

34 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 Taylor and Marler

or “Communications” library is a general purpose code
that allows different applications to communicate over
networks, in a common or generic way. The term IPC is
specifically used to denote a less general method,
where communications are targeted between specific
types of application that share specialized and possibly
proprietary data. Inter Process also describes multiple
applications communicating rather than specifically
using networking. Two applications could share data on
the same PC for example without using traditional
networking, instead using an alternative method such
as file sharing, or sharing features of the underlying
operating system.

The idea of IPC falls under the broader topic of
networking. In 1970 the first successful distributed,
wide-area, hardware agnostic networking system was
demonstrated [2]. The system, which was called
ARPANET and was funded by the Defense Advanced
Research Projects Agency (DARPA), linked together
four nodes: the University of Santa Barbara, UCLA,
SRI International, and the University of Arizona.
ARPANET connected systems with different software
running on different hardware platforms, and facilitated
data exchange [3]. To achieve this goal a set of
detailed networking protocols were developed that
each node subscribed to. By 1972 the ARPANET
“packet” protocols were used as the base technology to
create what would become today’s Internet. The
original ARPANET protocols were expanded [4], to
include error checking, and the basic TCP/IP
(Transmission Control Protocol/Internet Protocol)
architecture was developed [5].

The common term for this kind of technology is the
Internet Protocol Suit, which is a computer networking
model consisting of a set of layered protocols. TCP/IP
describes how data is packaged, addressed,
transmitted, routed, and received at the destination.
The transport protocol layer is the most important for
the IPC library. TCP and UDP (User Datagram
Protocol) are arguably the most commonly used
transmission protocols. TCP provides reliable, ordered,
error-corrected delivery of data over an IP system of
servers. It includes rules to resend packets that get
lost, automatic resends for corrupted packets, and
ensures that packets are received in the order they are
sent. However, TCP is less efficient than some other
protocols. Alternatively, UDP is a faster protocol, but is
less reliable. It performs no error checking beyond data
checksums. It has no handshaking dialog, does not
guarantee delivery, does not guarantee ordering, and
has no mechanism for resending lost packets.

TECHNICAL BACKGROUND

Common Challenges

Even given the most appropriate protocol,
networking often faces two common challenges. With
business and internet communication models, the
current paradigm involves large amounts of data
securely sent and received, lossless data delivery (no
data lost along the way), and reliability. Efficiency and
speed are secondary concerns. These models also
follow a particular software design whereby errors are
blocking problems; the software stops requiring user
input. Using the example of a web browser, this
difficulty is an inherent feature of the design. When a
page on a server is requested, the browser waits,
continually listening for a reply from the server. If it
receives a reply, the connection is made, the page
loads, and the browser continues running. If there is an
error such as the server not responding, the browser
times out and an error page is displayed. The software
comes to a halt awaiting user input. This is also
demonstrated in other enterprise software, where the
application halts when a data transfer operation fails.
Sometimes blocking is acceptable when the application
depends on a network operation to be completed.
However, in many situations, including common uses
of DHMs, blocking can be overly restrictive. DHMs
depend on a continuous workflow including real-time
animation, analysis, and frequent non-blocking user
input. In such an environment, IPC has to work in a
non-blocking way, but data transmission must remain
reliable. An example of this non-blocking behavior
exists in networked video games. Networking in video
games however, began not with the internet, but with
local network hardware.

PC hardware is the second factor in developing high
speed networking, especially inexpensive, mass-
producible hardware. The most successful networking
hardware is called Ethernet [6]. Work began on
Ethernet technology as TCP/IP was being finalized in
1976. By the early 1980’s Ethernet was a fully viable
hardware implementation for local communication
between individual computers. In 1995 Microsoft
released Windows 95 on IBM compatible PCs which
supported Ethernet peer-to-peer LAN, (Local Area
Network) communications. This coincided with (or
spurred) a flood of cheaply produced, reliable Ethernet
cards. A year later, a game called Doom began the
networking gaming revolution still popular today [7].
There were notable examples before Doom, but Doom
was the first mass appeal LAN game. The main

Inter-Process Communication for Digital-Human Model Inter-Connectivity Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 35

problem in games and continuous, real-time
applications like Santos, is that communications have
to be fast and non-blocking. If networked games slow
down, or worst still, stop and wait for data to be
received, the game becomes unplayable. The
communications also need to be as continuous as
possible because the software runs at a high frame
rate. Thus, UDP in games is a better choice than TCP,
because it is more efficient. However, without much
delivery and ordering protection, game networking is
forced to accept unreliable delivery. This is one feature
we do not want to deal with in IPC, at least not on a
packet level. This eventually became known as a lossy
(data lost along the way) non-blocking system. In our
IPC design the non-blocking nature of Doom works
well, but not lossy UDP transfer. Our design instead
uses TCP/IP which, while slower, affords us more
reliability and security, and is lossless.

Selecting a Model

The next step in the design process is to select a
networking model. There are two major models for
communications networks: peer-to-peer and server
networks. The best example of a server network is
essentially the internet. Internet servers are distributed
geographically connected together in a haphazard
pattern called a “web”. Servers can have multiple
connections to each other (not always based on
proximity). When a user connects to a web site, the
data is routed through the server network and then
back to the user. This is called a distributed design.
Multiple connections are maintained through servers
providing many alternative routes. If a server stops
functioning, communication is rerouted in a different
way to reach the target. Reliability is a function of how
many servers a network has, and how many
connections there are between servers. The primary
disadvantage of a server based system, is that if the
first server the user connects to goes down, (usually
the user’s Internet Service Provider) the user cannot
connect to the network.

With peer-to-peer networking, computers are
connected in a haphazard network maintaining
connections with other peers. However, every peer
acts as both a host server and a simple user. This
means that as long as a computer is connected to at
least one peer, it can always access the network.
Under the internet model, it would be similar to a
customer having multiple ISPs for the same price. If
one ISP goes down the customer can still connect

through one of the others. The disadvantage is that the
peers in this network are not efficient, dedicated
servers; they are simply desktop computers running the
same networking application. This limits the type of
content and the amount of data the network can carry.
Running a large file service through a peer-to-peer
network for example is inefficient. However, using a
peer-to-peer model on a DHM network, which is a
relatively small scale application, frees us from
unnecessary overhead in terms of complex server
software and difficult network management.

Current Protocols

There are many currently available solutions
(protocols for packets) that handle different kinds of
communication problems. However, none fill our
specific design requirements. Most modern designs
have similar features. One typical solution is ATP (A
Transport Protocol) [8]. This assumes that large
amounts of data will be sent and received across the
communication software, and that the way to optimize
transmission speed is to optimize data congestion.
When sending large volumes of data, a
communications system can quickly become bogged
down (both in hardware and software), as buffers fill up
and the system waits for older data to be cleared out.
This protocol optimizes transmission and receivership
of data to minimize data collision and congestion.

Another common approach is to use the UDP
protocol, but as previously mentioned, UDP has some
reliability issues. The challenge is to retain the reliability
of TCP but keep communications speed fast. An
example of this is the UDT (UDP Data Transport)
protocol [9]. This model contains many of the usual
features in modern network design; namely features to
speed up communications. The focus again is on
transmitting large volumes of streaming data, which
requires memory efficiency, congestion control, rate
control, and future traffic prediction. The library appears
to be faster than using TCP alone, which is a noted
achievement, but it still contains some inherent
disadvantages of UDP. The authors note that they
have not accounted for all of the disadvantages of UDP
and merely assert that they have not seen any
problems in those areas. Nonetheless, this is a critical
design flaw. Santos is commercial and applied
experimental platform. It is important that under real
world stress, the proposed communications hold up.
Efficiency is a concern, but not enough to risk using
UDP.

36 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 Taylor and Marler

Additional methods tend to be variations of the
same themes: how to send large amounts of streaming
data while avoiding traffic congestion, packet loss, or
memory loss on the local PC.

METHOD

We considered this problem from a new
perspective. We approach system integration and
communication from a DHM perspective. What do we
need to communicate over a network? How often does
this communication occur? How much data is involved?
How dependent is the software on absolutely receiving
that data? Starting with these considerations, we
designed the IPC library not from the communications
aspect of sending large volumes of data as quickly as
possible, but from the software requirements of a DHM
application like Santos.

This distinction is perhaps the most important
feature of our design. Designing a generic communica-
tions engine that functions in all cases is not
necessarily the goal. It is not possible to craft a one-
size-fits-all solution. Given this overarching approach,
the proposed design has the following features:

A Peer-to-Peer Model: Lightweight, easier to
manage, lighter in infrastructure and code, and more
efficient for smaller amounts of data than more
complex server-to-peer based systems.

