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Abstract: During high-temperature energy-based therapies such as radiofrequency ablation (RFA) the target tissue 
reaches temperatures around 100ºC, which causes tissue dehydration by water vaporization. In order to be as realistic 
as possible, RFA theoretical models should include the formulation of these phenomena. There are currently two fixed 

mesh methods of modeling the electrical and thermal effects produced by water vaporization: the enthalpy method and 
the water fraction method. Our objective was to compare both methods, especially to assess the thermal and electrical 
performance in terms of electrical impedance progress during heating, distributions of temperature, and temperature 

progress at some specific locations. The results showed the performance of both methods to be qualitatively analogous, 
with similar impedance progress, temperature distributions and temperature progress. They were hence equally able to 
mimic the thermal and electrical performance in a pulsed protocol, i.e. during the period without applying RF power. The 

main difference between the methods was the time at which impedance started to rise. All these findings suggest that 
the two methods offer equivalent results in RFA modeling. However, since the enthalpy method has one less problem to 
be solved (dynamic volume fraction of liquid water in the tissue) it is less complex, has a lower computational cost and 

therefore seems to be more suitable for modeling RFA with dry or internally cooled electrodes, i.e. those in which there is 
no interstitial saline infusion. However, the water fraction method would be more appropriate in the case of RFA with 
externally irrigated electrodes. 

Keywords: Enthalpy method, Mathematical modeling, Radiofrequency ablation, Tissue dehydration, Water 

vaporization. 

INTRODUCTION 

High-temperature thermal therapies are clinical 

procedures, which use some type of energy (laser, 

ultrasound, microwave or radiofrequency -RF-) to 

selectively destroy biological tissue by raising its 

temperature over 50ºC, or even to 100ºC. In the case 

of RF energy, this term could also include typical 

electrosurgical procedures such as cutting and 

coagulation, along with radiofrequency ablation (RFA), 

used to treat cancer in different organs [1-6]. RF power 

(100-200 W) is usually delivered to the tissue by 

creating a flow of electrical current ( 500 kHz) between 

a small active electrode in contact with the target tissue 

and a larger dispersive electrode on the patient’s back 

or thigh. Selective heating occurs around the active 

electrode in the target tissue, where the highest current 

density is located. When tissue is exposed to 

temperatures over 50ºC for several minutes, or 60ºC 

for a few seconds, the cells begin to die due to protein  
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denaturation and thermal lesions are created. In RFA, 

when the tissue temperature achieves a value 100ºC, 

there is a dehydration phenomenon due to water 

vaporization. Since the electrical current is completely 

dependent on tissue electrical conductivity ( ), and as 

 depends on the tissue water content, water 

vaporization during RFA is expected to significantly 

affect electrical performance, and in fact vaporization is 

known to influence the efficiency of RF power supply. 

Theoretical modeling and computational simulation 

have become powerful tools to study quickly and 

cheaply the electrical and thermal performance of RF-

based ablative therapies [7]. As the worth of theoretical 

models increases with their realism [8], it is crucial to 

address the mathematical modeling of the vaporization 

phenomenon in high-temperature thermal therapies. 

Once the theoretical model has been set (geometry, 

governing equations, and initial and boundary 

conditions), numerical methods are usually needed to 

solve the problem due to the non-linearity of the 

equations and the presence of complex geometries. 

Both equations and tissue characteristics have to be 

suitably modified to model water vaporization. For this, 
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there are two methodological approximations: 1) fixed 

mesh and 2) moving mesh methods [9-10]. The main 

difference between them is that in the former the mesh 

remains constant in every step of the resolution, while 

in moving mesh the mesh varies according to the 

material phase change.  

The enthalpy method is a fixed mesh method 

usually employed to model water vaporization during 

heating [11-13]. Zhu et al. [14] recently proposed a new 

fixed mesh method that considers local boiling 

phenomena (vaporization) and water diffusion. Briefly, 

they considered a new variable ml, which is the mass 

of water by tissue volume, and which modifies the 

expressions describing the electrical and thermal 

conductivities. As a consequence, the electrical and 

thermal conductivities of the tissue depend on both 

temperature and water content. Introducing a new 

variable complicates the problem to be numerically 

treated since authors add the water content problem to 

the usual electrical-thermal coupled problem used in 

RFA. In fact, in this new method the equations 

describing the electrical field, heat transfer and water 

vaporization were solved by Comsol Multiphysics 

(COMSOL, Burlington MA, USA) while the thermal and 

electrical conductivity equations were solved by Matlab 

(Mathworks, Natick, MA, USA) and both results were 

then processed in Comsol. In contrast, the enthalpy 

method does not involve the introduction of new vari- 

ables and hence is easier to solve. The addition of an 

additional problem in Comsol Multyphysics in the case 

of water fraction method implies an extra computational 

time. The question that arises is how the results of the 

enthalpy and water fraction methods will differ.  

Our objective was thus to compare the enthalpy 

method and the water fraction method proposed by 

Zhu et al. [14], especially to assess the thermal and 

electrical performance of both methods, identify the 

advantages and drawbacks of each, and to consider 

their applicability to the modeling of water vaporization 

in RFA. 

METHODS 

Description of the Model 

We used the same model geometry as that 

proposed by Zhu et al. [14] (Figure 1), which consists 

of a cylindrical active electrode in contact with the 

hepatic tissue surface. The tissue was also considered 

to be a cylindrical volume with larger diameter and 

height than the electrode. The dispersive electrode was 

modeled as an electrical condition on boundaries at a 

distance from the active electrode. The problem 

presented axial symmetry and hence a two-

dimensional analysis was possible. 

 

Figure 1: Geometry of the model used (out of scale). The 
cylindrical active electrode is 10 mm in diameter and is 10 
mm high. It is placed on the surface of a fragment of hepatic 
tissue also of cylindrical volume, 40 mm in diameter and 40 
mm high.  

We used a finer mesh in the interface between the 

electrode and tissue where a great temperature 

gradient was expected. The mesh size was 

automatically created by Comsol Multiphysics. We 

checked the suitable size of the mesh by a 

convergence test using the maximum temperature as a 

control parameter. The time step was also calculated 

for suitability by means of a convergence test, and a 

value of 0.1 s was obtained. 

Governing Equations 

The model is based on a coupled electric-thermal 

problem. The governing equation for the thermal 

problem was the bioheat equation: 

c
T

t
= (k T) + bcb b (Tb T) +Qm + q         (1) 

where  is density, c specific heat, T temperature, t 

time, k thermal conductivity, b blood density, cb blood 

specific heat, b blood perfusion coefficient, and Tb 

blood temperature. The value and dimensions of the 

constants used in the model are available in Table 1 

[14]. It was assumed that once tissue temperature 

exceeds 50ºC there is no blood perfusion and thus b = 

0. The value of the blood perfusion coefficient was 

0.008 s
-1

 up to 50ºC. The metabolic heat (Qm) was 

defined as a piecewise function: 
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Table 1: Material Parameters [14] 

Material  (S/m) k (W/m K)  (kg/m
3
) c (J/kg K) 

Electrode 7.4  10
6
 15 8  10

3
 480 

1080 3455 
Liver 0.336* 0.419 

370** 2156** 

*Referenced at 37ºC;  ** at gas phase. 

Qm =
Qm0(1+ 0.1(T T0)) T 50ºC

0 T > 50ºC

 

 

 

       (2) 

Qm0 being the metabolic rate in physiological state 

(33,8 kW/m
3
, at 37ºC) and T0=37ºC [14]. The heat 

source q was solved from the electrical problem with 

q = E 2
, where  is the electrical conductivity and E 

is an electric field, which is obtained from E = V  

where V is the voltage. This voltage was obtained from 

the Laplace equation V = 0, which was the 

governing equation of the electrical problem. At RF 

frequencies ( 500 kHz) and over the distance of 

interest, the biological medium can be considered 

almost totally resistive and a quasi-static approach is 

therefore possible to solve the electrical problem [15]. 

This means that the electrical variables (V and E) are 

DC values in the simulations which correspond with the 

root-mean-square values of the RF signal. 

Boundary and Initial Conditions 

The boundary conditions for the thermal problem 

were: natural convection over all the outer tissue 

surfaces (thermal transfer coefficient of 25 W/m
2
K and 

bulk temperature of 20ºC, which would mimic a RF 

heating conducted at room temperature), excluding the 

contact surface between electrode and tissue. Natural 

convection (convective heat transfer coefficient of 0.1 

W/m
2
K and bulk temperature of 20ºC) was also used 

on all outer electrode surfaces, which would mimic a 

thermal isolation condition. The initial temperature of 

electrode and tissue was 37ºC (body temperature). The 

boundary conditions for the electrical problem were: 

electrical insulation over all tissue surfaces, excluding 

the lower tissue surface, in which the condition was 

V=0 V (dispersive electrode) and V=35 V on all 

electrode surfaces. The model was solved numerically 

by the Finite Element Method using COMSOL 

Multiphysics software.  

Enthalpy Method to Model Water Vaporization 

In our study we only modeled the water vaporization 

using the enthalpy method [11]. In brief, its formulation 

assumes a change in the governing equation of the 

thermal problem (Eq. 1) as follows: 

( h)

t
= (k T) + bcb b (Tb T) +Qm + q      (3) 

h being the enthalpy. For biological tissues the first 

term in Eq. (3) is computed as 

( h)

t
=

T

t

lcl 0 T 99ºC

H m 99 < T 100ºC

gcg T > 100ºC

 

 

 

 

 

       (4) 

where the subscript l refers to the liquid tissue phase 

and g to the gas tissue phase (see Table 1), H is the 

product of the water latent heat and the percentage of 

water content in hepatic tissue (68%) and m is the 

water density at 99ºC (958 kg/m
3
). 

In addition to the enthalpy method we used a 

piecewise function [4] for electrical conductivity. It is 

well-known that  increases with temperature up to 

100ºC. Around 99-100ºC the water is lost by 

vaporization and  drops abruptly. We considered a  

linear increase of 1.6%/ºC for T < 99ºC, which was the 

method used in [14]: 

(T) =

0(1+ 0.016(T 37)) 0 < T 99°C

0.669312 99 < T 100°C

0.669312 0.133849(T 100) 100 < T 105°C

0.669312 10 4 T > 105°C

 

 

 
 

 

 

 

 (5) 

For thermal conductivity we considered a linear 

increase of 0.3%/ºC for T < 100ºC, which was the 

same assumption as that made in [14] and a constant 

value for T > 100ºC. 

Outcome Variables 

The thermal performance of both methods was 

compared using temperature distributions at different 

heating times. Temperature variations as used by Zhu 

et al. [14] were considered at three different locations 

on the central axis: 1 and 10 mm away from the 

electrode surface and on the surface itself (electrode-

tissue interface). The electrical performance of both 

methods was compared by impedance evolution. Roll-

off time, i.e. when impedance suddenly rises, is a 

crucial phenomenon which denotes when the electrode 

is entirely surrounded by dehydrated tissue [16]. 

Finally, one of the issues assessed by Zhu et al. 



Water Vaporization Modeling During RF Ablation Journal of Advances in Biomedical Engineering and Technology, 2014, Vol. 1, No.1    11 

[14] when they proposed the water fraction method was 

the potential of the model to mimic the rehydration pro- 

cess in a zone of the tissue previously dehydrated by 

water vaporization. For this they conducted a simula- 

tion in which RF power was cut off after impedance 

passed 500  and restarted 5 minutes later and allow- 

ed to exceed 500 . To compare both methods, we 

also reproduced this protocol with the enthalpy method. 

RESULTS 

We analyzed the same outcome variables as those 

reported by Zhu et al. [14]. Figure 2A shows the 

temperature distribution at t = 600 s obtained from the 

enthalpy method. For purposes of comparison, Figure 

2B reproduces the temperature distribution at t = 600 s 

obtained by the water fraction method. Both 

distributions were found to be very similar, although the 

enthalpy method showed a higher temperature: note 

the hot points at the electrode edges, which are more 

pronounced than those in the water fraction method. 

The maximum tissue temperature at t = 600 s obtained 

with the enthalpy method was 103ºC, while Zhu et al. 

[14] reported a maximum value of 100ºC. 

 

Figure 2: Temperature distribution (scale in ºC) for t = 600 s 
obtained with the enthalpy method (A) and the water fraction 
method (B). (Image B is reproduced from Zhu et al. [14]). 

Figure 3 shows the temperature evolution obtained 

with both methods at three different points: 0, 1 and 10 

mm away from the electrode contact surface, in the 

tissue on the central axis. In general, the temperature 

evolution was similar in both methods, although the 

temperature rose faster at points near the electrode in 

the enthalpy method (they reached the maximum 

temperature 25-30 s before). In contrast, the 

temperature at 10 mm from the electrode rose more 

slowly in the enthalpy method (around 50 s delay). In 

neither method did the maximum temperature exceed 

the vaporization point ( 100ºC). 

