Survey on the Family of the Recursive-Rule Extraction Algorithm
Keywords:
Ensemble Concepts, Rule Extraction, Re-RX Algorithm, Multiple-MLP Ensemble, Neural Network Rule Extraction, Neural Network Ensembles, Data Mining, Ensemble Learning.Abstract
In this paper, we first review the theoretical and historical backgrounds on rule extraction from neural network ensembles. Because the structures of previous neural network ensembles were quite complicated, research on an efficient rule extraction algorithm from neural network ensembles has been sparse, even though a practical need exists for rule extraction in Big Data datasets. We describe the Recursive-Rule extraction (Re-RX) algorithm, which is an important step toward handling large datasets. Then we survey the family of the Recursive-Rule extraction algorithm, i.e. the Multiple-MLP Ensemble Re-RX algorithm, and present concrete applications in financial and medical domains that require extremely high accuracy for classification rules. Finally, we mention two promising ideas to considerably enhance the accuracy of the Multiple-MLP Ensemble Re-RX algorithm. We also discuss developments in the near future that will make the Multiple-MLP Ensemble Re-RX algorithm much more accurate, concise, and comprehensible rule extraction from mixed datasets.
Downloads
Published
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .