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Abstract: SBR/ionic liquid modified CNT Nanocomposites were prepared using different concentration of CNT. Nano 
scale dispersion of CNT affected the properties of SBR. The results have been compared with the unfilled SBR films. 
Cure characteristics and mechanical properties such as tensile strength, modulus, abrasion resistance and hardness 
were measured for different composites. Morphological behaviour and structural characteristics of the composites were 
investigated by AFM, TEM, FTIR and Raman spectroscopy. Microstructural development in presence of filler and 
interfacial interaction between modified CNT and polymer matrix led to enhanced properties. The pervaporation 
performances of membranes were analysed using a toluene/heptane mixture. Membranes displayed high selectivity 
towards heptane. The influence of feed composition on pervaporation was also analysed. The 5 phr CNT loaded 
membrane showed enhanced membrane permeance and selectivity value, an improvement of 18% over the neat 
polymer. A drop in selectivity and an increase in permeation rate were observed at higher CNT loadings. 
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1. INTRODUCTION 

Polymer based nano composites serve as very 
promising, cost effective candidates for applications in 
wide range of fields which includes mechanical 
engineering, nano scale electronics, chemical sensing, 
tissue engineering, bio sensing and membrane 
fabrication [1, 2]. These materials consist of polymer 
matrix which contains various nano fillers such as clay, 
CNT, graphene, metal oxides etc [3, 4]. Among various 
nano fillers CNT has an excellent combination of 
mechanical, electrical and thermal properties which 
make CNT a potential candidate to replace the 
conventional nano fillers in the fabrication of 
multifunctional polymer nano composites [5, 6]. The 
major issues in the preparation of MWNT reinforced 
polymer nano composites are located in efficient 
dispersion of CNTs within the polymer matrix. CNTs 
have an inherent tendency to form agglomerates in the 
polymer matrix which diminishes the reinforcing effects 
[7]. So proper surface functionalization of CNT is 
inevitable for the preparation of multifunctional CNT 
based polymer composites. Non covalent 
functionalization of CNT using ionic liquid is a green 
and clean approach for the modification of CNT. 
Fukushima et al. succeeded to obtain a superior  
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dispersion of CNTs in room temperature ionic liquid (IL) 
by mixing single walled carbon nano tubes (SWCNTs) 
with 1-butyl-3-methylimidazolium tetrafluoroborate 
(BMIMBF4) [8]. Ionic liquid modified CNT polymer 
composites with improved mechanical, thermal, 
electrical and oxidation resistance properties are 
prepared by various researchers [9-11]. 

Several studies have been reported on the effective 
pervaporation separation of various solvent mixtures by 
using CNT based composite membranes. Novel 
ploy(vinyl alcohol)/carbon nano tube hybrid membranes 
for pervaporation separation of benzene/cyclohexane 
mixtures was prepared by Peng et al. [12]. Choi et al. 
reported a facile method for the pervaporation of water 
ethanol mixtures by using mutiwalled carbon nano tube 
based poly (vinylalcohol) membranes [13]. The 
pervaporation dehydration of ethanol by hybrid 
membranes incorporating Fe3O4@MWCNT nano fillers 
was fabricated by Gao et al. [14] This study 
demonstrated that decorating hydrophilic inorganic 
nano particles onto CNTs was a suitable method to 
improve the dispersion of CNTs in polymer matrix as 
well as the separation performance of water-selective 
polymer–CNTs hybrid membranes. 

The styrene-butadiene rubber (SBR) is one of the 
most widely used rubbers due to its inexpensive cost 
and good mechanical property. Gum vulcanization of 
SBR leading to lower mechanical properties due to the 
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lack of self-reinforcing ability. CNTs are widely used as 
the reinforcing agents for SBR to improve overall 
performance of composites. In this study, SBR and 
surface modified CNT composites with varying CNT 
loadings (1, 3, 5, 7 and 10 phr) were prepared. The 
pervaporation characteristics of these films using 
toluene – heptane (50/50) mixtures were analysed and 
then compared. Mechanical properties such as tensile 
strength, abrasion resistance and hardness values 
were compared for composites with different CNT 
loading. AFM, TEM, FTIR and Raman study was 
performed to evaluate the morphology and structural 
characteristics.  