 

Figure 3: Temperature evolution at three points on the 
central axis of the tissue cylinder at 0, 1 and 10 mm from the 

contact surface of the electrode, computed by the enthalpy 
method (dashed lines) and by the water fraction method 
(solid lines). (The plots of the water fraction method are 
reproduced from Zhu et al. [14]). 

Figure 4 shows the impedance evolution obtained 

from both methods. The performance can be seen to 

be very similar up to the time when impedance starts to 

rise, which occurs sooner in the water fraction method. 

Roll-off time, defined as the time when impedance is 30 

 greater than the initial value, was at 600 s for the 

water fraction method and 705 s for the enthalpy 

method. Figure 4 also shows that once impedance 

started to rise ( 380 s in the water fraction method and 

590 s in the enthalpy method) the rate of increase 

was much higher in the enthalpy method. 

 

Figure 4: Impedance evolution computed by the enthalpy 

method (dashed lines) and water fraction method (solid 
lines). (The plot of the water fraction method is reproduced 
from Zhu et al. [14]). 

We simulated the protocol used by Zhu et al. [14], in 

which RF power was cut off after impedance passed 

500  and restarted 5 minutes later and allowed to 

exceed 500  once more. Figure 5 shows impedance 

evolution for both methods. In the water fraction 

method, the first phase of RF heating ended at 656 s 

and the second at 1300 s, after the 5 min cooling 

period [14]. This performance was repeated in the 

enthalpy method but for times of 751 s and 1456 s. 
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Figure 5: Impedance evolution computed by the enthalpy 

method (dashed lines) and water fraction method (solid 
lines). Point 1 is when the first heating phase stops due to 

impedance passing 500 ; point 2 represents the restart of 

the second RF phase (after 5 minutes of natural cooling of 
tissue with RF power switched off); and point 3 is the end of 
the second phase. (The plot of the water fraction method is 
reproduced from Zhu et al. [14]). 

Overall, impedance evolution was comparable in 

both methods; during the first phase impedance 

gradually dropped until the abrupt rise and then passed 

500 , before the RF was switched off. During the 5-

minute period when RF power was not applied, 

impedance first fell rapidly and then gradually rose until 

RF power was again applied. During this second 

phase, impedance also fell and then abruptly passed 

500  sooner than in the first phase. In these 

simulations it could be seen once more that the rate of 

increase was much higher in the enthalpy method (just 

before points 1 and 3 in Figure 5). In addition, the drop 

was faster in the enthalpy method once RF power had 

been switched off (just after point 1 in Figure 5). 

Zhu et al. [14] observed that just after the second 

phase of the water fraction method (t = 1300 s) the 

region where temperature over 50°C was 28.5% less 

than in the first heating phase. This was also observed 

in the enthalpy method, as shown in Figure 6, in which 

the region over 50°C was 20% less than in the first ph- 

ase. These percentage differences correspond with the 

area calculated on the plane of each plot of Figure 6.  

DISCUSSION AND CONCLUSIONS 

Accurate modeling of energy-based thermal therapies 

should mimic the electrical and thermal phenomena 

caused by the high temperatures reached in them. 

Basically, temperatures around 100ºC produce water 

vaporization and hence tissue dehydration. This local 

water loss involves a drop in local electrical 

conductivity and hence a rise in total electrical 

impedance, which under certain circumstances can 

cause roll-off and the subsequent cutoff of RF power. 

The idea behind most methods proposed to model 

water vaporization is to include the latent heat 

associated with the phase transition from liquid to gas 

in the governing equation. In addition to this, most 

methods somehow take into account the impact of gas 

 

 

Figure 6: Temperature distributions at the end of the first (A) 

and second (B) heating phase in the enthalpy method and in 
the water fraction method (C and D). (The plot of the water 
fraction method is reproduced from Zhu et al. [14]). 

formation on the electrical and thermal conductivities. 

In the case of the enthalpy method used in this study, 

this is done by modifying the value of electrical 

conductivity once the temperature reaches 100ºC, 

specifically by reducing its value drastically by two or 

four orders of magnitude from 100 to 105ºC (Figure 

7A). Conversely, in the water fraction method, electrical 

conductivity depends not only on temperature (in a 

similar way to the enthalpy method for temperatures 

below 100ºC), but also on the mass of liquid water per 

unit volume of tissue, and both factors are assumed to 

be independent of each other [14]. From the 

mathematical point of view, the main difference betw- 

een the two methods is that the water fraction method 

adds a third problem (dynamic volume fraction of liquid 

water in the tissue) to electrical and thermal problems. 