Use of the TCP/IP Protocol: Although there are
faster protocols available such as UDP, TCP/IP
provides necessary security including data corruption
protection, automatic resends of missed or corrupted
data packets, and ensures that all packets are received
in order (something not guaranteed with other
protocols).

A Non-Blocking Model: The IPC library and the
application using the library must not disturb or
interrupt a continuous operation. In this respect, we
look to the lessons learned in the games industry
regarding packing data, how processes are constructed
in the code to avoid delays, and splitting up and
prioritizing data to eliminate blocking situations.

Graceful Error Failure: In tandem with non-blocking
operation, communication operations that fail must also
be non-blocking. The software must handle failures in a
manner that does not require user input, or halt
execution of the program.

Dependent or “Staged” Operations: We
acknowledge that sometimes blocking operations are

necessary in multi-stage, peer dependent operations.
This is especially prevalent when performing any kind
of shared static analysis with a DHM. An analysis might
involve processing some state of an avatar, sending it
to a peer for further processing, and waiting for those
results to come back before more work can be done.
Most DHMs have some processes such as these that
can take hours to process. There must therefore be a
method to support a blocking form of staged execution,
but not to the detriment of continuous operation.

Support Multiple Connection Mediums: As
previously mentioned, the goal of IPC is to connect
multiple applications together, not necessarily to
network them using any specific method. The library
should be designed in such a way that different
mediums that connect applications together can be
added, removed, and revised over time. To support this
goal we engineered the library supporting two very
different communication methods: Internet networking,
and local file I/O.

Ease of Implementation in DHM Software: DHM
software comes with its own set of difficulties and
specialized programming disciplines. Many
programmers in this field may not be comfortable with
third party networking libraries, or simply do not have
time to research this topic. The library therefore must
be easy to implement by a programmer, employ a
simple interface, and provide a comprehensive SDK
(Software Development Kit). The SDK must include
example source code and documentation detailing the
implementation and functionality of the library.

Architecture Overview: In this section the method of
implementation is discussed. This includes the
architectural fundamentals of the software, and
operating system features that will be leveraged.

Two layers of software are required in order do
achieve our plan: a low level layer that controls the
specifics of connecting, sending, and receiving data,
and a higher level that works in cooperation with the
Santos application (or third party application) to provide
synchronous and asynchronous operation. The lower
level, (which has been referred to as the IPC Library
thus far), can in effect work largely independently
acting as a service to the larger application. It does not
have to contain any formal specifications of the type
data transmitted. The higher level layer however, must
have some knowledge of the type of data being
transmitted/received, or at least understand how the
process using the data will be handling the response.

Inter-Process Communication for Digital-Human Model Inter-Connectivity Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 37

Basic System and File Handling: The IPC library will
provide communications support to an application,
allowing it to send and request data from other
applications. In this respect the code is not dependent
on the DHM architecture and will be built as a re-usable
and generic code. This will allow a third party
application to include the library as simply as possible.
The library only supports basic communica-
tion, designed to hide from the user the complexities of
sending and receiving data. What the client program
does with the library, and the type of data sent and
received is entirely up to the developer.

The library will also present a common, simple,
generic interface that supports communication using
any number of methods internally. This allows us to
expand the library in the future to include newer or
faster communication methods without breaking the
programs already using the library.

Windows Socket Layer and Integration: The main
target for communication within the library is Windows
Sockets. This is a standard library built into the
Windows operating system, which allows data to be
sent/received through the Internet, or across an internal
LAN based network. Windows Sockets use standard
Internet (IP) protocols to communicate just like a web-
browser. These methods are highly reliable, well
tested, and have been available since 1982. Windows
Sockets applications however are often difficult to
architect and require significant testing under various
conditions, and this could hinder development for all
clients waiting to use the library. To mitigate this risk a
file handling strategy is implemented first.

File handling uses basic IO files on a local or
network disk to share data between clients of the
library. This method of communication is slow, but
much easier, quicker, and less bug-prone to implement
than full Sockets development. By implementing this
method first, even though it is slower than Windows
Sockets, clients receive an early version of the library
that supports the major features for communications.

Low Level Software Architecture

In this and the proceeding section, the software
architecture is discussed. The software is split into two
sections. The lower level is agnostic regarding higher
purpose. It simply supplies the base system for
physical communication. The higher level system
specifically provides the DHM networking solution and
is dependent on the library.

The lower level software performs the physical task
of connecting, disconnecting, and sending/receiving
data. This layer is developed as a standalone library of
code. In this case standalone means that the codedoes
not rely on any of the Santos SDK (Software
Development Kit) or API (Advanced Programming
Interface). Also, to make the library as flexible as
possible, it iswritten in the widest available language in
use today, C++. As Santos is written under the
Microsoft Windows operating system, the library is
written in Visual Studio (2010), using the standard
Windows libraries (no MFC). The TCP/IP
communication is facilitated through the standard
WinSOCK implementation (version 2.1 and above).
Although the library is .NET compliant, it is not .NET
dependent and is compiled into a standard static .LIB,
as well as a windows dynamic .DLL file. It does not
contain any managed C++.

Santos uses a mixture of C# and C++, the major
portion being C# under .NET 4.0 (at the time of writing).
Thus, a C# file is included in the SDK for the library,
which provides a marshalled C style functional
interface. In this way the library can be used in both
C++ and C# projects. Due to marshalling and copying
of unmanaged memory to managed memory, using the
library in C# is less memory efficient. Execution time is
also effected, as there is a transition penalty across the
managed/unmanaged execution boundary.

There are three main objects that comprise the
system. These are the Gateway, IConnection and
IDriver classes. These classes are described in this
section to illustrate the architecture of the IPC library,
and how the problem of future expansion, and multiple
communication mediums are solved.

Perhaps the most important class is the I
Connection class (Figure 2). This base semi-abstract
class describes a named connection associated with
an abstract parameters class. It supports a standard
interface to manage a generic communication medium.
The generic interface provides methods to initialize (or
open) the system, connect to peers, send and/or
receive data, disconnect from peers at some future
time, and finally close the system and release any
resources.

Both incoming and outgoing connection types are
derived from this class. Connections have a threading
mechanism for any potential blocking operations. The
deriving class implements the virtual Thread Update

38 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 Taylor and Marler

method to take advantage of this feature. A system-
wide MUTEX controls thread prioritization, thread
handles, and calls to individual Thread Proc methods
when connection classes are initialized.

Figure 2: The major virtual and static methods in the
IConnection class.

Each connection also contains one or more IDriver
classes (Figure 3). The driver class encapsulates the
low-level (possibly hardware level) specifics of a
particular communication method. This gives maximum
configuration flexibility in the C++ code. A reusable
drive that communicates in a specific medium, can be
coupled with a connection class that sends/receives
data in a specialized way. The connection could
support a specialized protocol, buffering mechanism,
compression algorithm, data check summing, or
encryption/security encoding. However, none of these
mechanisms change the basic communications code in
the driver class.

Figure 3: Virtual methods in the IDriver class.

The third major class in the library is a singleton
called the Gateway class (Figure 4). Any C++ code

using the library, as well as the C# interface use this
class for access to all aspects of the system.

Figure 4: The singleton Gateway class.

Connection and driver classes use a small abstract
data class called IParams. This class provides only one
virtual method by default, to return the Local flag. A
local connection is the current PCs connection. The
IParams class is different for every type of connection.
It contains the specific parameters required to start a
connection of a required type. For a TCP/IP connection
for example, a derived IParams class will include an IP
address and port number. The parameters contained in
IParams can be pertinent to the gateway, the
connection, and the driver class. As IParams is non-
instanced, any change to one of its members, changes
that value for all referencing classes.

The gateway operates with named connections.
Once a connection has been added to the gateway
with its specific parameters, it is referenced by name
from that point on wards. This makes operation easier
for the third party programmer, and it makes C#
interfacing possible as unmanaged pointers cannot be
shared with managed C#.

As each peer is added to the gateway, an
IConnection classe is created bound to the correct
IDriver class according to the IParams used. In this
way peers can be added that communicate through
multiple mediums (as supported by the library).

The local machine must also act as a server
listening for incoming connections and performing

Inter-Process Communication for Digital-Human Model Inter-Connectivity Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 39

handshaking and initialization operations for each of
the registered peers. The local server operations also
include monitoring each connection and making sure
peers are still connected, have not timed out,and have
not reported an error. These operations are also
addressed with the same generic architecture. Server
“listener” connections are written using the IConnection
class. Each communication method employs an IDriver
to perform the specific listening and maintenance
operations. As peers are added, the Gateway class
ensures that there is at least one server class for each
connection type used by peers. These connections are
invisible to the caller and are managed internally. If all
peers use the same communications method (TCP/IP
for example), then only two local connection classes
are required: a peer connection to send/receive data,
and a server connection to listen and error correct
TCP/IP connections.

The architecture has a unique feature: peers can
connect through different communication mediums,
and as long as each peer can maintain a server
connection with a minimum of one other peer across
another medium, network integrity can be maintained.
This is true because the library supports two
communication methods, TCP/IP and File IO.

High Level Software Architecture

The higher level system resides in the third party
application, or the Santos software. It uses the lower
level library to perform all communication operations.
The higher level software processes incoming and
outgoing data with full relevance to the DHM software
concerned. This layer provides non-blocking and
“staged” blocking execution features. It should also be
noted that the higher level requires some form of GUI
support. The GUI allows peers to be added/removed
and to enter peer parameters (names, IP addresses,
etc.). In Santos, there is also a chat GUI using the built
in chat system. Santos also provides a third party
plugin system with support for various types of C#
plugins. For the IPC SDK, a new IPC plugin has been
released which supports an interface to the high level
system.

The system updates itself in a threading mechanism
at 12.5Hz (eight times a second). During this update
period the low level library is checked for waiting
incoming data. Outgoing data sent through the system
is buffered and waits for the next update period. Both
incoming and outgoing data packets are processed
through a sub-system called the command

executer.The executer system also handles some
lower priority features once per second, such as
handling chat packets. These are text packets that are
relayed through a simple GUI window in Santos that
looks like any contemporary chat program.This feature
allows peers to chat to each other across the
communication medium.

Each packet sent or received has a 32-bit command
code. This is used by the system to look up a delegate
method in the executer sub-system. Each command
actually has two delegates, one for incoming packets,
and one for outgoing packets. Each command is
registered at start-up with a text name, a command
code, and an incoming delegate method and outgoing
delegate method. Commands can be added
dynamically to the system, ideally from a third party
plugin that adds support for a third party application
that uses specific codes. The programmer of the
supplied delegates writes the code to pack and unpack
the data and any processing required thereafter in the
two delegates. The system then publically provides a
set of overloaded Send methods. The most common
usage of the Send method is with parameters for the
name of the peer to receive the packet, the command
code, and any parameters, (for example an array), cast
as a C# object. The send delegate decodes the
parameters in order to prepare the data.

Incoming packets are processed in much the same
way as outgoing packets, although no programmer
input is required. The system update automatically puts
incoming packets through the command executer. The
read delegate is called for the packet’s command
number, and data is read and processed by the
programming in the delegate.

A third mechanism is employed to trigger a
command in a peer. This is called a request packet.
Request packets literally request a peer to run a
command and send back the results. This type of
packet has a header and may contain parameters in
the data section. The system provides a Send Request
method that works like the Send method. The
parameters however are packed into the data portion of
the packet, and a communication flag is set to mark the
packet as a request packet. When request packets are
received, parameters in the data section are decoded
and sent through the same interface as if the Send
method had been called directly. This automatically
triggers the system to reply with the correct data,
without any other work on the programmer’s behalf.

40 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 Taylor and Marler

This process does not wait for replies, or send data
and wait for conformation. The exchange of data takes
place automatically and meets several of our design
goals; asynchronous communication, non-blocking
execution, and graceful failure handling.

Blocking “staged” or dependent operations are also
possible. Each packet is numbered with a GUID (not to
be confused with a Windows GUID). A unique number
on the local PC calculated by 32-bit CRC and
guaranteed to be unique; the GUID remains
unchanged for the lifetime of the packet. The IPC
system allows an event delegate to be registered with a
packet when it is sent. When an incoming packet is
found with that registered GUID the associated event
will be triggered. A time-out can also be added at send
time; when the time-out occurs the same delegate will
be called with an error status. After the event, the
system automatically unregisters the GUID and
delegate.

Packet Protocol

All communication methods supported by the IPC
library send and receive data in variable size
proprietary packets. Each packet is prefixed with a
small header (Figure 5) used internally by the high and
low level systems.

The peer name field for outgoing packets is set to
the name of the peer that should receive the data. For
incoming packets the peer name will be the local
connection name.