2. EXPERIMENTAL SECTION 

2.1. Materials 

Styrene Butadiene rubber (Synaprene 1502) with a 
25% styrene content was used for this study. MWCNT 
obtained from Nanocyl, Belgium was used as the filler. 
The diameter of the tubes ranges from 10 to 20 nm and 
the average length is 1.5 µm. The carbon content of 
the material is 90% and the rest is metal oxide 
(impurity). The Ionic Liquid 1-Benzyl-3-
methylimidazolium chloride (Fluka Germany) was used 
as received. The zinc oxide (ZnO), stearic acid, 
Tetramethylthiuram Disulfide (TMTD), 2, 2' 
Dibenzothiazyl Disulfide or 2,2'-Dithiobisbenzo 
Thiazole (MBTS) and Sulphur used in this study were 
of industrial grades. 

2.2. Composite Preparation 

Carbon nano tubes were surface modified by ionic 
liquid by simply grinding both in an agate mortar for 30 
minutes. Unfilled and modified CNT filled SBR 
membranes were prepared. The mixing was done in 
laboratory scale two roll mixing mill at a nip gap of 1.3 
mm and at a friction ratio of 1:1.4. The nip gap (1.3 
mm), mill speed ratio (1:1.4), time of mixing (20 min) 
and temperature (280C) of the rolls were kept constant. 
First rubber was masticated for 2 minutes and then all 
the ingredients were added one by one and the mixing 
was completed within 20 minutes. Cure properties of 
the compounded samples were determined using a 
Moving Die Rheometer at a temperature of 1600C. 
Samples were then moulded to a thin film by using an 
electrically heated hydraulic press under a pressure of 
120 bars at 1600C. Samples were prepared with 
different CNT contents and designated as ST0I0, ST1I1, 

ST3I1, ST5I1, ST7I1 and ST10I1. 

2.3. Membrane Characterizations 

The cure characteristics of the SBR composites 
were determined with a moving die rheometer (MDR 
3000, Mon Tech, Germany) at 1600C for 30 min. 
Atomic force microscopy observations were carried out 
in air on as-received sample surfaces using Agilent 
5500 AFM operated in contact mode. Measurements 
were carried out using standard triangular silicon nitride 
cantilevers (MSCT from Bruker). Topography, 
deflection and friction data were collected 
simultaneously. The images were taken at 512 x 512 
pixels resolution. The morphology of the composites 
was analysed by TEM (JEM-2100HRTEM). The 
cryocut specimens prepared using an ultra-microtome 
(Leica, Ultra cut UCT) were placed on a 300 mesh Cu 
grids (35 mm diameter) and were analysed. The 
transmission electron microscope was operated at an 
accelerating voltage of 200 kV. Stress–strain tests 
were performed with a universal material testing 
machine (Zwick model 1435) with a crosshead speed 
of 500 mm min−1 according to the standard PN-ISO 37-
2005 

2.4. Pervaporation Studies 

The permeation cell is assembled from two half 
cells of column couplers made of glass and tightened 
with locked clamps. The capacity of each cell was 
about 100 mL and the effective area of the membrane 
in contact with feed solution was 16.61 cm2. The 
membrane was first swelled in the organic mixture to 
be separated and then mounted in the cell. The 
vacuum was then pumped out on the downstream side. 
Feed solution is introduced into the upper part of 
membrane which is maintained at atmospheric 
pressure. The membrane was kept in the pervaporation 
cell for about 1 h in each run to reach equilibrium 
conditions before collecting the permeate. Once steady 
state was reached permeate was collected in traps 
immersed in liquid nitrogen. The flux was calculated by 
weighing permeate on a digital microbalance Mettler 
Toledo (JB1603-C/FACT) with an accuracy ±0.0001 g. 
The feed and permeate compositions of all of the 
mixtures were determined by measuring their refractive 
indexes with a refractometer. All the experiments were 
carried out at room temperature and were repeated to 
obtain reproducible results.  

2.5. Pervaporation Characteristics 

The pervaporation performance of each membrane 
can be analysed by calculating separation factor and 
total flux. The selectivity of membrane was 
demonstrated by separation factor and defined as [15] 
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where, Yi and Yj represent the weight fractions of 
heptane and toluene in permeate and Xi and Xj 
represent those of heptane and toluene in the feed 
respectively.  

