
International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 5, pp 1192-1199

1192

An Analysis Based on Amazon S3 That Makes Use of Real-World
Service Simulation Techniques Is Presented in This Study,
Which Aims to Investigate the Latency Performance of
Distributed Storage Systems

Suriguge1*, Noraisyah Binti Tajudin2

1*Research Scholar Lincoln University College Malaysia
2Lincoln University College Malaysia
Email: Suriguge@Lincoln.Edu.My

Abstract
The generation of parity nodes is strongly dependent on data nodes in the erasure codes that are currently in use. The higher the
tolerance for mistake, and the more people are willing to It is possible that our chances of successfully recovering the original data
will improve if we are able to increase the number of parity nodes as well. The storage overhead will increase as the number of
parity nodes increases, and the repair load on data nodes will also increase. This is due to the fact that data nodes are queried often
in order to assist in the repair of parity nodes at the same time. In the event that a global parity node fails in LRC [25, 26], for
example, it is necessary to solve all of the data nodes. As a consequence of the "increasing demands on the network's data nodes,"
the amount of time required to process read requests for data nodes would increase more than before. Google search is an example
of an application that should not be used for retrieving data on a regular basis. "Produces both data and parity nodes, it is possible
for the latter to take over some of the repair work that is normally done by the former. This is done in an effort to reduce the amount
of time that is spent waiting." To put it another way, the number of data nodes that may be accessed does not change under any
circumstances, regardless of whether or not a parity node is operational. When it comes to storage costs, it would seem that parity
nodes suffer extra expenses. If the design is correct, generating parity nodes by employing parity nodes may help reduce access
latency without increasing or lowering the storage needs. This is something that we will demonstrate in the coming sections, which
are over your head.

Keyword: Hierarchical Tree structure, data retrieval, data nodes.

1. Introduction

The last ten years have seen a substantial rise in
the popularity of a number of online activities,
including searching, social networking, and online
shopping. Over the course of each day, we
generate an enormous quantity of digital data. Both
the commercial world and the research world are
struggling with the challenge of building storage
systems that are both cost-effective and efficient
(M. Foley, 20128). Because of the increase in the
amount of data, it has become necessary to
develop large-scale distributed storage systems.
To name just a few instances, there is the Hadoop
Distributed File System (HDFS) and Windows
Azure Storage (WAS]. With the help of these
storage systems, it is possible to meet the
requirements of cloud-scale applications, high-
speed computation, and massive amounts of data
with excellent dependability and ubiquity. When
developing a large, distributed storage system, it is
usual practice to make use of a large number of
storage devices that are both affordable and
unstable. These individual nodes are subject to
failures, and it is typical for storage devices to be
unstable. Failure is the norm rather than the
exception

when it comes to these systems, despite the fact
that they provide significant benefits in terms of
expanding their capacity (K. Rashmi, 2019) As a
consequence of this, we face the challenge of
overcoming frequent system failures and ensuring

that these systems are both dependable and
robust.

2. Background of the Study

Redundancy, in the form of replication or erasure
coding, offers a high degree of failure protection in
large-scale distributed storage systems (P.
Gopalan,2019).
GFS distributes the information across three
distinct storage nodes, guaranteeing that it may be
retrieved reliably. It's easy to meet Google's
frequent reading criteria using this straightforward
replication strategy. Replication" keeps data
available and prevents data loss when nodes fail
due to the high storage needs for a certain level of
fault tolerance.
To implement general erasure coding systems,
files with a given size M may "be partitioned into k
sections (also referred to as "k nodes"), each with
a size of M, and encoded into n encoded nodes.
For a given level of reliability, the storage needs
may be drastically decreased utilising the erasure"
coding strategy compared to replication. For
instance, because to their Maximum-Distance-
Separable (MDS) property, Reed Solomon (RS)
codes are among the most popular and effective
storage codes. “Standard code that has a
codeword" describes this component. Each MDS
codeword has n nodes, and any combination of
those k nodes may be used to reconstruct the
whole text (G. Joshi, 2019). Furthermore, when a
codeword contains original data nodes, we call it a
systematic code. In every possible MDS codeword,
there are k original data nodes and an equal

