In Vitro Photo-Catalytic Degradation of Chloramphenicol Using Pharmaceutical Wastewater
DOI:
https://doi.org/10.15379/ijmst.v10i1.1090Keywords:
Pharmaceutical wastewater, Cellulose acetate (CA), Cellulose triacetate (CTA) composite membrane, Titanium dioxide (TiO2), Chloramphenicol (CAP)Abstract
Abstract: In this work, the performance of composite membranes for the treatment of Chloramphenicol (CAP) pollutants was investigated from pharmaceutical industrial wastewater. The composite membrane was under operated with different concentrations of CAP with Titanium dioxide (TiO2) in 10mg/L, 20mg/L and 30 mg/L. The composite membranes were cross-linked with glutaraldehyde for the elimination of H2SO4. Characterizations of synthesized composite membranes were carried out to analyze functionality, morphology, and hydrophilic behaviours. In continuous operation, the different time intervals of TiO2 were removed in centrifuging. The performance of the composite membrane is the removal of pollutant CAP by UV analysis, and kinetics model at different concentrations. The degree of swelling and contact angle were measured in different concentrations of CAP at TiO2. Liquid Chromatography (LC) is used to CAP with Titanium dioxide mixtures. Mass Spectrometry (MS) can be used for structural identity with high specificity. The MS is also used to analyze CAP from pharmaceutical industrial wastewater. The membranes were subjected to filtration of pharmaceutical wastewater which gave a maximum rejection of 95% of Chloramphenicol.
Downloads
References
Allen J, Cole S, Hand K, Herbert S, Hinton J, Ismail N, et al. J Infect. 2011; 63(6): e56-7. https://doi.org/10.1016/j.jinf.2011.04.104
Bacchus AN, Javor GT. Stability of Escherichia coli membrane proteins during chloramphenicol treatment. AntimicrobAgents Chemother. 1975; 8(3): 387-9. https://doi.org/10.1128/AAC.8.3.387
Parsley LC, Consuegra EJ, Kakirde KS, Land AM, Harper WF, Liles MR. Appl Environ Microbiol. 2010; 76(11): 3753-7. https://doi.org/10.1128/AEM.03080-09
Amrish Tyagi, Srinivas Das, and K K Singhal, Indian Journal of Animal Sciences, 2008; 78(5): 510-514
Hu Q, Milenkovic L, Jin H, Scott MP, Nachury M V., Science (80-). 2010; 329(5990): 436-9. https://doi.org/10.1126/science.1191054
Lin H, Hopmans JW, Richter D deB. Vadose Zo J. 2011; 10(3): 781-5. https://doi.org/10.2136/vzj2011.0084
Xu A, Haines N, Dlugosz M, Rana NA, Takeuchi H, Haltiwanger RS, et al. In vitro reconstitution of the modulation of Drosophila Notch-ligand binding by fringe. J Biol Chem. 2007; 282(48): 35153-62. https://doi.org/10.1074/jbc.M707040200
Liu P, Zhang H, Feng Y, Yang F, Zhang J. Chem Eng J. 2014; 240: 211-20. https://doi.org/10.1016/j.cej.2013.11.057
Hapeshi E, Achilleos A, Papaioannou A, Valanidou L, Xekoukoulotakis NP, Mantzavinos D, et al. Water Sci Technol. 2010; 61(12): 3141-6. https://doi.org/10.2166/wst.2010.921
Akbari MZ, Xu Y, Lu Z, Peng L. Review of antibiotics treatment by advance oxidation processes. Environ Adv. 2021; 5: 100111. https://doi.org/10.1016/j.envadv.2021.100111
Elmolla ES, Chaudhuri M. Desalination. 2010; 256(1-3): 43-7. https://doi.org/10.1016/j.desal.2010.02.019
Petala M, Tsiridis V, Samaras P, Zouboulis A, Sakellaropoulos GP. Desalination. 2006; 195(1-3): 109-18. https://doi.org/10.1016/j.desal.2005.10.037
Akira Fujishima Xintong Zhangb, Donald A. Tryk, Surface Science Reports 63,12 515-582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem. 2010; 42(4): 586-91. https://doi.org/10.1016/j.soilbio.2009.12.007
Ren J, Song H, Guo H, Yao Z, Wei Q, Jiao K, et al. J Clean Prod. 2021; 325(October): 129332. https://doi.org/10.1016/j.jclepro.2021.129332
Sivakumar M, Mohan D, Rangarajan R.. Polym Int. 1998; 47(3): 311-6. https://doi.org/10.1002/(SICI)1097-0126(199811)47:3<311::AID-PI51>3.0.CO;2-2
Ali M, Zafar M, Jamil T, Butt MT. Desalination. 2011; 1; 270(1-3): 98-104. https://doi.org/10.1016/j.desal.2010.11.027
Ebrahim S, Morsy A, Kenawy E, Abdel-Fattah T, Kandil S. Desalination and Water Treatment. 2016; 57(44): 20738-48.
Olivares Moreno CA, Altintas Z. Membranes. 2022; 12(11): 1117. https://doi.org/10.3390/membranes12111117
Chen L, Li F, Jiang L, He F, Wei Y. J. Water Process Eng. 2022; 48: 102887. https://doi.org/10.1016/j.jwpe.2022.102887
Chang CC, Yu ST, Su JF, Cheng LP. J. Polym. Res. 2022; 29: 1-0. https://doi.org/10.1007/s10965-021-02867-6
Noorjahan SE, Sekar S, Sastry TP. Current Science. 2008; 10: 958-62.
Han J, Lee W, Choi JM, Patel R, Min BR. J Membr. Sci. 2010; 351(1-2): 141-8. https://doi.org/10.1016/j.memsci.2010.01.038
Khudzaifah NA, Basukiwardojo MM. World J Advan. Rese. and Revi. 2022; 15(1): 525-33. https://doi.org/10.30574/wjarr.2022.15.1.0719
Zhang J, Zhao R, Cao L, Lei Y, Liu J, Feng J, Fu W, Li X, Li B. J Hazar. Mater. 2020; 384: 121344. https://doi.org/10.1016/j.jhazmat.2019.121344
Cao Y, Qiu W, Zhao Y, Li J, Jiang J, Yang Y, Pang SY, Liu G. Chemi. Eng. J. 2020; 401: 126146. https://doi.org/10.1016/j.cej.2020.126146
Wu X, Zhuang X, Lv Z, Xin F, Dong W, Li Y, Jia H. Envir. Sci. Water Rese. & Techno. 2022; 8(11): 2531-44. https://doi.org/10.1039/D2EW00363E
Dong H, Fu Y, Wang P, Jiang W, Gao G, Zhang X. Environ. Pollu. 2022; 301: 119031. https://doi.org/10.1016/j.envpol.2022.119031