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or “Communications” library is a general purpose code 
that allows different applications to communicate over 
networks, in a common or generic way. The term IPC is 
specifically used to denote a less general method, 
where communications are targeted between specific 
types of application that share specialized and possibly 
proprietary data. Inter Process also describes multiple 
applications communicating rather than specifically 
using networking. Two applications could share data on 
the same PC for example without using traditional 
networking, instead using an alternative method such 
as file sharing, or sharing features of the underlying 
operating system. 

The idea of IPC falls under the broader topic of 
networking. In 1970 the first successful distributed, 
wide-area, hardware agnostic networking system was 
demonstrated [2]. The system, which was called 
ARPANET and was funded by the Defense Advanced 
Research Projects Agency (DARPA), linked together 
four nodes: the University of Santa Barbara, UCLA, 
SRI International, and the University of Arizona. 
ARPANET connected systems with different software 
running on different hardware platforms, and facilitated 
data exchange [3]. To achieve this goal a set of 
detailed networking protocols were developed that 
each node subscribed to. By 1972 the ARPANET 
“packet” protocols were used as the base technology to 
create what would become today’s Internet. The 
original ARPANET protocols were expanded [4], to 
include error checking, and the basic TCP/IP 
(Transmission Control Protocol/Internet Protocol) 
architecture was developed [5]. 

The common term for this kind of technology is the 
Internet Protocol Suit, which is a computer networking 
model consisting of a set of layered protocols. TCP/IP 
describes how data is packaged, addressed, 
transmitted, routed, and received at the destination. 
The transport protocol layer is the most important for 
the IPC library. TCP and UDP (User Datagram 
Protocol) are arguably the most commonly used 
transmission protocols. TCP provides reliable, ordered, 
error-corrected delivery of data over an IP system of 
servers. It includes rules to resend packets that get 
lost, automatic resends for corrupted packets, and 
ensures that packets are received in the order they are 
sent. However, TCP is less efficient than some other 
protocols. Alternatively, UDP is a faster protocol, but is 
less reliable. It performs no error checking beyond data 
checksums. It has no handshaking dialog, does not 
guarantee delivery, does not guarantee ordering, and 
has no mechanism for resending lost packets. 

TECHNICAL BACKGROUND 

Common Challenges 

Even given the most appropriate protocol, 
networking often faces two common challenges. With 
business and internet communication models, the 
current paradigm involves large amounts of data 
securely sent and received, lossless data delivery (no 
data lost along the way), and reliability. Efficiency and 
speed are secondary concerns. These models also 
follow a particular software design whereby errors are 
blocking problems; the software stops requiring user 
input. Using the example of a web browser, this 
difficulty is an inherent feature of the design. When a 
page on a server is requested, the browser waits, 
continually listening for a reply from the server. If it 
receives a reply, the connection is made, the page 
loads, and the browser continues running. If there is an 
error such as the server not responding, the browser 
times out and an error page is displayed. The software 
comes to a halt awaiting user input. This is also 
demonstrated in other enterprise software, where the 
application halts when a data transfer operation fails. 
Sometimes blocking is acceptable when the application 
depends on a network operation to be completed. 
However, in many situations, including common uses 
of DHMs, blocking can be overly restrictive. DHMs 
depend on a continuous workflow including real-time 
animation, analysis, and frequent non-blocking user 
input. In such an environment, IPC has to work in a 
non-blocking way, but data transmission must remain 
reliable. An example of this non-blocking behavior 
exists in networked video games. Networking in video 
games however, began not with the internet, but with 
local network hardware. 

PC hardware is the second factor in developing high 
speed networking, especially inexpensive, mass-
producible hardware. The most successful networking 
hardware is called Ethernet [6]. Work began on 
Ethernet technology as TCP/IP was being finalized in 
1976. By the early 1980’s Ethernet was a fully viable 
hardware implementation for local communication 
between individual computers. In 1995 Microsoft 
released Windows 95 on IBM compatible PCs which 
supported Ethernet peer-to-peer LAN, (Local Area 
Network) communications. This coincided with (or 
spurred) a flood of cheaply produced, reliable Ethernet 
cards. A year later, a game called Doom began the 
networking gaming revolution still popular today [7]. 
There were notable examples before Doom, but Doom 
was the first mass appeal LAN game. The main 
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problem in games and continuous, real-time 
applications like Santos, is that communications have 
to be fast and non-blocking. If networked games slow 
down, or worst still, stop and wait for data to be 
received, the game becomes unplayable. The 
communications also need to be as continuous as 
possible because the software runs at a high frame 
rate. Thus, UDP in games is a better choice than TCP, 
because it is more efficient. However, without much 
delivery and ordering protection, game networking is 
forced to accept unreliable delivery. This is one feature 
we do not want to deal with in IPC, at least not on a 
packet level. This eventually became known as a lossy 
(data lost along the way) non-blocking system. In our 
IPC design the non-blocking nature of Doom works 
well, but not lossy UDP transfer. Our design instead 
uses TCP/IP which, while slower, affords us more 
reliability and security, and is lossless. 

Selecting a Model 

The next step in the design process is to select a 
networking model. There are two major models for 
communications networks: peer-to-peer and server 
networks. The best example of a server network is 
essentially the internet. Internet servers are distributed 
geographically connected together in a haphazard 
pattern called a “web”. Servers can have multiple 
connections to each other (not always based on 
proximity). When a user connects to a web site, the 
data is routed through the server network and then 
back to the user. This is called a distributed design. 
Multiple connections are maintained through servers 
providing many alternative routes. If a server stops 
functioning, communication is rerouted in a different 
way to reach the target. Reliability is a function of how 
many servers a network has, and how many 
connections there are between servers. The primary 
disadvantage of a server based system, is that if the 
first server the user connects to goes down, (usually 
the user’s Internet Service Provider) the user cannot 
connect to the network. 

With peer-to-peer networking, computers are 
connected in a haphazard network maintaining 
connections with other peers. However, every peer 
acts as both a host server and a simple user. This 
means that as long as a computer is connected to at 
least one peer, it can always access the network. 
Under the internet model, it would be similar to a 
customer having multiple ISPs for the same price. If 
one ISP goes down the customer can still connect 

through one of the others. The disadvantage is that the 
peers in this network are not efficient, dedicated 
servers; they are simply desktop computers running the 
same networking application. This limits the type of 
content and the amount of data the network can carry. 
Running a large file service through a peer-to-peer 
network for example is inefficient. However, using a 
peer-to-peer model on a DHM network, which is a 
relatively small scale application, frees us from 
unnecessary overhead in terms of complex server 
software and difficult network management. 

Current Protocols 

There are many currently available solutions 
(protocols for packets) that handle different kinds of 
communication problems. However, none fill our 
specific design requirements. Most modern designs 
have similar features. One typical solution is ATP (A 
Transport Protocol) [8]. This assumes that large 
amounts of data will be sent and received across the 
communication software, and that the way to optimize 
transmission speed is to optimize data congestion. 
When sending large volumes of data, a 
communications system can quickly become bogged 
down (both in hardware and software), as buffers fill up 
and the system waits for older data to be cleared out. 
This protocol optimizes transmission and receivership 
of data to minimize data collision and congestion. 

Another common approach is to use the UDP 
protocol, but as previously mentioned, UDP has some 
reliability issues. The challenge is to retain the reliability 
of TCP but keep communications speed fast. An 
example of this is the UDT (UDP Data Transport) 
protocol [9]. This model contains many of the usual 
features in modern network design; namely features to 
speed up communications. The focus again is on 
transmitting large volumes of streaming data, which 
requires memory efficiency, congestion control, rate 
control, and future traffic prediction. The library appears 
to be faster than using TCP alone, which is a noted 
achievement, but it still contains some inherent 
disadvantages of UDP. The authors note that they 
have not accounted for all of the disadvantages of UDP 
and merely assert that they have not seen any 
problems in those areas. Nonetheless, this is a critical 
design flaw. Santos is commercial and applied 
experimental platform. It is important that under real 
world stress, the proposed communications hold up. 
Efficiency is a concern, but not enough to risk using 
UDP. 
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Additional methods tend to be variations of the 
same themes: how to send large amounts of streaming 
data while avoiding traffic congestion, packet loss, or 
memory loss on the local PC. 