This leads to the conclusion that with the water fraction 

method there is no two-way relation between electrical 

conductivity and temperature (as with the enthalpy 

method), but once tissue temperature reaches 100ºC 
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and consequently water vaporization occurs, electrical 

conductivity will take values determined not only by the 

local temperature but also by the local water content 

(see dashed lines in Figure 7B). 

 

 

Figure 7: Conceptual explanation of the effect of temperature 

(T) on electrical conductivity ( ) in the enthalpy method (A) 

and water fraction method (B). In the enthalpy method there 

is a two-way relationship between  and T, described with a 

piecewise function as in Equation (5). Conversely, in the 
water fraction method, electrical conductivity depends not 
only on temperature (in a similar way to the enthalpy method 
for temperatures below 100ºC), but also on the mass of liquid 
water per unit volume of tissue, which impedes predicting the 

local value of  from the local temperature. For temperatures 

much lower than 100ºC the tissue can be expected to be 

completely rehydrated, so that the relation between  and T 

will be similar to that in the enthalpy method (conceptually 
represented as dashed lines converging on the solid line). 

The results of our comparative study showed a 

similar performance between both methods in terms of 

temperature distributions and impedance evolution. 

The maximum temperatures reached with both 

methods did not exceed the vaporization point 

( 100ºC), which was due to the own modeling 

methods. This limit value was not due to neither the 

appearance of the roll-off (the maximum temperatures 

occurred before the starting point of the roll-off), nor the 

limited applied RF power (which was enough to reach 

100ºC at many points). The main difference between 

the methods is the time at which impedance starts to 

rise. In the enthalpy method the increase in tempera- 

ture happened 100 s later than in the water fraction 

method (Figure 4). The initial rise in impedance was 

similar in both methods and is related to the similar rise 

in temperature at points near the electrode (Figure 3). 

The enthalpy method was also able to mimic the 

same thermal and electrical performance as that 

obtained with the water fraction method during a pulsed 

protocol of applying RF power. Both the impedance 

evolution (Figure 5) and temperature distributions 

(Figure 6) were qualitatively similar in both methods. 

The most noticeable difference was that the rate of 

change in electrical impedance was much higher in the 

enthalpy method, both when rising (just before roll-off) 

and falling (just after roll-off). 

All these findings suggest that both methods could 

offer equivalent results in RFA modeling. From the 

viewpoint of the mathematical formulation, the enthalpy 

method has the advantage of not needing to add an 

extra problem (calculating the dynamic volume fraction 

of liquid water in the tissue), which means a lower 

computational cost. This is especially important when 

the RFA models quantify the thermal lesion from the 

computation of the thermal damage index, which is an 

additional function. The main advantage of the water 

fraction method is that it allows water content evolution 

to be modeled and thus computed at all points in the 

tissue, which could be very useful in modeling RFA 

with externally irrigated (wet) electrodes which infuse 

saline into the tissue. The interstitial infusion of 

hypertonic saline can modify the background electrical 

properties [17] and also allows desiccated tissue to be 

rehydrated once water vaporization occurs. This 

rehydration could be mathematically implemented by 

varying the dynamic volume fraction of liquid water, 

and the mathematical relation between electrical 

conductivity and temperature modeled by the water 

fraction method could show a performance with a type 

of hysteresis as schematized in Figure 7B (due to the 

simultaneous dependence on the water content), which 

has been observed in some experimental results [18]. 

We observed small differences in the absolute 

temperature values obtained from both methods 

(Figure 3). This could be due to the different meshing 

used to build the finite element models and is 

especially important in the case of circular electrodes in 

contact with the tissue surface, as it is known that the 

electrical current density is analytically infinite at the 

edges [19], so that its value in this zone in a finite 

element model will be highly influenced by mesh size. 

From a clinical application point of view, the results 

suggest that both the enthalpy method and the water 

fraction method could be employed to mimic water 

vaporization in some RFA models. Since the enthalpy 

method eliminates the problem of the dynamic volume 

fraction of liquid water in the tissue, it is less complex 

and has a lower computational cost and therefore 

seems to be a more suitable method of modeling RFA 

with dry or internally cooled electrodes, i.e. those 

without interstitial saline infusion. However, the water 
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fraction method seems to be more appropriate for RFA 

with externally irrigated electrodes.  
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