueClass,
TDefaultValue> metaclass is used to represent
attributes whose values are the instances of different
classes of entities present in the domain.
NotInheritableClassedValueAttribute<TValueClass,
TDefaultValue> metaclass keeps copies of non-
inherited classes. For example, EnumAttribute,
inherited and is used to store enum/set values.

Abstract
MultiplicityClassedValueAttribute<TValueClass,
TDefaultValue> metaclass is used to represent the
values of attributes that can store not only one value (a
reference to one instance of the class), but also a
collection of values.
DesignTimeClassedValueAttribute<TValueClass,
TDefaultValue> metaclass allows to save a reference
to instances of development time classes. So
BuiltInClassAttribute used to store objects
implementation classes in the metamodel
SharpArchitect RAD Studio. In turn
MetaModelClassAttribute allows us to save information
about the class metamodel of application domain. Both
described metaclasses allow manipulate metamodel at
the time of execution of the application. A similar
approach is used in many modern programming

languages, supports an extensive metainformation. So
in C# there is a technology called 'reflection' and allows
to impement these things.

CustomAttributedClassedValueAttribute<TValue
Class, TDefaultValue> metaclass is used to store
instances of classes with attributes. The system has
two successor: 1) DomainClassAttribute allows us to
save a reference to the instance of an entity subject
area described in the metamodel with an instance of a
DomainClass metaclass. Attribute of this type is used
for the implementation of the association and serves to
represent the relations with the object design domain.
HelperClassAttribute metaclass allows to store
references to instances of HelperClass.

SimpleTypeAttribute<DefaultValue> metaclass is
abstract and serves the root of all the attributes which
preserving the value of one atomic type (string,
number, symbol, etc.). All of this hierarchy is the result
of many years of work, the premise of which the
intermediate solutions have been described in [15-17].
ColorAttribute metaclass is used to store the color in
the format of RGB. LogicalAttribute is used to store the
Boolean values (true and false). DateTimeAttribute
metaclass is used to save the date-time values. If you
want to save only time you should use TimeAttribute.

Figure 3: Basic metaclasses which used to describe the attributes of entities.

Domains on a Unified Metamodel of Object-Oriented Database Applications Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 13

For input to the money attribute in the hierarchy has a
MoneyAttribute metaclass. FileDataAttribute used to
save files in difference formats. To save any type of
object is useful attribute of type ObjectAttribute. This
approach is similar to the use of type 'object' in C#.
Type attributes GeographyAttribute and
GeometryAttribute used to save the geographical
coordinates and geometric objects, respectively. To
represent character strings and individual characters
are used StringAttribute and SymbolAttribute
metaclasses. If you need to save the text of unlimited
length with formatting, you must use TextAttribute.
HyperLinkAttribute metaclass is used to represent
hyperlinks to various resources. ImageAttribute
instance is used to store graphics (pictures,
photographs and the like). Parameterized abstract
TypedValueRangedAttribute<TDefaultValue,
TValueRange> metaclass used to represent the atomic
values that can be found only in a certain range of
values specified by the relevant listing (TValueRange
parameter). Inherited IntAttribute metaclass can be
used to store integer values, and DecimalAttribute to
represent real values.

As can seen SharpArchitect RAD Studio is a mature
software product designed for the development of
object-oriented database applications, and provides a
unified metamodel enabling to describe both static and
dynamic elements of the application. Described the
development environment has been tested on a variety
of projects, described in [11, 14].

4. FORMAL REPRESENTATION OF OBJECT
MODELS IN TERMS OF UNIFIED OBJECT-
ORIENTED DATABASE APPLICATIONS
METAMODEL

To describe a mathematical model allows us to
represent the object model of information system any
application domain, we use the formal apparatus of set
theory. In result, all operations of application can be
modeled as of sets manipulations.

The design of information systems necessary build
a domain model, containing difference types of entities.
For example, the essence of the product, income and
expenditure are maintains the essence and the
essence of the trial balance is calculated, ie, its
instances are not stored in the database directly but
calculated on the basis of other entities stored. From a
formal point of view, a formal model of the domain
model, constructed in terms of a unified object-oriented
database application metamodel is a tuple consisting of
the sets and presented as a (1):

DMFM = (DC, HC, QC, MPC, EC) (1)

where:

DC (DomainClass) – a non-empty set of domain
classes,

dmfm ! DMFM, DC ≠ ! ;

HC (HelperClass) – set of helper classes;

QC (QueryClass) – set of queries classes;

MPC (MethodParameterClass) – set of method
parameters classes;

EC (EnumClass) – set of enumerations and sets of
elements classes;

Consider the description of each listed set. Domain
classes (DC) are a key set which used for modeling
entities of domain which are stored in the database. In
general, for a description of all classes of the domain
(DC) uses many elements of which is described as a
tuple, and (2):

DC = {(ATT, BCdc, M, E, VLR, VSR, BHC, R)} (2)

where the elements of each tuple are defined as
follows:

ATT (Attribute) – set of domain class attributes, ATT
≠ ! V BC ≠ ! ;

BCdc (BaseClass) – set of base domain classes
from which this is derived, DC ! BCdc;

M (Method) – set of class methods that allow to
implement the behavior of instances of classes, ie
dynamic component;

E (Event) – set of event handlers that occur in the
life cycle of the domain class object;

VLR (ValidationRule) – set of predicates which
representing the validation rules to be fit by each
object;

VSR (VisualizationRule) – set of visualization rules
that management visibility, enability and color of each
attributes;

BHC (BehaviorController) – set of behavior
controllers that management the behavior of objects as
well as application user interface;

14 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 Pavel P. Oleynik

R (Report) – set of reports which allows show all the
instances of a class (object) in user-friendly form with
the ability to print data.

It performs the following restriction:

dc ! DC, ! bcdc! BCdc DC=) dc ! BCdc

To describe the properties of instances classes
must describe the set of attributes ATT, is formally
described as a tuple of the form (3):

ATT = {(Name, AttributeKind, Multiplicity, dc, hc, ec)}
 (3)

where:

Name – unique name of the attribute (the correct
ID);

AttributeKind – kind of attribute;

Multiplicity – multiple attributes (minimum and
maximum number of associated objects);

dc – domain class (dc ! DC), indicates when
AttributeKind = DomainClassAttribute или AttributeKind
= GeneratedAttribute;

hc – helper class (hc ! HC), indicates when
AttributeKind = HelperClassAttribute или AttributeKind
= GeneratedAttribute;

ec – enum / set class (ec ! EC), indicates when
AttributeKind = EnumAttribute.

The system provides the developer with many
different types of attributes that can be represented as
(4):

AttributeKind = {BuiltInClassAttribute,
ColorAttribute, DateTimeAttribute, DecimalAttribute,
DomainClassAttribute, EnumAttribute,
FileDataAttribute, GeographyAttribute,
GeometryAttribute, HelperClassAttribute,
HyperLinkAttribute, ImageAttribute, IntAttribute,
LogicalAttribute, MetaModelClassAttribute,
MoneyAttribute, ObjectAttribute, StringAttribute,
SymbolAttribute, TextAttribute, TimeAttribute,
TypeAttribute} (4)

where:

BuiltInClassAttribute – Built-class attribute is used to
save the instance of the metamodel

ColorAttribute – The color attribute is used to
represent an integer constant describing color

DateTimeAttribute – Date-time attribute is used to
represent the date and time

DecimalAttribute – Decimal attribute whose value is
a decimal number

DomainClassAttribute – Domain class attribute
whose value is an instance (object) of the domain
class. Is often used to present associations between
classes

EnumAttribute – Enum/Set attributes used to store
enumeration and set values

FileDataAttribute – File attribute is used to store the
contents of the file

GeneratedAttribute – Generated attribute is used to
represent attributes that are automatically generated by
the system

GeographyAttribute – Geographic attribute is used
to represent geographic coordinates

GeometryAttribute – Geometric attribute is used to
store geometric objects

HelperClassAttribute – Helper class attribute is used
to store an instance of the helper classes to implement
computing

HyperLinkAttribute – Hyperlinked attribute whose
value is a hyperlink

ImageAttribute - Graphic attribute is used to store
images

IntAttribute – Integer attribute that is used to store
integer values

LogicalAttribute – Boolean attribute is used to store
a boolean value (0 or 1)

MetaModelClassAttribute – Metamodel class
attribute is used to save the instance of the class
definition

MoneyAttribute – Money attribute is used to store
values in the currency

ObjectAttribute – Object attribute is used to store
objects of any type

Domains on a Unified Metamodel of Object-Oriented Database Applications Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 15

StringAttribute – String attribute is used to store the
strings

SymbolAttribute – Symbol attribute is used to store
one character

TextAttribute – Text attribute is used to store the
text of unlimited length with formatting

TimeAttribute – Time attribute is used to store the
time only

TypeAttribute – Type attribute used to store the
name of the data type

Valid values for multiplicity are:

Multiplicity = {0..1, 1..1, 0..*, 1..*}

Since it is assumed bidirectional association
implemented using attributes to describe two different
ends, something can be described in a similar way
other types of multiplicity, for example, a many-to-many
(* .. *). Note that the required elements in the
expression (4) are only Name, AttributeKind, the name
and type of the attribute. The remaining components
are not required and may not be available in the
description of the attribute.