METHOD 

We considered this problem from a new 
perspective. We approach system integration and 
communication from a DHM perspective. What do we 
need to communicate over a network? How often does 
this communication occur? How much data is involved? 
How dependent is the software on absolutely receiving 
that data? Starting with these considerations, we 
designed the IPC library not from the communications 
aspect of sending large volumes of data as quickly as 
possible, but from the software requirements of a DHM 
application like Santos. 

This distinction is perhaps the most important 
feature of our design. Designing a generic communica- 
tions engine that functions in all cases is not 
necessarily the goal. It is not possible to craft a one-
size-fits-all solution. Given this overarching approach, 
the proposed design has the following features: 

A Peer-to-Peer Model: Lightweight, easier to 
manage, lighter in infrastructure and code, and more 
efficient for smaller amounts of data than more 
complex server-to-peer based systems. 

Use of the TCP/IP Protocol:  Although there are 
faster protocols available such as UDP, TCP/IP 
provides necessary security including data corruption 
protection, automatic resends of missed or corrupted 
data packets, and ensures that all packets are received 
in order (something not guaranteed with other 
protocols). 

A Non-Blocking Model: The IPC library and the 
application using the library must not disturb or 
interrupt a continuous operation. In this respect, we 
look to the lessons learned in the games industry 
regarding packing data, how processes are constructed 
in the code to avoid delays, and splitting up and 
prioritizing data to eliminate blocking situations. 

Graceful Error Failure: In tandem with non-blocking 
operation, communication operations that fail must also 
be non-blocking. The software must handle failures in a 
manner that does not require user input, or halt 
execution of the program. 

Dependent or “Staged” Operations: We 
acknowledge that sometimes blocking operations are 

necessary in multi-stage, peer dependent operations. 
This is especially prevalent when performing any kind 
of shared static analysis with a DHM. An analysis might 
involve processing some state of an avatar, sending it 
to a peer for further processing, and waiting for those 
results to come back before more work can be done. 
Most DHMs have some processes such as these that 
can take hours to process. There must therefore be a 
method to support a blocking form of staged execution, 
but not to the detriment of continuous operation. 

Support Multiple Connection Mediums: As 
previously mentioned, the goal of IPC is to connect 
multiple applications together, not necessarily to 
network them using any specific method. The library 
should be designed in such a way that different 
mediums that connect applications together can be 
added, removed, and revised over time. To support this 
goal we engineered the library supporting two very 
different communication methods: Internet networking, 
and local file I/O. 

Ease of Implementation in DHM Software: DHM 
software comes with its own set of difficulties and 
specialized programming disciplines. Many 
programmers in this field may not be comfortable with 
third party networking libraries, or simply do not have 
time to research this topic. The library therefore must 
be easy to implement by a programmer, employ a 
simple interface, and provide a comprehensive SDK 
(Software Development Kit). The SDK must include 
example source code and documentation detailing the 
implementation and functionality of the library. 

Architecture Overview: In this section the method of 
implementation is discussed. This includes the 
architectural fundamentals of the software, and 
operating system features that will be leveraged. 

Two layers of software are required in order do 
achieve our plan: a low level layer that controls the 
specifics of connecting, sending, and receiving data, 
and a higher level that works in cooperation with the 
Santos application (or third party application) to provide 
synchronous and asynchronous operation. The lower 
level, (which has been referred to as the IPC Library 
thus far), can in effect work largely independently 
acting as a service to the larger application. It does not 
have to contain any formal specifications of the type 
data transmitted. The higher level layer however, must 
have some knowledge of the type of data being 
transmitted/received, or at least understand how the 
process using the data will be handling the response. 
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Basic System and File Handling: The IPC library will 
provide communications support to an application, 
allowing it to send and request data from other 
applications. In this respect the code is not dependent 
on the DHM architecture and will be built as a re-usable 
and generic code. This will allow a third party 
application to include the library as simply as possible. 
The library only supports basic communica- 
tion, designed to hide from the user the complexities of 
sending and receiving data. What the client program 
does with the library, and the type of data sent and 
received is entirely up to the developer. 

The library will also present a common, simple, 
generic interface that supports communication using 
any number of methods internally. This allows us to 
expand the library in the future to include newer or 
faster communication methods without breaking the 
programs already using the library. 

Windows Socket Layer and Integration: The main 
target for communication within the library is Windows 
Sockets. This is a standard library built into the 
Windows operating system, which allows data to be 
sent/received through the Internet, or across an internal 
LAN based network. Windows Sockets use standard 
Internet (IP) protocols to communicate just like a web-
browser. These methods are highly reliable, well 
tested, and have been available since 1982. Windows 
Sockets applications however are often difficult to 
architect and require significant testing under various 
conditions, and this could hinder development for all 
clients waiting to use the library. To mitigate this risk a 
file handling strategy is implemented first. 

File handling uses basic IO files on a local or 
network disk to share data between clients of the 
library. This method of communication is slow, but 
much easier, quicker, and less bug-prone to implement 
than full Sockets development. By implementing this 
method first, even though it is slower than Windows 
Sockets, clients receive an early version of the library 
that supports the major features for communications. 

Low Level Software Architecture 

In this and the proceeding section, the software 
architecture is discussed. The software is split into two 
sections. The lower level is agnostic regarding higher 
purpose. It simply supplies the base system for 
physical communication. The higher level system 
specifically provides the DHM networking solution and 
is dependent on the library. 

The lower level software performs the physical task 
of connecting, disconnecting, and sending/receiving 
data. This layer is developed as a standalone library of 
code. In this case standalone means that the codedoes 
not rely on any of the Santos SDK (Software 
Development Kit) or API (Advanced Programming 
Interface). Also, to make the library as flexible as 
possible, it iswritten in the widest available language in 
use today, C++. As Santos is written under the 
Microsoft Windows operating system, the library is 
written in Visual Studio (2010), using the standard 
Windows libraries (no MFC). The TCP/IP 
communication is facilitated through the standard 
WinSOCK implementation (version 2.1 and above). 
Although the library is .NET compliant, it is not .NET 
dependent and is compiled into a standard static .LIB, 
as well as a windows dynamic .DLL file. It does not 
contain any managed C++. 

Santos uses a mixture of C# and C++, the major 
portion being C# under .NET 4.0 (at the time of writing). 
Thus, a C# file is included in the SDK for the library, 
which provides a marshalled C style functional 
interface. In this way the library can be used in both 
C++ and C# projects. Due to marshalling and copying 
of unmanaged memory to managed memory, using the 
library in C# is less memory efficient. Execution time is 
also effected, as there is a transition penalty across the 
managed/unmanaged execution boundary. 

There are three main objects that comprise the 
system. These are the Gateway, IConnection and 
IDriver classes. These classes are described in this 
section to illustrate the architecture of the IPC library, 
and how the problem of future expansion, and multiple 
communication mediums are solved. 

Perhaps the most important class is the I 
Connection class (Figure 2). This base semi-abstract 
class describes a named connection associated with 
an abstract parameters class. It supports a standard 
interface to manage a generic communication medium. 
The generic interface provides methods to initialize (or 
open) the system, connect to peers, send and/or 
receive data, disconnect from peers at some future 
time, and finally close the system and release any 
resources. 

Both incoming and outgoing connection types are 
derived from this class. Connections have a threading 
mechanism for any potential blocking operations. The 
deriving class implements the virtual Thread Update 
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method to take advantage of this feature. A system-
wide MUTEX controls thread prioritization, thread 
handles, and calls to individual Thread Proc methods 
when connection classes are initialized. 

 
Figure 2: The major virtual and static methods in the 
IConnection class. 

Each connection also contains one or more IDriver 
classes (Figure 3). The driver class encapsulates the 
low-level (possibly hardware level) specifics of a 
particular communication method. This gives maximum 
configuration flexibility in the C++ code. A reusable 
drive that communicates in a specific medium, can be 
coupled with a connection class that sends/receives 
data in a specialized way. The connection could 
support a specialized protocol, buffering mechanism, 
compression algorithm, data check summing, or 
encryption/security encoding. However, none of these 
mechanisms change the basic communications code in 
the driver class. 

 

Figure 3: Virtual methods in the IDriver class. 

The third major class in the library is a singleton 
called the Gateway class (Figure 4). Any C++ code 

using the library, as well as the C# interface use this 
class for access to all aspects of the system. 

 

Figure 4: The singleton Gateway class. 

Connection and driver classes use a small abstract 
data class called IParams. This class provides only one 
virtual method by default, to return the Local flag. A 
local connection is the current PCs connection. The 
IParams class is different for every type of connection. 
It contains the specific parameters required to start a 
connection of a required type. For a TCP/IP connection 
for example, a derived IParams class will include an IP 
address and port number. The parameters contained in 
IParams can be pertinent to the gateway, the 
connection, and the driver class. As IParams is non-
instanced, any change to one of its members, changes 
that value for all referencing classes. 

The gateway operates with named connections. 
Once a connection has been added to the gateway 
with its specific parameters, it is referenced by name 
from that point on wards. This makes operation easier 
for the third party programmer, and it makes C# 
interfacing possible as unmanaged pointers cannot be 
shared with managed C#. 

As each peer is added to the gateway, an 
IConnection classe is created bound to the correct 
IDriver class according to the IParams used. In this 
way peers can be added that communicate through 
multiple mediums (as supported by the library). 

The local machine must also act as a server 
listening for incoming connections and performing 
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handshaking and initialization operations for each of 
the registered peers. The local server operations also 
include monitoring each connection and making sure 
peers are still connected, have not timed out,and have 
not reported an error. These operations are also 
addressed with the same generic architecture. Server 
“listener” connections are written using the IConnection 
class. Each communication method employs an IDriver 
to perform the specific listening and maintenance 
operations. As peers are added, the Gateway class 
ensures that there is at least one server class for each 
connection type used by peers. These connections are 
invisible to the caller and are managed internally. If all 
peers use the same communications method (TCP/IP 
for example), then only two local connection classes 
are required: a peer connection to send/receive data, 
and a server connection to listen and error correct 
TCP/IP connections. 

The architecture has a unique feature: peers can 
connect through different communication mediums, 
and as long as each peer can maintain a server 
connection with a minimum of one other peer across 
another medium, network integrity can be maintained. 
This is true because the library supports two 
communication methods, TCP/IP and File IO. 

High Level Software Architecture 

The higher level system resides in the third party 
application, or the Santos software. It uses the lower 
level library to perform all communication operations. 
The higher level software processes incoming and 
outgoing data with full relevance to the DHM software 
concerned. This layer provides non-blocking and 
“staged” blocking execution features. It should also be 
noted that the higher level requires some form of GUI 
support. The GUI allows peers to be added/removed 
and to enter peer parameters (names, IP addresses, 
etc.). In Santos, there is also a chat GUI using the built 
in chat system. Santos also provides a third party 
plugin system with support for various types of C# 
plugins. For the IPC SDK, a new IPC plugin has been 
released which supports an interface to the high level 
system. 

The system updates itself in a threading mechanism 
at 12.5Hz (eight times a second). During this update 
period the low level library is checked for waiting 
incoming data. Outgoing data sent through the system 
is buffered and waits for the next update period. Both 
incoming and outgoing data packets are processed 
through a sub-system called the command 

executer.The executer system also handles some 
lower priority features once per second, such as 
handling chat packets. These are text packets that are 
relayed through a simple GUI window in Santos that 
looks like any contemporary chat program.This feature 
allows peers to chat to each other across the 
communication medium. 

Each packet sent or received has a 32-bit command 
code. This is used by the system to look up a delegate 
method in the executer sub-system. Each command 
actually has two delegates, one for incoming packets, 
and one for outgoing packets. Each command is 
registered at start-up with a text name, a command 
code, and an incoming delegate method and outgoing 
delegate method. Commands can be added 
dynamically to the system, ideally from a third party 
plugin that adds support for a third party application 
that uses specific codes. The programmer of the 
supplied delegates writes the code to pack and unpack 
the data and any processing required thereafter in the 
two delegates. The system then publically provides a 
set of overloaded Send methods. The most common 
usage of the Send method is with parameters for the 
name of the peer to receive the packet, the command 
code, and any parameters, (for example an array), cast 
as a C# object. The send delegate decodes the 
parameters in order to prepare the data. 