mailto:Suriguge@Lincoln.Edu.My

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 5, pp 1192-1199

1193

number of "n-k parity" nodes. It is standard practice
to store codeword nodes on separate storage
devices in various places to reduce the likelihood
of failures caused by "common" causes. Shows
that any three of the six nodes that make up a
“MDS codeword” may decode the whole
codeword.1. The code makes sense since d1
through d3 are not coded. Coding-based large-
scale distributed storage systems typically use a
code with a fixed size for each codeword and a
predefined set of (n, k) parameters to facilitate
operation and maintenance. For Face-HDFS
books, HDFS uses RS codes (14.0) and for GFS
II, it uses RS codes (9.6). A codeword consists of
many files with a set total size in real-world large-
scale distributed storage systems. The consistent
coding rate allows us to "better investigate" the
features of the storage system.

3. purpose of the research

Current erasure codes mostly use data nodes to
generate the parity nodes. It is possible to increase
failure tolerance and the number of alternatives to
recover the original data by increasing the number
of "parity nodes" using this strategy (R. Nelson,
2019. Increasing the number of parity nodes will
lead to higher storage overhead and a heavier
repair burden on data nodes since they are often
used to aid with parity node repairs. For instance,
in LRC, if a global parity node fails, all data nodes
must be repaired. The "increased workload on data
nodes" causes read requests to take more time to
process. A programme that often retrieves data is
not always desirable, such as.
One way to cut down on wait times is to generate
parity nodes alongside data nodes, which will
transfer part of the repair work from data nodes to
them. That is, we may increase the number of data
nodes that can be accessed by simply replacing a
failed parity node with another parity node.
However, it seems that the storage overhead for
parity nodes is larger. As we shall see in the next
sections, it is possible to generate parity nodes
with parity nodes to reduce storage overhead
without raising or decreasing access latency with a
good design (G. Liang,2018).
Researchers in this research will look at how well
"Hierarchical Tree Structure Code (HTSC) and
High Failure-tolerant Hierarchical Tree Structure
Code (FH HTSC) will" work.

4. Literature Review

Redundancy is given in large-scale distributed
storage systems by the use of replication or
erasure coding, which offers a high degree of
protection against failure (S. Chen,2018).
Through the distribution of the information among
three distinct storage nodes, the GFS system
guarantees that data may be retrieved in a
dependable manner. The frequent read needs that
Google has may be readily handled by using this
simple replication strategy [6]. The use of

replication helps to ensure that data is always
accessible and prevents data loss in the event that
a node fails. This is because replication requires a
significant amount of storage space for a relatively
high level of fault tolerance.
"Files of fixed size M can be divided into k parts
(sometimes referred to as "k nodes"), each of
which is of size M, and encoded into n encoded
nodes for use in generic erasure code systems,"
according to the definition of the term. Through the
utilisation of the erasure" coding strategy, it is
possible to drastically lessen the amount of storage
that is necessary for a given level of dependability
in contrast to the replication method. As an
instance, Reed Solomon (RS) codes are among
the most extensively used and most effective
storage codes due to the fact that they possess the
Maximum-Distance-Separable (MDS) property (Q.
Shuai,2017).
A codeword is a component of a "standard code,"
which is an element of the code. In an MDS
codeword, there are n nodes, and any k of those
nodes may be used to reassemble the full text
regardless of which node is chosen. A further point
to consider is that a codeword is considered to be
a systematic code if it contains the original data
nodes. Every viable MDS codeword has k original
data nodes plus an equal number of "n-k parity"
nodes [5]. This is the case regardless of the
codeword. In order to prevent failures that are
caused by common circumstances, it is standard
practice to store the nodes of a codeword on
various storage devices located in separate
places.
According to the diagram in Figure 1.1, any three
of the six nodes that make up a (6,3) "MDS
codeword” have the ability to decode all of the
information contained inside the codeword. In light
of the fact that d1 through d3 are not coded, the
code is rational. When it comes to storing its data,
large-scale distributed storage systems that make
use of coding often use a code that has a preset
set of (n, k) parameters and a fixed size for each
codeword. This makes the system simpler to
manage and run. In HDFS and GFS II, there are
two different kinds of RS codes that are used:
(14,10) for Face-HDFS books and (9,6) for GFS II.
Both of these codes are used to store data.
According to this definition, a codeword is
comprised of several files that have a set total size
when applied to genuine large-scale distributed
storage systems. Because of the consistent coding
rate, we are able to conduct a more thorough
investigation of the properties of the storage
system.

5. Research Questions

1. What "are the characteristics of latency in

direct" readings?
2. Which one is the "best methods for direct

readings in order to minimise" latency?

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 5, pp 1192-1199

1194

3. Is there "any correlation between latency
performance of direct" reads and degraded
reads.

6. Methodology

When dealing with system failures, one method
that may be used in distributed storage systems is
the utilisation of erasure codes and replications.
Generally speaking, codes that are often used in
practice are systematic codes, which means that
each codeword comprises a copy of the data that
was originally collected. There is also the
possibility of using erasure coding in Windows
Azure storage (WAS) systems; however, this is
only allowed when a file exceeds a certain size,
such as three gigabytes. In the event that you are
just interested in a specific section of the file, the
storage nodes will be able to get it from one of the
enormous files that the codeword operates with.
These files are often quite big in practice (we refer
to these requests as direct reads). The requests for
k-access reads are another form of requests. In
this sort of request, each request must read the
whole file in a codeword and must access at least
k nodes. The amount of direct and k-access reads
that are carried out via a distributed storage system
will determine the latencies that are experienced
by the system. To the best of our knowledge, this
is the very first time that direct readings have been
investigated from a comprehensive standpoint in
any of the prior studies.
Latency performance is considered "crucial in
distributed storage systems, and some studies
claim that codes can minimise latency in data
centres, while many other strategies have been
proposed to reduce latency in distributed storage"
system configurations. Previously conducted
research has, for the most part, disregarded direct
readings and has solely focused on k-access
information. To our knowledge, there has been no
investigation into the ways in which RedS may
expedite direct readings.The Random Scheme
(RanS) only sends requests to those k nodes in a
random fashion, in contrast to RedS, which sends
requests to all n nodes for each k-access read.
When compared to RanS, RedS necessitates a
greater time and resource commitment that must
be made. When it comes to realistic distributed
storage systems, RanS is a popular choice since it
is simple to deploy and does not need any extra
information or resources. This feature makes it an
attractive option.

7. Results

To simplify matters, we assume a homogeneous
situation in which the direct read arrival rate for the
content of each data node is the same and the
proportion of direct read task for each data node is
likewise the same, namely x. General read arrival
rate for data and parity nodes may be obtained with
little effort using the formulas iJ = x + (1 x)(k 1)p,
where i = 1, 2,..., k, and p is the parity bit.

If we write j = k + 1, k + 2, n we get jJ = (1 x) kp.
We analyse the practical issue that there is no
direct read to parity nodes, and while the results
are comparable to our prior work we make a clear
distinction between the general read arrival rate of
data and parity nodes.Latency for direct readings
can be reduced by performing degraded read jobs
in a systematic (n, k) MDS-coded storage system
under the homogeneous condition if and only if the
code rate is n > k 1 + 1 and k x 1. However, under
these conditions, the latency for direct reads
cannot be reduced if the code rate is k k n+k1 k 1
+ and 0Proof. If all other factors remain constant,
the latency in a distributed storage system will
increase as the average rate at which reads arrive
increases. Comparison is made between the
performance of degraded readings and that of
direct read jobs alone (x = 1) in terms of reducing
delay. If x = 1, then the delay solely" "depends on
the data nodes, as the general read ar- rival rate
for each data node is and that for each parity one
is 0. Reduced read performance occurs in the
range 0–1. When p(k1) 1, the average read arrival
rate at a data node iJ, as suggested by Eq we are
able to delay feedback for each data node. In light
of p = k, we may write the condition as code rate
n1 n > k1 + 1. One may alternatively get iJ = 1 + (1
x) p + (1 x) kip from Eq.
By plugging these values into Eq. (3.6), we obtain
the connection between the average data read
arrival rate and parity nodes, which is given by iJ =
x (1 x) p + jJ. As long as x (1 x) p 0, the average
read arrival rate of parity nodes is less than or
equal to that of data nodes, meaning that the two
types of nodes may achieve at most the same
delay. By changing p to k, we get k x 1, which we
can use to derive the condition for n1 as well.Lower
latency is achieved by the data nodes already
when n > k 1 + 1.Reduced latency is achieved by
all nodes performing degraded read operations
relative to the case where x = 1. Direct read latency
can be reduced by performing degraded read
operations when the coding rate is n > k 1 + 1 and
k x 1.
When k = 1 and x = 0, we can similarly show that
degraded read tasks will not result in a decrease in
latency when k = n+k1.Degraded read activities
can undoubtedly save latency, but we can't just
switch over as many direct readings as feasible to
them because doing so might incur significantly
greater bandwidth costs. It is not possible to
ensure that degraded read jobs will be successful
in reducing latency when the code rate is n > k 1 +
1 and 0 x k, or when the code rate is k k n+k1
k1+ and x 1. These results are consistent with the
results of Theorem 3.1. Given these unknowables,
kkn+k1, the efficiency of degraded read jobs in
lowering latency is not guaranteed. For this reason,
a realistic method is required that may swiftly
decrease latency by performing degraded read
jobs.
Throughput is increased, latency is decreased, and
server overload is prevented when load balancing
is used. The primary concept is to offload work