The communication flags specify important status
about the packet, such as error status,
acknowledgement, command request and client is
busy.

The GUID is generated by 32-bit CRC and exists for
the packets lifetime, no matter how many peers handle
the packet.

RESULTS AND DISCUSSION

In order to provide objective results for the proposed
system, a testing scenario was designed that measures
the operating time specifically for the IPC Library (the
low level component). Timing of the high level
component is less important, as the high level system
design is variable. One implementation for a high level
design has been presented here for DHM software;

however, the low level library is agnostic in terms of
higher level purpose. At the end of this section results
are presented for the additional time required to cross
the execution boundary from C++ to C#, as this is
significant and does not depend on how the library is
implemented.

The scenario used is called a “ping pong” test. A
packet with a specified amount of random data is sent
through the library to a specified peer, time-stamped
using the Windows high resolution timer. When the
packet is sent back from the peer, the timer is used
again with the packet’s time-stamp to calculate the total
“round-trip” time. The time includes the transmission
time through the medium to the destination peer and
back, any operating system overhead to send and
receive, and the full execution overhead for the IPC
library itself, from a packets first inception into the
library and back out.

Figure 5: The IPC packet protocol.

Inter-Process Communication for Digital-Human Model Inter-Connectivity Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 41

The operating systems used for testing are
Windows 7.1 64-bit. The testing software and the IPC
Library are complied with Visual Studio 2010 and are
32-bit. All machines used in testing are Intel® i7-2600
at 3.40GHz with 8 GB of ram. Initial results are shown
in Figures 6 through 7.

The results for file I/O test 1 (Figure 6) are as
expected. This test uses the local PC’s hard-drive for
the shared files needed for communication. The
overhead here is the operating system itself, opening,
closing, reading, and writing to physical files. The times
are uniform and unremarkable. These times would be
effected if other running programs were performing disk
operations, which again is as expected.

The results for file I/O test 2 (Figure 7), however,
are somewhat unexpected. This test uses a networked
Intranet drive for shared files. This setup requires the
usual overhead for the operating system to handle files,
but also requires network communication through
Ethernet, as well as file handling again through a
security conscious server that houses the hard drive.

This test was expected to yield longer transmission
times, and although this setup is slower, the change is
not significant (on average < 0.03 seconds). The
discrepancy was found to be Windows 7.1 networking
optimization. Windows 7 now offloads much of the
usual work of file I/O directly to the server. That means
an entire stage of processing is missing from the local
machine. The additional time therefore is the
transmission time of the data over Gigabit Ethernet.

Also surprising is the TCP/IP test (Figure 8). On
cursory examination times appeared faster than File
I/O, which was expected. In fact most times were half
that of either file I/O tests. However, periodic spikes
appeared randomly throughout the testing period. After
adjusting our test results for external network traffic
overhead (incoming and outgoing) on the local
machine, the results then look largely the same. The
spikes however, do correspond highly with the local
network load as reported by load tools run on a
secondary PC during the testing period. Our tests were
designed to remove local network congestion. We also
corrected for local traffic not originating from out testing

Figure 6: File I/O times over 10 packets, both peers on same PC, average over 100 packets = 0.2067 seconds, packet size =
32 KB, local hard drive used as shared path for communication.

Figure 7: File I/O times over 10 packets, both peers on same PC, average over 100 packets = 0.2201 seconds, packet size =
32 KB, networked drive over intranet used as shared path for communication.

42 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 Taylor and Marler

software. However, we did not account for general
network load beyond our control. Once accounted for,
the spikes disappeared, and the average time over 100
iterations fell to 0.1792 seconds. This represents a
13% speed increase over the fastest file I/O tests.

As previously mentioned, there is a penalty for
using the library in a C# program. Any data generated
in unmanaged memory, such as that used by C++,
must be copied into managed memory for C# through a
process called marshaling. Also marshaled are
parameters and structures, individual structure
members, and any native pointers returned from C++.
This process is memory inefficient and takes time. This
final test is performed at the point a ping pong
message is sent through C# to the C++ library, plus the
time for the return message to be marshaled back from
C++. The average time for 100 iterations is 0.086
seconds. The results are uneven, which reflects the
automatic memory management in C#. Sometimes
when large blocks of memory are marshaled, the C#
garbage collector must make space and use some time
to compress the garbage heap. Averaged over all
communication methods, the penalty for using the

library with a C# program is approximately 37%. This is
a lower overhead than typically seen in C# applications
using a significant portion of unmanaged code.

To attain this low latency, the C# interface has been
highly optimized. Wherever possible, automatic
marshaling is forgone. Manually returning structs
containing IntPtr types is more desirable. The IntPtr
types are then used as real pointers in unsafe blocks to
resolve marshaling manually. No built in marshaling
methods are used such as Marshal.Copy… or
Marshal.Read…, or library classes such as
BitConverter or Buffer. Manually using unsafe pointer
logic is faster if blocks are aligned on 32-bit boundaries
and are sized in multiples of 32-bits, regardless of their
actual content size in bytes. Pointers are then cast to
unsigned integers and copied 32-bits at a time.

CONCLUSIONS

In summary, this paper has presented a new
architecture for peer-to-peer inter-process
communication especially tailored to use with digital
human models. Although IPC capabilities are not

Figure 8: TCP/IP times over 10 packets, peers on different PCs over local Intranet, average over 100 packets = 0.2234
seconds, packet size = 32 KB, transmitted by standard WinSock TCP/IP.

Figure 9: C# marshaling overhead for 10 packets.

Inter-Process Communication for Digital-Human Model Inter-Connectivity Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 43

necessarily novel and applications are increasing, use
for integrating complex multi-scale modeling and
concurrent design is minimal, and practical use within
the DHM community is yet to be exploited. The
proposed system uses a TCP/IP protocol for necessary
security and for ensuring all data packets are received
in order. In general, the system has been designed to
facilitate an uninterrupted workflow, which is critical for
applications that involve concurrent team-oriented
analysis and design. In addition, this new system
supports multiple connection mediums and facilitates
variations in the number of users. The common issues
of blocking and potential lost data have been
addressed successfully. Test cases were successfully
run to ensure appropriate computational speed.

Implications of the proposed work warrant
discussion regarding the fields of digital human
modeling and inter-process communication as well.
Clearly, the proposed system provides a platform for
building a more comprehensive digital human model.
However, this mode of development, whereby various
teams located in different places contribute individual
but potentially interconnected models, is a target of
growing significance for many industries. Thus, this
work is a significant step towards truly concurrent
engineering and development. Along with the growing
prevalence of dig data, we anticipate a growth in
modeling-and-simulation tools, and just as data must
be traversed and coordinated, various related models
must be interconnected (regardless of the application
or field) in order to maximize effectiveness.

One of the major achievements of the project is
continuous, non-blocking operation. This has been a
difficult process to understand, particularly when
analyzing a user’s work-flow (how they typically use
DHM software). The insights gained here are
invaluable and have encouraged us to continue
collecting this information in the future. We have in
effect, designed a networking solution partly based
around how one uses DHM software, and the
requirements of DHM software in general. This is a
unique application of networking design principles.
Most network design looks solely at sending and
receiving data regardless of the application performing
the networking, or the people using that software.

Approaching the problem as Inter Process
Communications rather than straight Networking set
the design goals. The term IPC leads to a very specific
set of goals and thus final product. IPC means
communications between applications, not

communications between machines, or networking
between machines. In the latter mind-set, committing to
one specific communications medium such as TCP/IP
is not possible. From the outset of the project the code
was structured to support multiple communication
methods, and to have peers using different methods
talk to each other. The current solution supports two
diverse methods, in fact completely dissimilar
mechanisms. This makes it possible for us to plan and
implement new communications medium in the future.
This is a rare feature in current communications
design, and the proposed architecture reflects the lack
of applicable resources in this area.

With respect to potential future work, the IPC library
is currently designed as a 32-bit program for maximum
implementation flexibility. A 64-bit version is planned.
Both the C++ and C# interface can be optimized
specifically for 64-bit, including 64-bit copying and
marshaling of data blocks. Applications written in 64-bit
can also use double the amount of memory (8GB
instead of 4GB). Currently, the maximum contiguous
packet size that can be sent through the library is 2GB.
In a 64-bit version this limit can be doubled. There are
no implications involving peers using a mix of 32-bit
and 64-bit versions of the library; the transmitted data
remains the same.