Incoming packets are processed in much the same 
way as outgoing packets, although no programmer 
input is required. The system update automatically puts 
incoming packets through the command executer. The 
read delegate is called for the packet’s command 
number, and data is read and processed by the 
programming in the delegate. 

A third mechanism is employed to trigger a 
command in a peer. This is called a request packet. 
Request packets literally request a peer to run a 
command and send back the results. This type of 
packet has a header and may contain parameters in 
the data section. The system provides a Send Request 
method that works like the Send method. The 
parameters however are packed into the data portion of 
the packet, and a communication flag is set to mark the 
packet as a request packet. When request packets are 
received, parameters in the data section are decoded 
and sent through the same interface as if the Send 
method had been called directly. This automatically 
triggers the system to reply with the correct data, 
without any other work on the programmer’s behalf. 
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This process does not wait for replies, or send data 
and wait for conformation. The exchange of data takes 
place automatically and meets several of our design 
goals; asynchronous communication, non-blocking 
execution, and graceful failure handling. 

Blocking “staged” or dependent operations are also 
possible. Each packet is numbered with a GUID (not to 
be confused with a Windows GUID). A unique number 
on the local PC calculated by 32-bit CRC and 
guaranteed to be unique; the GUID remains 
unchanged for the lifetime of the packet. The IPC 
system allows an event delegate to be registered with a 
packet when it is sent. When an incoming packet is 
found with that registered GUID the associated event 
will be triggered. A time-out can also be added at send 
time; when the time-out occurs the same delegate will 
be called with an error status. After the event, the 
system automatically unregisters the GUID and 
delegate. 

Packet Protocol 

All communication methods supported by the IPC 
library send and receive data in variable size 
proprietary packets. Each packet is prefixed with a 
small header (Figure 5) used internally by the high and 
low level systems. 

The peer name field for outgoing packets is set to 
the name of the peer that should receive the data. For 
incoming packets the peer name will be the local 
connection name. 

The communication flags specify important status 
about the packet, such as error status, 
acknowledgement, command request and client is 
busy. 

The GUID is generated by 32-bit CRC and exists for 
the packets lifetime, no matter how many peers handle 
the packet. 

RESULTS AND DISCUSSION 

In order to provide objective results for the proposed 
system, a testing scenario was designed that measures 
the operating time specifically for the IPC Library (the 
low level component). Timing of the high level 
component is less important, as the high level system 
design is variable. One implementation for a high level 
design has been presented here for DHM software; 

however, the low level library is agnostic in terms of 
higher level purpose. At the end of this section results 
are presented for the additional time required to cross 
the execution boundary from C++ to C#, as this is 
significant and does not depend on how the library is 
implemented. 

The scenario used is called a “ping pong” test. A 
packet with a specified amount of random data is sent 
through the library to a specified peer, time-stamped 
using the Windows high resolution timer. When the 
packet is sent back from the peer, the timer is used 
again with the packet’s time-stamp to calculate the total 
“round-trip” time. The time includes the transmission 
time through the medium to the destination peer and 
back, any operating system overhead to send and 
receive, and the full execution overhead for the IPC 
library itself, from a packets first inception into the 
library and back out. 

 

Figure 5: The IPC packet protocol. 
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The operating systems used for testing are 
Windows 7.1 64-bit. The testing software and the IPC 
Library are complied with Visual Studio 2010 and are 
32-bit. All machines used in testing are Intel® i7-2600 
at 3.40GHz with 8 GB of ram. Initial results are shown 
in Figures 6 through 7. 

The results for file I/O test 1 (Figure 6) are as 
expected. This test uses the local PC’s hard-drive for 
the shared files needed for communication. The 
overhead here is the operating system itself, opening, 
closing, reading, and writing to physical files. The times 
are uniform and unremarkable. These times would be 
effected if other running programs were performing disk 
operations, which again is as expected. 

The results for file I/O test 2 (Figure 7), however, 
are somewhat unexpected. This test uses a networked 
Intranet drive for shared files. This setup requires the 
usual overhead for the operating system to handle files, 
but also requires network communication through 
Ethernet, as well as file handling again through a 
security conscious server that houses the hard drive. 

