Biodegradation of Natural Rubber Wastewater in the Submerged Membrane Bioreactor by Pichia Guilliermondii and Yarrowia Lipolytica
DOI:
https://doi.org/10.15379/ijmst.v10i1.1099Keywords:
Biodegradation, Membrane bioreactor, Pichia guilliermondii, Rubber effluent, Yarrowia lipolyticaAbstract
Abstracts: Despite the many services that natural rubber provides to humanity, its production generates significant quantities of polluted effluents which have a negative impact on health and the environment. In order to reduce this pollution and allow water to be reused after treatment, a synthetic effluent treatment trial was carried out in a submerged membrane bioreactor in the presence of two strains of yeast (Yarrowia lipolytica, Pichia guilliermondii) and biodegradation parameters (COD, NH4+, NO2-, NO3-) were followed. The Mohlman Index (MI), the particle size distribution, the Lowry method for proteins and the Dubois method for sugars have made it possible to characterize the sludge generated during biodegradation. It appears from these experiments that the reduction rate of COD was 98% and that of nitrification and denitrification 90%. There is a decreasing linear relationship between the MI and SS (Suspended Solids) with an R2 of 95%. The distribution of the particle size of the sludge is tri-modal with a maximum of sludge having an average size of 1000 µm. The sludge formed resists filtration with a polysaccharide/protein ratio of 0.45.
Downloads
References
FAO. "Irrigation avec des eaux usées Traitées, Manuel d'Utilisation," 2003, 73 p.
Agnès B, Simon B, David B, Gilquin, Guiffant P, Jean LG, Le L, Sandra M, Renaud P, Laurent R, Tatiana T. (2017). Baromètre 2017 de l'eau, de l'hygiène et de l'assainissement, état des lieux de l'accès à une ressource vitale, 3e édition.
Pollet S. Caractérisation du colmatage et de l'hydrodynamique dans les bioréacteurs a membranes : Influence de la configuration du module et de l'aération. Thèse de Doctorat de l'Institut National des Sciences Appliquées de Toulouse. 2009; pp 39.
LMC Rubber. Rubber and tyre market report. LMC International 2013.
Nsoe MN, Nguemtue T, Kofa GP, Amba EV, Ngwane LN, Kenfack TA, Ndi KS, Kayem GJ, Marc H. Impact assessment on the waste from the rubber factories in Cameroon. Asian Academic Research Journal of Multidisciplinary 2016; 3(6): 2319-2801.
Nik MNS, Shaliza I, Sarah LA. Membrane Bioreactor for the treatment of natural rubber wastewater. Int. J. Environmental Engineering. 2010; 2(1/2/3): 92-109. https://doi.org/10.1504/IJEE.2010.029823
Arimoro FO. Impact of rubber effluent discharges on the water quality and macroinvertebrate community assemblages in a forest stream in the Niger Delta. Chemosphere 2009; 77: 440-449. https://doi.org/10.1016/j.chemosphere.2009.06.031
UN-water. Rapport mondial des Nations Unies sur la mise en valeur des ressources en eau 2017. Les eaux usées, une ressource inexploitée. Paris, UNESCO. 2017; 123p.
Swarna SHS, Raghavendra MP, Shruthi S, Girish K. Bioremediation of rubber processing industry effluent by Arthrobacter sp. International Journal of Research in Environmental Science and Technology. 2012; 2(2): 31-34. ISSN 2249-9695
Mitra M, Hasfalina CM, Mohd AH, Phang LY. Treatment of wastewater from rubber industry in Malaysia. African Journal of Biotechnology 2010; 9(38): 6233-6243.
Tekasakul. Environmental problems related to natural rubber production in Thailand. J. Aerosol Res. 2010; 21:122-129. ID: 51063759
Ndi KS, Kofa GP, Nsoe MJJN, Amba EVM, Ngnie NP, Ali A. Elimination de l'azote et des Sucres de l'effluent de Caoutchouc par Biofiltration, Colloque International « Science de l'eau, du climat, et de l'environnement pour un développement durable de l'Afrique. 2011; 5 pp.
Vijayaraghavan K, Ahmed D, Yuzri A, Yazid A. Electrolytic treatment of Standard Malaysian Rubber process wastewater. Journal of Hazardous Materials 2007; 150: 351-356. https://doi.org/10.1016/j.jhazmat.2007.04.112
Ozbelge TA, Ozbelge OH, Baskaya SZ. Removal of phenolic compounds from rubber-textile wastewater by physico-chemical methods. Chemical Engineering and Processing 2002; 41: 719-730. https://doi.org/10.1016/S0255-2701(01)00189-1
Konieczny K, Bodzek. Ultrafiltration of latex wastewaters. Desalination 1996; 104: 75-82. https://doi.org/10.1016/0011-9164(96)00028-8
Jai SP, Girish K. Rubber processing industry effluent treatment using a bacterial consortium. Int. J. Curr. Microbiol. App. Sci 2014; 3(10): 775-782. ISSN: 2319-7706
Senthil P, Jeyachandran S, Manoharan C, Vijayakumar S. Microbial diversity in rubber industry effluent. Int. J. Pharm. Biol. Sci 2012; 2: 123-131. ISSN: 2230-7605
Shruthi S, Raghavendra MP, Swarna Smitha HS, Girish K. Bioremediation of rubber processing industry effluent by Pseudomonas sp, Int. J. Res. Environ. Sci. Tech 2012; 2: 27-30. ISSN 2249-9695
Cherian E, Jayachandran K. Microbial degradation of natural rubber latex by a novel species of Bacillus sp. SBS25 isolated from soil. Int. J. Environ. Res 2009; 3: 599-604. ISSN: 1735-6865
Alam MD, Fakhru'l RA. Enhanced settleability and dewaterability of fungal treated domestic wastewater sludge by liquid state bioconversion process. Water Research 2003; 37: 1118-1124. https://doi.org/10.1016/S0043-1354(02)00452-9
Prigione V, Tigini V, Pezzellla C, Anastasi A, Sannia G, Varesse GC. Decoloration and detoxification of textile effluent by fungal biosorption.Water Research 2008; 42: 1867-1878. https://doi.org/10.1016/j.watres.2008.03.003
Pokrel D, Viraraghavan T. Treatment of pulp and paper mill wastes. Review Science of Total Environnement 2004; 333: 1-3, 37-58. https://doi.org/10.1016/j.scitotenv.2004.05.017
Sakurai A, Yamomonto T, Makabe A, Kinoshita S, Sakakibara M. Removal of lignin in a liquid system by an isolad fungus. J Chem Technol Biotechnol 2001; 77: 9-14. https://doi.org/10.1002/jctb.519
Ndi KS, Nsoe MJJ, Kofa GP, Bessalla PE, Amba V, Kayem JG. Evaluation of the duration of inoculation of a granular pozzolan biofilter from strains of indigenous bacteria and yeasts isolated from a rubber industry effluent. Revue des Sciences de l'Eau 2016; 29(1): 27-34. https://doi.org/10.7202/1035714ar
Nsoe JJN, Mohammadou B, Ndi KS, Amba EV, Kofa GP, Kenfack AJ, Kayem GJ. Isolement et caractérisation des levures endogènes à fort potentiel de croissance dans les effluents de caoutchouc, 20e Conférence annuelle du Comité Camerounais de Biosciences. Ngaoundéré, Cameroun 2013.
Nsoe MN, Kofa GP, Ndi KS, Mohammadou B, Heran M, Kayem GJ. Biodegradation of Ammonium Ions and Formate During Ammonium Formate Metabolism by Yarrowia lipolytica and Pichia guilliermondii in a Batch Reactor. Water Air Soil Pollut 2018; 229: 162. https://doi.org/10.1007/s11270-018-3795-0
Nsoe MN, Kofa GP, Marc H, Ndi KS, Kayem GJ. Hydrodynamic Study and Influence of Physicochemical Parameters on Gas Retention in a Submerged Membrane Bioreactor. J Membr Sci Technol 2019; 10(1): 201.
Norme camerounaise - 2867: (2021). environnement-exigences relatives aux rejets des effluents liquides industriels. ICSN° 13.030.40
Rodier J, Bernard Legube, Nicole Merlet et coll. L'Analyse de l'eau. Dunod, Paris 2009. ISBN 978-2-10-054179-9.
Lowry OH, Rosebrough NJ, Farr AL, Randall R. Protein measurement with the folin reagents. J. Biol. Chem 1951; 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith E. Colorimetric method for determination of sugar and related substances. Anal. Chem 1956; 28: 350-356. https://doi.org/10.1021/ac60111a017
APHA (American Public Health Association), AWWA (American Water Works Association, WEF (Water Environment Federation. (2005). Standard methods for the examination of water and wastewater, 21st Ed. Washington D.C., USA
Kurakov AV, Popov AI. Nitrifying activity and phytotoxicity of soil microscopic fungi. Eurasian Soil Sci 1996; 28: 73-84.
Imajo U, Tokutomi T, Furukawa K. Granulation of Anammox microorganisms in up-fl ow reactors. Water Sci Technol 2004; 49: 155-163. https://doi.org/10.2166/wst.2004.0749
Schmidt I, Sliekers O, Schmid M, Cirpus I, Strous M, Bock E, Kuenen JG, Jetten MSM. Aerobic and anaerobic ammonia oxidizing bacteria competitors or natural partners. FEMS Microbiol. Ecol 2002; 39: 175-181. https://doi.org/10.1111/j.1574-6941.2002.tb00920.x
Lotti T, van der Star WRL, Kleerebezem R, Lubello C, Van Loosdrecht MCM. The effect of nitrite inhibition on the anammox process. water Res 2012; 46: 255 9-2569. https://doi.org/10.1016/j.watres.2012.02.011
Huberson A. (2005). Evolution du pH Pendant la fermentation alcoolique de moûts de raisins : modélisation et interprétation métabolique. Thèse de Doctorat de l' Institut National Polytechnique sde Toulouse, École Doctorale : Mécanique Energétique Génie Civil et Procédés. Pp 150.
Delrue F. (2008). Modélisation du procèdé bioréacteur a membranes immergées : calage et validation du modele ASM 1 sur un site réel - étude des interactions boues activées, conditions opératoires et membrane. These de doctorat de l'université bordeaux 2. Ecole science de la vie et de la santé. P201
Massé. (2004). Bioréacteur à membranes immergées pour le traitement des eaux résiduaires urbaines. Thèse de Doctorat d'Etat n° 759, Institut National des Sciences Appliquées de Toulouse, Pp192.
Tijhuis L, Huisman JL, Hekkelman HD, van Loosdrecht MCM, & Heijnen JJ. Formation of nitrifying biofilms on small suspended particles in airlift reactors. Biotechnology and Bioengineering 1995; 47(5): 585-595. https://doi.org/10.1002/bit.260470511
Boran Z, Yamamoto K, Ohgaki S, Kamiko N. Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale waswater treatment/reclamation. Water Sci. Technol 1997; 35(6): 37-44. https://doi.org/10.2166/wst.1997.0241
Mikkelsen LH, Keiding K. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering, Water Res 2002; 36: 2451-2462. https://doi.org/10.1016/S0043-1354(01)00477-8
Petros KG, Anastasios IZ. Biomass Characteristics and Their Effect on Membrane Bioreactor Fouling. Molecule 2019; 24: 2867-2871. https://doi.org/10.3390/molecules24162867
Wilén BM, Lant BJ. The influence of key chemical constituents in activated sludge on surface and flocculating properties Water Research 2003; 37: 2127-2139. https://doi.org/10.1016/S0043-1354(02)00629-2
WHO. Directives OMS pour l'utilisation sans risque des eaux usées, des excreta et des eaux ménagères 2012. ISBN 978 92 4 254685 9, IV, 71p.