The set M allows for the behavior of instances of
classes in the form of methods, ie dynamic component
and can be represented in the form (5):

M = {(Name, mpc, Body)} (5)

where:

Name – The name of the method (valid ID);

mpc – Method parameter, mpc ! MPC;

Body – The lines of program code that implements
the method.

Each method is a procedure (function does not
return a result). When this function may have
parameters representing element of MPC.
Implemented design pattern called 'Parameter object'
when passed as the parameter instance of the class.

The set E is a set of event handlers that occur in the
life cycle of the object (instance) essentially describes a
class domain and presented in the form of (6):

E = {(Name, EventKind, Body)} (6)

where:

Name – The name of the event handler (the correct
ID);

EventKind – Type of event for which the handler is
declared;

Body – The lines of program code that implements
the event handler.

To describe the types of events used follow enum
(7):

EventKind = {AfterChangedAttributeValueEvent,
AfterDeletedEvent, AfterLoadedEvent,
AfterSavedEvent, BeforeDeletingEvent,
BeforeSavingEvent, InitializationEvent} (7)

where:

AfterChangedAttributeValueEvent - An event called
after changing the value attribute of an object

AfterDeletedEvent - The event is called after an
object is removed

AfterLoadedEvent - An event called after the object
is loaded

AfterSavedEvent - Events that trigger after saving
the object

BeforeDeletingEvent - Event is called before
deleting

BeforeSavingEvent - Event that cause the object
before saving

InitializationEvent - Event object when initialization

Set of predicates representing the validation rules to
be met by each object is represented by sets VLR,
which is described (7):

VLR = {(cr, ATTVLR)} (7)

where:

cr – Predicate that has parameters that perform
class attributes, which should correspond to instance of
an entity domain;

ATTVLR - set of attributes, which used in validation
rule.

To improve data analysis and simplify the

16 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 Pavel P. Oleynik

presentation uses a variety of visualization rules VSR,
is an unordered triples of the form (8):

VSR = {(cr, vrk, ATTvsr)} (8)

where:

cr – predicate that determines the applicability of the
visualization rules

vrk – determines the type of visualization rules

ATTvsr – a set of attributes that is subject to
visualization rule

It performs:

ATTvsr ! ATT

vrk ! " # $ VRK

where:

VRK = {HideProperty, DisableProperty,
SetFontColor, SetBackgroundColor}

where:

HideProperty – This type of rule hides attributes

DisableProperty – This type of rule is made inactive
attributes

SetFontColor – This type of rule set the color of the
font in the attribute editor

SetBackgroundColor - This type of rule sets the
background color in the attribute editor

Set of behavior controllers BHC consists of
elements each of which is a class of programming
language that implements the desired functionality.

Set of reports R is a set of reports, each of which
describes an extensible markup language XML and
contains data that is interpreted by the application.

We proceed to consider other types of classes that
represent the individual elements of the metamodel.

In (9) presents a formal description of a set of
helper classes (HC):

HC = {(ATT, bchc, PC, M, VSR, BHC, R)} (9)

where:

ATT (Attribute) – set of attributes of the domain
class;

bcdc (BaseClass) – base helper class from which
this is derived;

PC (ProgramCode) – code implementation helper
class is represented as a set of rows language C#;

M (Method) – the set of class methods that allow to
implement the behavior of instances of classes, ie
dynamic behavior;

VSR (VisualizationRule) – set of visualization rules
that management visibility and colors of individual
attributes;

BHC (BehaviorController) – set of behavior
controllers that govern the behavior of objects as well
as application user interface;

R (Report) – set of reports which allows to display
instances of a class (object) in an easy to user view
with the ability to print data.

At the same time, the following restrictions:

! umm ! UMM ! hc ! HC, ATT ≠ ! V bcdc ≠
! V PC ≠ !

! ! hc ! HC, ! bchc ! HC => hc ≠ bchc

In (10) presented a formal description of a set of
queries classes (QC):

QC = {(ATT, PC, VSR, BHC, R)} (10)

where:

ATT (Attribute) – set of attributes of the query class;

PC (ProgramCode) – code implementation of the
helper class is represented as a set of rows language
C#;

VSR (VisualizationRule) – set of visualization rules
that management visibility and colors of individual
attributes;

BHC (BehaviorController) – set of behavior
controllers that govern the behavior of objects as well
as application user interface;

R (Report) – set of reports which allows to display
instances of a class (object) in an easy to user view
with the ability to print data.

Domains on a Unified Metamodel of Object-Oriented Database Applications Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 17

At the same time, the following restrictions:

! umm ! UMM ! qc ! QC, ATT ≠ ! V PC ≠
!

In (11) presented a formal description of a set of
method parameter classes:

MPC = {(ATT, bcmpc, UM, M, VLR, VSR, BHC, R)}
 (11)

where:

ATT (Attribute) – set of attributes of the method
parameter class;

bcmpc (BaseClass)– base method parameter class
from which this is derived;

UM (UsingMethod) – set of methods that use this
class as a parameter;

M (Method) – set of class methods that allow to
implement the behavior of instances of classes, ie
dynamic component;

VLR (ValidationRule) – set of predicates
representing the validation rules to be fit by each
object;

VSR (VisualizationRule) – set of visualization rules
that management visibility, enability and color individual
attributes;

BHC (BehaviorController) – set of behavior
controllers that govern the behavior of objects as well
as application user interface;

R (Report) – set of reports which allows to display
instances of a class (object) in an easy to user view
with the ability to print data.

At the same time, the following restrictions:

! umm ! UMM ! mpc ! MPC, ATT ≠ ! V
bcmpc≠ !

! mpc ! MPC, ! bcmpc ! MPC =) mpc ≠ bcmpc

In (12) presented a formal description of a set of
enumerations classes(EC), representing the named
constants with the assigned integer values:

EC = {(Name,ek, {vali = 2i-1})} (12)

where:

i ! 0..n;

ek ! EnumKind;

EnumKind = {Enum, Set} – type of enum class,
Enum - describes the enumeration and Set - is set.

From these formulas we see that highlighted all the
key moments of the object metamodel.

5. CONCLUSION

The result of this paper was developed a formal
description of any object models that allow us to apply
the approach object-oriented design. In the future to
expand the formal apparatus with the development of
the metamodel, add a variety of options present in the
moment. For example, needs options for specification
abstract classes, as well as an option to indicate the
need to save copies of classes in the database. The
following articles intended to develop a formal
description of the constraints imposed on the described
model and thereby implement a mechanism for
validating models for application domains. You must
also complete a formal description of a large test object
model. It is supposed to perform it for the model
described in [18].

REFERENCES

[1] Periyasamy K, Alagar VS, Subramanian S. Deriving test
cases for composite operations in Object-Z specifications.
Proc. Technology of OO Languages and Systems (TOOLS
26), Santa Barbara, CA, August 1999, pp. 429-441.

[2] Shroff M, France R. Towards a Formalization of UML Class
Structures in Z, Proceedings, 21st International Computer
Software and Applications Conference (COMPSAC'97),
August 1997, Washington DC, pp. 646-651.
http://dx.doi.org/10.1109/cmpsac.1997.625087

[3] Shugang Wang. Object identity set algebra for object-
oriented database systems, 5th IEEE International
Conference on Service-Oriented Computing and Applications
(SOCA 2012), 2012, pp. 1-6.
http://dx.doi.org/10.1109/SOCA.2012.6449439

[4] Yu XM, Dillon TS. An Algebraic Theory of Object-Oriented
Systems. IEEE Transactions on Knowledge and Data
Engineering archive, Volume 6 Issue 3, June 1994, pp. 412-
419.

[5] DeLoach S, Bailor P, Hartrum T. Representing object models
as theories. Proceedings 10th Knowledge-Based Software
Engineering Conference, Nov 1995, pp. 28-35.
http://dx.doi.org/10.1109/kbse.1995.490116

[6] Scott D. DeLoach, Thomas C. Hartrum. A Theory-Based
Representation for Object-Oriented Domain Models. IEEE
Transactions on Software Engineering, Volume 26 Issue 6,
June 2000, pp. 500-517.

[7] Oleynik PP. Computer program "The Unified Environment of
Rapid Development of Corporate Information Systems
SharpArchitect RAD Studio", the certificate on the state
registration № 2013618212/ 04 september 2013. (In
Russian).

18 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 2 Pavel P. Oleynik

[8] Oleynik PP. Class Hierarchy of Object System Metamodel //
Object Systems – 2012: Proceedings of the Sixth
International Theoretical and Practical Conference. Rostov-
on-Don, Russia, 10-12 May 2012. Edited by Pavel P.
Oleynik. 37-40 pp. (In Russian),
http://objectsystems.ru/files/2012/Object_Systems_2012_Pro
ceedings.pdf

[9] Oleynik PP. Class Hierarchy for Presentation Validation
Rules of Object System // Object Systems – 2013:
Proceedings of the Seventh International Theoretical and
Practical Conference (Rostov-on-Don, 10-12 May, 2013) /
Edited by Pavel P. Oleynik. - Russia, Rostov-on-Don: SI (b)
SRSTU (NPI), 2013. 14-17pp. (In Russian),
http://objectsystems.ru/files/2013/Object_Systems_2013_Pro
ceedings.pdf

[10] Oleynik PP. Domain-driven design the database structure in
terms of metamodel of object system // Proceedings of 11th
IEEE East-West Design & Test Symposium (EWDTS'2013),
Institute of Electrical and Electronics Engineers (IEEE),
Rostov-on-Don, Russia, September 27 – 30, 2013, pp. 469-
472.

[11] Oleynik PP. The Elements of Development Environment for
Information Systems Based on Metamodel of Object System
// Business Informatics. 2013. №4 (26). – pp. 69-76. (In
Russian),
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204
(26)%202013.pdf

[12] Oleynik PP. Domain-driven design of the database structure
in terms of object system metamodel // Object Systems –
2014: Proceedings of the Eighth International Theoretical
and Practical Conference (Rostov-on-Don, 10-12 May, 2014)
/ Edited by Pavel P. Oleynik. – Russia, Rostov-onDon: SI (b)
SRSPU (NPI), 2014. - pp. 41-46. (In Russian),
http://objectsystems.ru/files/

2014/Object_Systems_2014_Proceedings.pdf
[13] Oleynik PP. Using metamodel of object system for domain-

driven design the database structure // Proceedings of 12th
IEEE East-West Design & Test Symposium (EWDTS'2014),
Kiev, Ukraine, September 26 – 29, 2014, DOI:
10.1109/EWDTS.2014.7027052
http://dx.doi.org/10.1109/EWDTS.2014.7027052

[14] Oleynik PP, Kurakov Yu I. The Concept Creation Service
Corporate Information Systems of Economic Industrial
Energy Cluster // Applied Informatics. 2014. №6. 5-23 pp. (In
Russian).

[15] Oleynik PP. To a question of need of design of hierarchy of
atomic literal types for the object system organized in
RSUBD//Information technologies and their appendices. IX
International scientific and technical conference: collection of
articles. – Penza: RIO PGSH, 2008. – pp. 201-205.

[16] Oleynik PP. The organization of hierarchy of atomic literal
types in the object system constructed on the basis of
RSUBD//Programming, 2009, № 4. – pp. 73-80.

[17] Oleynik P.P. Implementation of the Hierarchy of Atomic
Literal Types in an Object System Based of RDBMS //
Programming and Computer Software, 2009, Vol. 35, No.4,
pp. 235-240.
http://dx.doi.org/10.1134/S0361768809040070

[18] Oleynik PP. Unified Model for Testing of Tools for Object-
Oriented Application Development // Object Systems – 2014
(Winter session): Proceedings of IX International Theoretical
and Practical Conference (Rostov-on-Don, 10-12 December,
2014) / Edited by Pavel P. Oleynik. – Russia, Rostov-on-
Don: SI (b) SRSPU (NPI), 2014, 25-35 pp. (In Russian),
http://objectsystems.ru/files/2014ws/Object_Systems_2014_
Winter_session_Proceedings.pdf

Received on 22-11-2015 Accepted on 08-12-2015 Published on 30-12-2015

http://dx.doi.org/10.15379/2410-2938.2015.02.02.02

© 2015 Pavel P. Oleynik; Licensee Cosmos Scholars Publishing House.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium,
provided the work is properly cited.