This test was expected to yield longer transmission 
times, and although this setup is slower, the change is 
not significant (on average < 0.03 seconds). The 
discrepancy was found to be Windows 7.1 networking 
optimization. Windows 7 now offloads much of the 
usual work of file I/O directly to the server. That means 
an entire stage of processing is missing from the local 
machine. The additional time therefore is the 
transmission time of the data over Gigabit Ethernet. 

Also surprising is the TCP/IP test (Figure 8). On 
cursory examination times appeared faster than File 
I/O, which was expected. In fact most times were half 
that of either file I/O tests. However, periodic spikes 
appeared randomly throughout the testing period. After 
adjusting our test results for external network traffic 
overhead (incoming and outgoing) on the local 
machine, the results then look largely the same. The 
spikes however, do correspond highly with the local 
network load as reported by load tools run on a 
secondary PC during the testing period. Our tests were 
designed to remove local network congestion. We also 
corrected for local traffic not originating from out testing 

 

Figure 6: File I/O times over 10 packets, both peers on same PC, average over 100 packets = 0.2067 seconds, packet size = 
32 KB, local hard drive used as shared path for communication. 

 

Figure 7: File I/O times over 10 packets, both peers on same PC, average over 100 packets = 0.2201 seconds, packet size = 
32 KB, networked drive over intranet used as shared path for communication. 
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software. However, we did not account for general 
network load beyond our control. Once accounted for, 
the spikes disappeared, and the average time over 100 
iterations fell to 0.1792 seconds. This represents a 
13% speed increase over the fastest file I/O tests. 

As previously mentioned, there is a penalty for 
using the library in a C# program. Any data generated 
in unmanaged memory, such as that used by C++, 
must be copied into managed memory for C# through a 
process called marshaling. Also marshaled are 
parameters and structures, individual structure 
members, and any native pointers returned from C++. 
This process is memory inefficient and takes time. This 
final test is performed at the point a ping pong 
message is sent through C# to the C++ library, plus the 
time for the return message to be marshaled back from 
C++. The average time for 100 iterations is 0.086 
seconds. The results are uneven, which reflects the 
automatic memory management in C#. Sometimes 
when large blocks of memory are marshaled, the C# 
garbage collector must make space and use some time 
to compress the garbage heap. Averaged over all 
communication methods, the penalty for using the 

library with a C# program is approximately 37%. This is 
a lower overhead than typically seen in C# applications 
using a significant portion of unmanaged code. 

To attain this low latency, the C# interface has been 
highly optimized. Wherever possible, automatic 
marshaling is forgone. Manually returning structs 
containing IntPtr types is more desirable. The IntPtr 
types are then used as real pointers in unsafe blocks to 
resolve marshaling manually. No built in marshaling 
methods are used such as Marshal.Copy… or 
Marshal.Read…, or library classes such as 
BitConverter or Buffer. Manually using unsafe pointer 
logic is faster if blocks are aligned on 32-bit boundaries 
and are sized in multiples of 32-bits, regardless of their 
actual content size in bytes. Pointers are then cast to 
unsigned integers and copied 32-bits at a time. 

CONCLUSIONS 

In summary, this paper has presented a new 
architecture for peer-to-peer inter-process 
communication especially tailored to use with digital 
human models. Although IPC capabilities are not 

 

Figure 8: TCP/IP times over 10 packets, peers on different PCs over local Intranet, average over 100 packets = 0.2234 
seconds, packet size = 32 KB, transmitted by standard WinSock TCP/IP. 

 

Figure 9: C# marshaling overhead for 10 packets. 
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necessarily novel and applications are increasing, use 
for integrating complex multi-scale modeling and 
concurrent design is minimal, and practical use within 
the DHM community is yet to be exploited. The 
proposed system uses a TCP/IP protocol for necessary 
security and for ensuring all data packets are received 
in order. In general, the system has been designed to 
facilitate an uninterrupted workflow, which is critical for 
applications that involve concurrent team-oriented 
analysis and design. In addition, this new system 
supports multiple connection mediums and facilitates 
variations in the number of users. The common issues 
of blocking and potential lost data have been 
addressed successfully. Test cases were successfully 
run to ensure appropriate computational speed. 

Implications of the proposed work warrant 
discussion regarding the fields of digital human 
modeling and inter-process communication as well. 
Clearly, the proposed system provides a platform for 
building a more comprehensive digital human model. 
However, this mode of development, whereby various 
teams located in different places contribute individual 
but potentially interconnected models, is a target of 
growing significance for many industries. Thus, this 
work is a significant step towards truly concurrent 
engineering and development. Along with the growing 
prevalence of dig data, we anticipate a growth in 
modeling-and-simulation tools, and just as data must 
be traversed and coordinated, various related models 
must be interconnected (regardless of the application 
or field) in order to maximize effectiveness. 

One of the major achievements of the project is 
continuous, non-blocking operation. This has been a 
difficult process to understand, particularly when 
analyzing a user’s work-flow (how they typically use 
DHM software). The insights gained here are 
invaluable and have encouraged us to continue 
collecting this information in the future. We have in 
effect, designed a networking solution partly based 
around how one uses DHM software, and the 
requirements of DHM software in general. This is a 
unique application of networking design principles. 
Most network design looks solely at sending and 
receiving data regardless of the application performing 
the networking, or the people using that software. 

Approaching the problem as Inter Process 
Communications rather than straight Networking set 
the design goals. The term IPC leads to a very specific 
set of goals and thus final product. IPC means 
communications between applications, not 

communications between machines, or networking 
between machines. In the latter mind-set, committing to 
one specific communications medium such as TCP/IP 
is not possible. From the outset of the project the code 
was structured to support multiple communication 
methods, and to have peers using different methods 
talk to each other. The current solution supports two 
diverse methods, in fact completely dissimilar 
mechanisms. This makes it possible for us to plan and 
implement new communications medium in the future. 
This is a rare feature in current communications 
design, and the proposed architecture reflects the lack 
of applicable resources in this area.  

With respect to potential future work, the IPC library 
is currently designed as a 32-bit program for maximum 
implementation flexibility. A 64-bit version is planned. 
Both the C++ and C# interface can be optimized 
specifically for 64-bit, including 64-bit copying and 
marshaling of data blocks. Applications written in 64-bit 
can also use double the amount of memory (8GB 
instead of 4GB). Currently, the maximum contiguous 
packet size that can be sent through the library is 2GB. 
In a 64-bit version this limit can be doubled. There are 
no implications involving peers using a mix of 32-bit 
and 64-bit versions of the library; the transmitted data 
remains the same. 

Also as future work, a WebSockets system will be 
added. This system works like TCP/IP, in that it is an 
Internet protocol, but it suffers none of the 
disadvantages of TCP/IP. It does however, present 
new problems of its own. TCP/IP requires the peer to 
have an external IP address and port number to 
connect to outside peers in external locations. This 
usually requires an IT technician or network 
administrator’s input, and is often frowned upon for 
security reasons. It is then necessary to email or 
otherwise convey your IP and port number to the other 
peers you wish to connect to, and in return get their 
details back. WebSockets solves these problems by 
communicating through port 1080, the way a web 
browser does. The communication system resides on a 
website that is setup by one of the peers. Peers 
connect to the site and in return to each other. 
Connection through the web is almost always open and 
public in every organization; if it were not, there would 
be no Internet access, and no email. Also, no IP 
addresses or port numbers are required. The 
disadvantage, however, is that a client must provide 
and maintain a private web server that has the 
WebSockets software installed and running at all times. 



44    Journal of Computer Science Technology Updates, 2015, Vol. 2, No. 1 Taylor and Marler 

This could be a considerable resource to manage for a 
smaller group. 

Many communication libraries include traffic and 
congestion analysis, and investigating such a system is 
planned future work. Traffic analysis predicts peers 
data transmission habits based on their history. 
Transmission to those peers may delay in order to 
lesson congestion and thus keep the network running 
at a constant, albeit slower speed. Congestion analysis 
is sometimes predictive and in other implementations 
reactive. This form of network control looks at line 
quality, or how fast each peer connection is. The result 
is largely the same as traffic prediction. These 
mechanisms have been purposely ignored in the initial 
design. They are used almost exclusively for Intranet 
and Internet traffic over TCP/IP. An ultimate goal is to 
support multiple communication mediums and 
therefore support traffic or congestion prediction that 
works universally. As a single method for TCP/IP 
presents considerable work on its own, this 
development has been left as a future work. 
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