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 5, pp 1192-1199

1195

from overworked servers onto less busy ones.
Researchers have spent a lot of time looking at
ways to implement replication-based load
balancing in large-scale distributed storage
systems like the Google File System (GFS) the
Hadoop Distributed File System (HDFS) and
others. In addition, load balancing is crucial for k-
access readings since it aids in maximising the
utilisation of all the nodes in a codeword. In order
to accomplish load balance for direct readings,
some of them must be transferred to degraded
read jobs. Based on what has been discussed so
far in this study, it appears that degraded read
workloads will not help with latency reduction for
direct readings but will instead raise the bandwidth
cost. As a result, utilising load balancing to lessen
wait times for direct readings necessitates a cost-
effective and efficient technique.In practical
distributed storage systems within a codeword, the
probability of exactly one hot data node is much
higher than that of more than one. In fact, if there
is more than one hot data node in a codeword, the
workload within that codeword is inevitably
intensely heavy, resulting in extremely high latency
which is probably unacceptable to users. In such
cases, we usually quickly adjust the storage
system to ensure that there is at most one hot data
node in a codeword. Accordingly, in this work, we
focus on the most likely case that there is at most
one hot data node in a codeword.
In a codeword without hot data node, each data
node has a small direct read arrival" rate.
"It's possible that degraded read operations can
help cut down on latency by taking use of the spare
resources in a codeword by shifting some of the
load to parity nodes. To simplify matters, let's
assume that the value of xi, where i = 1, 2,..., k, is
the same, say x, for all data nodes that are
relatively near to 1.When one data node in a
codeword becomes hot, we aim to lower its general
read arrival rate by reducing its probability to join
the degraded reads of other data nodes and
decreasing its x to transfer more of its direct reads
to other nodes via degraded reads. Without loss of
generality, suppose the hot data node is the first
node in the codeword. Let λ1 and x1 denote its
direct read arrival rate and fraction of direct read
tasks, respectively. Suppose the average direct
read arrival rate of the
other k − 1 data nodes is λo. With Eq. (3.1), we can
easily get the general read
arrival rate of the hot data node as
λJ1 = x1λ1 + (1 − x) (k − 1) p1λo, (3.7) where p1 is
the probability of the hot data node joining the
degraded reads of other data nodes and p1 = k in
(n, k) MDS coded storage systems.
We can also get the average general read arrival
rate of the other k − 1 data nodes
o
λoJ =xλo + (1 − x) (k − 2) poλo + (1 − x1) pλ1
— (1 − x) k − 1 p λ,
(3.8)
n − 1

