Removal of Heavy Metals from Water: Technological Advances and Today's Lookout Through Membrane Applications

Authors

  • Pallavi Mahajan-Tatpate Department of Chemical Engineering, Bharati Vidyapeeth Deemed to be University, College of Engineering, Pune, India
  • Supriya Dhume Department of Chemical Engineering, Bharati Vidyapeeth Deemed to be University, College of Engineering, Pune, India
  • Yogesh Chendake Department of Chemical Engineering, Bharati Vidyapeeth Deemed to be University, College of Engineering, Pune, India

DOI:

https://doi.org/10.15379/ijmst.v8i1.1021

Abstract

Abstract: Water contamination by heavy metal is a great environmental concern. It leads to many health issues ranging from diarrhea, vomiting to life-threatening diseases like cancer, lung/kidney damage. This also affects soil biota/plant growth. Metal-ions have a tendency of bioaccumulation, hence pose a major issue upon entry in the food-cycle. Their removal from water is necessary before use for human/agricultural applications. Different methods reported for metal-ion separation are conventional methods viz. chemical-precipitation, ion-exchange, adsorption, coagulation, flocculation, flotation, electrochemical possess good separation efficiency, but the generation of a secondary pollutant, recovery issues restrict their applicability. Hence, there is a need of reliable techno-economical, environment-friendly, sustainable separation, recovery method. Membrane-based methods viz. reverse-osmosis, nanofiltration, electrodialysis, ultrafiltration has ability to treat water for heavy metal recovery without chemical contamination. Recovered materials can be recycled/utilized further. Among different membrane-based processes, micellar/polymer enhanced ultrafiltration requires chemical addition and affects purity. Electrodialysis, reverse-osmosis, nanofiltration processes require large energy/operational issues. Hence, simple ultrafiltration with membrane modification is preferable as low-energy requirements. This paper discusses details of conventional/advanced methods for heavy metal separation with the fundamental process, parameters, advantages/limitations.

Keywords: Contamination, Effluent, Health / Environmental issues, Methods, Regeneration / Recovery, Separation.

Downloads

Download data is not yet available.

Downloads

Published

2021-03-08

How to Cite

[1]
P. . Mahajan-Tatpate, S. Dhume, and Y. Chendake, “Removal of Heavy Metals from Water: Technological Advances and Today’s Lookout Through Membrane Applications”, ijmst, vol. 8, no. 1, pp. 1-21, Mar. 2021.

Issue

Section

Articles