Catalytic Naphtha Reforming; Challenges for Selective Gasoline; an Overview and Optimization Case Study
Keywords:
Catalytic naphtha reforming, Pt-Re bifunctional catalyst, Research octane number, Response surface methodology (RSM), Central composite design, OptimizationAbstract
A new trend in catalytic naphtha reforming requires the decrease of aromatics hydrocarbons particularly benzene in reformate, while maintaining high octane rating. At present, production of reformulated gasoline with low content of benzene is one of the main challenges in the transportation fuel industry. In the catalytic reforming of realistic naphtha over bi-functional Pt-Re-S/Al2O3-Cl catalysts the: (i) liquid yield (C5+), (ii) yield of aromatics, (iii) iso-paraffin/aromatics ratio, (iv) side reactions (hydrocracking, hydrogenolysis, coking) as responses can be altered by controlling the independent reaction parameters (Temperature, Pressure, Liquid Hourly space velocity (LHSV), Hydrogen to hydrocarbon ratio (H2/HC ratio), chlorine and the addition of different promoters to the catalyst (Re, Sn, Ir, etc). In the present report, a quadratic polynomial equation for the responses Research Octane Number (RON), Neglect this statement as these models has been removed were obtained by multiple regression analysis and tested using analysis of variance (ANOVA) with 95% degree of confidence. The validation of experimental data was confirmed with the predicted model. The results showed that the reaction temperature and the total operating pressure are the key variables that have the main influence on naphtha reforming reactions by the synergistic effect of linear term (X1, X2), which is in a good agreement with the experimental data reported previously in the literature.Downloads
Published
2016-04-08
Issue
Section
Articles
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .