In Vitro Photo-Catalytic Degradation of Chloramphenicol Using Pharmaceutical Wastewater

Authors

  • G. Mahendran Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli–620 015,Tamil Nadu, India
  • G. Arthanareeswaran Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli–620 015,Tamil Nadu, India

DOI:

https://doi.org/10.15379/ijmst.v10i1.1090

Keywords:

Pharmaceutical wastewater, Cellulose acetate (CA), Cellulose triacetate (CTA) composite membrane, Titanium dioxide (TiO2), Chloramphenicol (CAP)

Abstract

Abstract: In this work, the performance of composite membranes for the treatment of Chloramphenicol (CAP) pollutants was investigated from pharmaceutical industrial wastewater. The composite membrane was under operated with different concentrations of CAP with Titanium dioxide (TiO2) in 10mg/L, 20mg/L and 30 mg/L. The composite membranes were cross-linked with glutaraldehyde for the elimination of H2SO4. Characterizations of synthesized composite membranes were carried out to analyze functionality, morphology, and hydrophilic behaviours. In continuous operation, the different time intervals of TiO2 were removed in centrifuging. The performance of the composite membrane is the removal of pollutant CAP by UV analysis, and kinetics model at different concentrations. The degree of swelling and contact angle were measured in different concentrations of CAP at TiO2. Liquid Chromatography (LC) is used to CAP with Titanium dioxide mixtures. Mass Spectrometry (MS) can be used for structural identity with high specificity. The MS is also used to analyze CAP from pharmaceutical industrial wastewater. The membranes were subjected to filtration of pharmaceutical wastewater which gave a maximum rejection of 95% of Chloramphenicol.

Downloads

Download data is not yet available.

References

Allen J, Cole S, Hand K, Herbert S, Hinton J, Ismail N, et al. J Infect. 2011; 63(6): e56-7. https://doi.org/10.1016/j.jinf.2011.04.104

Bacchus AN, Javor GT. Stability of Escherichia coli membrane proteins during chloramphenicol treatment. AntimicrobAgents Chemother. 1975; 8(3): 387-9. https://doi.org/10.1128/AAC.8.3.387

Parsley LC, Consuegra EJ, Kakirde KS, Land AM, Harper WF, Liles MR. Appl Environ Microbiol. 2010; 76(11): 3753-7. https://doi.org/10.1128/AEM.03080-09

Amrish Tyagi, Srinivas Das, and K K Singhal, Indian Journal of Animal Sciences, 2008; 78(5): 510-514

Hu Q, Milenkovic L, Jin H, Scott MP, Nachury M V., Science (80-). 2010; 329(5990): 436-9. https://doi.org/10.1126/science.1191054

Lin H, Hopmans JW, Richter D deB. Vadose Zo J. 2011; 10(3): 781-5. https://doi.org/10.2136/vzj2011.0084

Xu A, Haines N, Dlugosz M, Rana NA, Takeuchi H, Haltiwanger RS, et al. In vitro reconstitution of the modulation of Drosophila Notch-ligand binding by fringe. J Biol Chem. 2007; 282(48): 35153-62. https://doi.org/10.1074/jbc.M707040200

Liu P, Zhang H, Feng Y, Yang F, Zhang J. Chem Eng J. 2014; 240: 211-20. https://doi.org/10.1016/j.cej.2013.11.057

Hapeshi E, Achilleos A, Papaioannou A, Valanidou L, Xekoukoulotakis NP, Mantzavinos D, et al. Water Sci Technol. 2010; 61(12): 3141-6. https://doi.org/10.2166/wst.2010.921

Akbari MZ, Xu Y, Lu Z, Peng L. Review of antibiotics treatment by advance oxidation processes. Environ Adv. 2021; 5: 100111. https://doi.org/10.1016/j.envadv.2021.100111

Elmolla ES, Chaudhuri M. Desalination. 2010; 256(1-3): 43-7. https://doi.org/10.1016/j.desal.2010.02.019

Petala M, Tsiridis V, Samaras P, Zouboulis A, Sakellaropoulos GP. Desalination. 2006; 195(1-3): 109-18. https://doi.org/10.1016/j.desal.2005.10.037

Akira Fujishima Xintong Zhangb, Donald A. Tryk, Surface Science Reports 63,12 515-582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001

Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem. 2010; 42(4): 586-91. https://doi.org/10.1016/j.soilbio.2009.12.007

Ren J, Song H, Guo H, Yao Z, Wei Q, Jiao K, et al. J Clean Prod. 2021; 325(October): 129332. https://doi.org/10.1016/j.jclepro.2021.129332

Sivakumar M, Mohan D, Rangarajan R.. Polym Int. 1998; 47(3): 311-6. https://doi.org/10.1002/(SICI)1097-0126(199811)47:3<311::AID-PI51>3.0.CO;2-2

Ali M, Zafar M, Jamil T, Butt MT. Desalination. 2011; 1; 270(1-3): 98-104. https://doi.org/10.1016/j.desal.2010.11.027

Ebrahim S, Morsy A, Kenawy E, Abdel-Fattah T, Kandil S. Desalination and Water Treatment. 2016; 57(44): 20738-48.

Olivares Moreno CA, Altintas Z. Membranes. 2022; 12(11): 1117. https://doi.org/10.3390/membranes12111117

Chen L, Li F, Jiang L, He F, Wei Y. J. Water Process Eng. 2022; 48: 102887. https://doi.org/10.1016/j.jwpe.2022.102887

Chang CC, Yu ST, Su JF, Cheng LP. J. Polym. Res. 2022; 29: 1-0. https://doi.org/10.1007/s10965-021-02867-6

Noorjahan SE, Sekar S, Sastry TP. Current Science. 2008; 10: 958-62.

Han J, Lee W, Choi JM, Patel R, Min BR. J Membr. Sci. 2010; 351(1-2): 141-8. https://doi.org/10.1016/j.memsci.2010.01.038

Khudzaifah NA, Basukiwardojo MM. World J Advan. Rese. and Revi. 2022; 15(1): 525-33. https://doi.org/10.30574/wjarr.2022.15.1.0719

Zhang J, Zhao R, Cao L, Lei Y, Liu J, Feng J, Fu W, Li X, Li B. J Hazar. Mater. 2020; 384: 121344. https://doi.org/10.1016/j.jhazmat.2019.121344

Cao Y, Qiu W, Zhao Y, Li J, Jiang J, Yang Y, Pang SY, Liu G. Chemi. Eng. J. 2020; 401: 126146. https://doi.org/10.1016/j.cej.2020.126146

Wu X, Zhuang X, Lv Z, Xin F, Dong W, Li Y, Jia H. Envir. Sci. Water Rese. & Techno. 2022; 8(11): 2531-44. https://doi.org/10.1039/D2EW00363E

Dong H, Fu Y, Wang P, Jiang W, Gao G, Zhang X. Environ. Pollu. 2022; 301: 119031. https://doi.org/10.1016/j.envpol.2022.119031

Downloads

Published

2023-03-08

How to Cite

[1]
G. Mahendran and G. Arthanareeswaran, “In Vitro Photo-Catalytic Degradation of Chloramphenicol Using Pharmaceutical Wastewater”, ijmst, vol. 10, no. 1, pp. 17-30, Mar. 2023.