Also as future work, a WebSockets system will be
added. This system works like TCP/IP, in that it is an
Internet protocol, but it suffers none of the
disadvantages of TCP/IP. It does however, present
new problems of its own. TCP/IP requires the peer to
have an external IP address and port number to
connect to outside peers in external locations. This
usually requires an IT technician or network
administrator’s input, and is often frowned upon for
security reasons. It is then necessary to email or
otherwise convey your IP and port number to the other
peers you wish to connect to, and in return get their
details back. WebSockets solves these problems by
communicating through port 1080, the way a web
browser does. The communication system resides on a
website that is setup by one of the peers. Peers
connect to the site and in return to each other.
Connection through the web is almost always open and
public in every organization; if it were not, there would
be no Internet access, and no email. Also, no IP
addresses or port numbers are required. The
disadvantage, however, is that a client must provide
and maintain a private web server that has the
WebSockets software installed and running at all times.

44 Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 Taylor and Marler

This could be a considerable resource to manage for a
smaller group.

Many communication libraries include traffic and
congestion analysis, and investigating such a system is
planned future work. Traffic analysis predicts peers
data transmission habits based on their history.
Transmission to those peers may delay in order to
lesson congestion and thus keep the network running
at a constant, albeit slower speed. Congestion analysis
is sometimes predictive and in other implementations
reactive. This form of network control looks at line
quality, or how fast each peer connection is. The result
is largely the same as traffic prediction. These
mechanisms have been purposely ignored in the initial
design. They are used almost exclusively for Intranet
and Internet traffic over TCP/IP. An ultimate goal is to
support multiple communication mediums and
therefore support traffic or congestion prediction that
works universally. As a single method for TCP/IP
presents considerable work on its own, this
development has been left as a future work.

ACKNOWLEDGEMENTS

This work is funded by the Office of Naval
Research, under program N00014-13-C-0161, “High
Fidelity Digital Human Models for Protective Equipment
Design.” The authors would like to thank Mr. Stefan
Rublowsky and Mr. Dan O’Donnell, of Crye Associates,
for their feedback regarding system use.

REFERENCES

[1] Abdel-Malek K, Arora J, Yang J, Marler T. Digital Warfighter
Modeling for Military Applications, in Handbook of Military
Industrial Engineering, London, England, Taylor and Francis
Press, 2008.

[2] Heart FE, Kahn RE, Ornstein SM, Crowther WR, Walden DC.
The Interface Message Processor for the ARPA Computer
Network. 1970; p. 551-597.

[3] Kahn RE. Resource-Sharing Computer Communication
Networks, in Processing of the IEEE. 1972; vol. 60, no. 11.

[4] Kahn RE. Communications Principles for Operating Systems,
Internal BBN memorandum. 1972.

[5] Kleinrock L. Queueing Systems, in Vol II, Computer
Applications, New York, John Wiley and Sons. 1976.

[6] Metcalfe MR, Boggs RD. Ethernet: Distributed Packet-
Switching For Local Computer Networks, Communications of
the ACM, p. Volume 26 Issue 1, 1983.

[7] Grossman L. The Age of Doom, Time Magazine, 2 August
2004.

[8] Sundaresan K, Anantharaman V, Hsieh H, Sivakumar R.
ATP: A Reliable Transport Protocol for Ad-hoc Networks, in
The ACM International Symposium, Hangzhou, China, 2003.

[9] Gu Y, Hong X, Grossman RL. Experiences in Design and
Implementation of a High Performance Transport Protocol,
Chicago, IL: Laboratory for Advanced Computing, University
of Illinois at Chicago, 2013.

[10] Marler T, Capdevila N, Kersten J, Taylor A, Wanger S, Xie
W, et al. “Task-Based Survivability Analysis: an Overview of
Capabilities,” 3rd International Digital Human Modeling
Symposium, May, Tokyo, Japan 2014.

[11] Marler T, Sultan S. “Multi-scale Human Modeling for Injury
Prevention,” 2nd International Conference on Applied Digital
Human Modeling, July, San Francisco, CA 2012.

[12] Sultan S, Marler T. “Multi-Scale Predictive Human Model for
Preventing Injuries in the Ankle and Knee,” 4rd International
Conference on Applied Digital Human Modeling, July, Las
Vegas, Nevada 2015.

Received on 30-06-2015 Accepted on 10-07-2015 Published on 18-08-2015

http://dx.doi.org/10.15379/2410-2938.2015.02.01.05

© 2015 Taylor and Marler; Licensee Cosmos Scholars Publishing House.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium,
provided the work is properly cited.