The permeability was evaluated by the normalized 
flux, J (Kg m-2 hr-1) as defined in Eq. (2) to compare 
pervaporation performances of membranes [16]. 

At
QJ =             (2) 

where Q, is the quantity in kilograms of permeate 
collected after a time (t) and A is the effective area of 
the membrane. 

Pervaporation Separation Index was calculated by 
the following equation, [17] 

PSI =Q (α-1)           (3) 

Component flux [18] for the separation of azeotropic 
composition of methanol and toluene mixture were 
calculated by using equation 

JHeptane= JXHeptane and JToluene= JXToluene        (4) 

JHeptane and JToluene are the component fluxes, J is the 
flux, XHeptane and mXToluene are the permeate 
composition of the mixtures. 

3. RESULTS AND DISCUSSION 

3.1. Cure Rheographs 

 

Figure.1: Rheographs of SBR composites. 

Vulcanization curves of the neat SBR and SBR-
CNT composites are represented in Figure 1. It can be 
observed that scorch time is decreased by the addition 
of CNT. The reason for this due to the improvement in 
the thermal conductivity of the SBR material because 
the thermal conductivity of the CNTs is 104 times 
greater than that of polymer materials, and thus could 
promote requirement of vulcanization [19]. Increment of 
CNT in the SBR matrix has reduced the mobility of the 
macromolecular chains of the SBR during vulcanization 
which in turn leads to the increase of torque with filler 
loading which clearly demonstrated the reinforcing 
nature of CNT due to the better interaction between 
ionic liquid modified CNT and rubber. The reason for 
the shorter cure time of the rubber composite 
containing ionic liquid modified CNT could be attributed 
to the increase of thermal transition of SBR in the 
presence of CNT due to the increased the specific 
surface area which gradually improves the filler-filler 
and filler-matrix interactions. Reports were available on 
the cure acceleration properties of ionic liquid in rubber 
nanocomposites which eliminates the use of different 
accelerators in rubber vulcanization [20, 21]. 

3.2 Mechanics 

Table 1: Mechanical Characteristics of Composites 

Sample Tensile 
Strength (MPa) 

Elongation at 
Break 

Tensile 
Modulus 

ST0I0 1.296 145.7 2.58 

ST1I1 2.249 143.05 3.04 

ST3I1 3.42 132.74 4.106 

ST5I1 4.63 123.61 5.633 

ST7I1 5.78 116.07 7.432 

ST10I1 6.798 106.94 9.362 

 
The tensile strength and young’s modulus of the 

nano composites show higher values compared to the 
neat SBR. Composites containing 10 phr showed 
significant improvements in tensile strength (a 424% 
increase) and modulus (262%) as compared to unfilled 
rubber. Presence of ionic liquid prevents the 
aggregation tendency of CNT, and this resulted in a 
microstructural development which explains the 
improvement in the mechanical behaviour of filled 
composites compared to unfilled one [22]. The driving 
force behind the fine distribution of CNT in the matrix is 
the cation–π interaction between ionic liquid and CNT. 
In all cases CNT acts an effective reinforcement which 
facilitates the efficient load transfer from matrix to 
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dispersed phase. Stronger interactions between 
modified CNT and polymer molecules associated with 
larger contact surface result in more effective constraint 
of the motion of polymer chains. A third phase between 
polymer matrix and CNT particles with different 
properties from both primary constituents is much 
necessary to understand the unexpected improvement 
in the mechanical behaviour of nano composites. A 
good interface will restrict the deformation of the 
polymer and lead to a higher tensile strength [23]. 

Abrasion resistance of SBR vulcanizates was 
determined in terms of DIN volume loss. Figure 2 
shows DIN volume loss of ionic liquid modified 
CNT/SBR vulcanizates containing various amount of 
CNT. DIN volume loss of SBR vulcanizates reduced as 
filler content increased. Addition of reinforcing fillers 
(i.e., carbon black) in conventional composites 
improves abrasion resistance by suppressing tearing of 
polymer matrix [24]. By incorporating reinforcing nano 
filler into the rubber matrix, abrasion resistance of 
unfilled rubber can be increased. The gliding 
movements of abrasives on a solid composite surface 
resulted in mass removal and its mechanism depend 
upon the hardness of the polymer, an important 
criterion which determines the amount of mass 
removal. The presence of rigid reinforcing CNT in the 
matrix increases the effective hardness of the 
composite, which acts to decrease the amount of mass 
elimination. There was a gradual increase in hardness 
value with increase in the CNT loading due to the 
increased filler- filler and filler-polymer interaction which 
in turn resulted in the high crosslink density [25, 26]. 

3.3. Raman Spectroscopy 

Raman spectrum of neat SBR rubber is shown in 
Figures 3. And 4 shows a comparison of the 514.5 nm 
excited Raman spectra of MWCNTs and 
SBR/MWCNTs (5 phr). A band at approximately 1350 

cm-1 in the Raman spectrum of MWCNTs was 
assigned to the D band which is due to the defects or 
disorders in the graphitic structure. The G band at 1580 
cm-1 was attributed to the in-plane vibrations of the 
graphitic wall. G band for composites is used to 
investigate the load transfer in nanocomposites and the 
state of filler dispersion in the polymer matrix [27] 
Raman spectroscopy is identified to provide information 
on the structure, crystallinity and ageing of both 
components of a composite material by the careful 
evaluation of the associated vibrational features (band 
frequencies and widths). Variations in CNTs band 
spectral features have been also suggested as 
indicators of their dispersion/loading characterization. 
Several studies have been reported on the 
characterization of polymer nanocomposites dispersion 
state based on Raman spectroscopic characterizations. 
In most of the cases researchers found a shift of G 
band depending on the concentration of MWCNT. The 
shifts observed in the Raman bands of CNTs arise 
from three mechanisms: chemical interaction between 
CNTs and matrix, such as charge transfer or chemical 
bonds changes in the tube−tube interactions due to the 
van der waals force of attraction between individual 
tubes and mechanical compression from the polymer 
matrix.  

 

Figure 3: Raman Spectrum of Neat SBR. 

 

Figure.2: DIN abrasion test results and Shore A hardness of the rubber composites. 
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Figure 4: Raman spectra of pristine MWCNTs and the 
composites containing 5wt% loading of modified CNT. 

3.3. FTIR 

 
Figure 5: FTIR spectrum of Neat SBR and its composite 
loaded with 5 phr ionic liquid modified XNT. 

From the FTIR spectrum of SBR it is clear that 
(Figure 5) showed a band at 699 cm1 that is related to 
1,4-cis, a band at 910 cm-1 to 1,2-vinyl double bonds, 
and a band at 969 cm-1 to 1,4-trans, respectively [28]. 
From the FTIR analysis it is revealed that there is no 

such huge variation in the appearance of spectrum of 
neat rubber and its CNT filled composite except in the 
intensity of each band. This is due to the secondary 
interaction between ionic liquid modified CNT and SBR 
[29]. 

3.5. Atomic Force Microscopy 

The topographic features as well as the phase 
characteristics of surfaces were investigated using 
AFM in phase contrast tapping mode. The second 
image of Figure 6 show that the SBR film surface is 
thoroughly modified, and the incorporation of nano 
CNT strongly influences the film morphology. However, 
the distribution and the dimensions of the heaps/hills 
are almost homogeneous, indicating a good dispersion 
of nano CNT in the polymeric matrix. 

 

Figure 6: AFM topography (A) and deflection (B) images and 
the 3D view (C) of the sample with 5 phr CNT. 

 

Figure 7: Transmission electron microscopy images of composites containing 5 phr CNT. 
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3.6. Transmission Electron Microscopy 

The extent of dispersion of nano fillers in a rubber 
matrix is one of the most critical parameters which 
control the overall performance properties of the 
nanocomposites. Presence of aggregates or 
agglomeration of filler particles in the rubber matrix 
leads to stress concentration points resulting in early 
failure. This shows a substantial dispersion of modified 
CNT throughout the SBR matrix attributed to the 
molecular ordering of ionic liquids between individual 
tubes. It is well known that the shielding effect of ionic 
liquids on the π-π stacking interaction among 
MWCNTs takes the key role in dispersing the 
MWCNTs. The ionic liquids interact with MWCNTs 
through weak van der Waals interaction.  

3.7. Pervaporation of Heptane-Toluene Mixture 
through SBR/CNT Nanocomposites 

3.7.1. Effect of CNT Loading 

 

Figure 8: Variation of flux and separation factor with 
concentration of CNT for the separation of 50/50 composition 
of toluene/heptane mixture. 

Results of the effect of CNT content on flux and 
separation factor of the membranes are given in Figure 
8. As seen from Figure the separation factor of SBR 
membrane towards heptane was increased after 
adding CNT into SBR matrix upto 5 phr CNT and then 
gradually decreased. Membranes containing 5 phr CNT 
showed maximum heptane selectivity which is about 
18% greater than that of unfilled membranes. The 
increased separation factor is due to the nano level 
dispersion of CNT in SBR rubber and the increased 
filler polymer interactions. The sorption and diffusion 
are considered as then rate-determining step of the 
mass transfer. The reason behind the high selectivity of 

5 phr loaded SBR membrane is that when 5 phr CNT is 
introduced into SBR bulk, high aspect ratio of CNT and 
homogeneous distribution make the CNT maximize the 
possible attachment points with the polymer, that is, the 
cross linking density of the CNT and SBR chains can 
be effectively increased. Hence, higher separation 
factor is obtained. MWCNT could enhance sorption 
selectivity of SBR membranes towards heptane 
compared to toluene because membranes became 
more swollen in toluene which facilitates the retention 
of large number of heptane molecules on the permeate 
side as shown in schematic diagram (Figure 11). The 
overall pervaporation performance of the membranes 
was calculated using PSI it is shown in Figure 9. 
Maximum PSI and enrichment factor was shown by 
SBR membrane with 5 phr CNT due to the nano level 
dispersion of CNT in SBR with the aid of ionic liquid.  

 

Figure 9: Variation in PSI with the concentration of CNT. 

 

Figure 10: Variation in component flux and total flux with 
concentration of CNT. 
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Figure 10 shows the variation in component flux and 
total flux with filler loading. Total flux and component 
flux increases with increase in filler loading. 
Component flux for heptane is more and it is very close 
to total flux. It indicates the selective transport of 
heptane through the membrane. 

 

Figure 11: Schematic representation of the mechanism of 
pervaporation separation of liquid mixtures through CNT 
network structure. 

3.7.2. Effect of Ionic Liquid Aoncentration 

Table 2: Effect of Ionic Liquid Concentration on the 
Pervaporation Characteristics of SBR 
Membrane 

Sample Flux Separation Factor PSI 

ST5I0 0.1788 1.879 0.1571 

ST5I1 0.1803 1.941 0.1696 

ST5I5 .1780 1.900 0.1602 

 
Effect of ionic liquid concentration used for the 

surface modification on the pervaporation performance 
of SBR/CNT composites is given in Table 2. From the 
tabulated values it is clear that there is an optimum 
concentration for ionic liquid at which membrane 
performance is maximum. At higher concentration of 
ionic liquid there is a drop in flux, separation factor and 
PSI values.  

3.7.3. Influence of Feed Composition on 
Pervaporation 

Separation factor increases with increase in 
concentration of toluene up to a certain concentration 
of toluene and then decreases. As the concentration of 
toluene in the feed is increased polymer membrane 

became more swollen which helps in the easy passage 
of small heptane molecules through the membrane 
there by increasing the heptane selectivity. Flux is 
gradually increasing with increasing the toluene 
concentration. At higher loading polymer became more 
swollen so some toluene molecules are passing to the 
permeate side along with heptane molecules thereby 
decreasing separation factor and increasing flux at 
higher toluene concentration in the feed.  

 

Figurer 12: Influence of feed composition on pervaporation. 

CONCLUSION 

The present work investigated the influence of 
functionalized MWCNT on the pervaporation and 
mechanical properties of SBR nanocomposites. In 
corporation of modified CNT to SBR led to a dramatic 
improvement in the mechanical characteristics 
especially tensile strength and modulus of the 
composites due to the microstructural development and 
interfacial interaction between CNT and matrix. Raman 
and AFM analysis supports the microstructure 
development and role of interface in determining the 
behaviour of composites in presence of CNT. The 
pervaporation performances of membranes were 
analysed using a toluene/heptane mixture. Membranes 
displayed high selectivity towards heptane. The 
influence of feed composition on pervaporation was 
also analysed. The 5 phr CNT loaded membrane 
showed enhanced membrane permeance and 
selectivity value. A drop in selectivity and an increase 
in permeation rate were observed at higher CNT 
loadings. 
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