where p is the probability of the other n − 1 nodes
joining the degraded reads of the
hot data node and p = k.
n−1We can obtain Eq. (3.8) as follows: on the right-
hand side of Eq. (3.8), the sum of the first three
terms represents the average general read arrival
rate of the other
k − 1 data nodes when the hot data node does not
join any degraded read of the
a non-hot data node from the set of k data nodes.
So, po = k makes sense. If the hot data node" "is
added to the other's degraded reads, however,
then"−2.
"With a probability of p1, if k+1 data nodes are
eliminated, the remaining n-1 nodes will have their
burden reduced by (1 x) (k 1) p1o. That will, on
average, lower the general read arrival rate at each
of the remaining n 1 nodes by 1 (1 x) (k 1) p1o.The
average general read arrival rate of the n k parity
nodes may also be calculated in a similar fashion.
λpJ = (1 − x) (k − 1) poo + (1 x1) po1 — (1 x) k p p
.For n 1, po and p are the same as in (3.8), thus n
1. Since the parity node may connect the degraded
reads of all the data nodes, the first term in Eq.
(3.9) includes all the other k 1 data nodes other
than the hot data node. This is analogous to the
second term in Eq. (3.8), except that the parity
node is able to do this. Eq. (3.9)'s final two terms
are identical to those of Eq. (3.8). Lemma 3.1:
Assume that the direct read arrival rate of a single
data node in a codeword is 1 when it becomes hot.
If x1 xoJ, then x1J = xoJ may be achieved by load
balancing by setting the probability of the hot data
node joining the degraded reads of the other data
nodes to p = (n1)d, where d = x() + (1 x)(k 2)p + (1
x)(k1)no (1 x)p1.Cording to Lemma 3.1, it is
assumed that the proportion x of direct read jobs
performed by the hot data node is the same as that
performed by the other data nodes. By only
modifying p1 to decrease the likelihood of the hot
data node merging with the degraded reads of
other data nodes, we may accomplish load
balancing. If x1 oJ, then the proportion of direct
read jobs for the hot data node can remain
constant at x; otherwise, the fraction must be
adjusted.
If we assume that the direct read arrival rate of a
hot data node in a codeword is 1, then Lemma 3.2
holds. Setting the proportion of direct read jobs for
the hot data node to x1 = e, where e = xo + (1 x) (k
2) poo + p1, will accomplish load balancing with 1J
= oJ if x1 > oJ. p1 = 0 will prevent the hot data node
from joining the degraded reads of the other data
nodes.By modifying x, we can achieve load
balancing over all of the nodes, including the parity
ones, as discussed in Lemma 3.1 and 3.2. Load
balancing's ability to cut down on delay is
weakened since x gets small and the workload,
and hence the bandwidth cost, of each node
increases dramatically. It might potentially make
things more sluggish. Since this is the case, we
restrict our efforts to Lemmas 3.1 and 3.2, where
load balancing is solely concerned with data
nodes. Lemma 3.1 and 3.2 are so simple that their

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 5, pp 1192-1199

1196

proofs are unnecessary here.In the next section,
we suggest a method to cut down on wait times
called Degraded Reads and Load Balancing
(DRALB). As illustrated in Algorithm 3.1, the
threshold value and the adjustment period T are
both flexible and may be set to meet a variety of
application-specific requirements. We employ
Lemmas 3.1 and 3.2 to provide load balancing of
data nodes, which, as can be seen from Algorithm
3.1, helps us minimise latency. The latency of hot
data will be drastically reduced since burden is
shifted away from the node producing the data.\

8. Research Design

For (n, k) MDS-coded storage systemreadinghe
Redundant Request Technique, often known as

RedS, has become an increasingly popular read
technique in recent years. RedS may divide a
codeword into n tasks and distribute them to each
of the n nodes, regardless of the number of files
that are requested by a read request inside the
codeword. When k nodes out of n have completed
delivering their services, the request is regarded to
be done, and the remaining n k tasks are stopped
as soon as possible.
The solution that we have built is based on RedS,
and it has the ability to handle requests for files of
varied sizes while simultaneously minimising
access latency. (FRedS) is the acronym that we
use to refer to this Flexible Redundant Scheme.

9. Conceptual Framework of the Study

10. Data Analysis

To answer your question in a general sense, "In
order to save your data using HTSC(D) or FH
HTSC, you will need to combine your files into a
single large one of size M, say 1 to 3 GB, and then
divide it into K parts (D, h)." It is possible to
compute the fixed size M by making use of the
storage space that is accessible at each node as
well as the parameters of either HTSC (D, h) or FH
FH HTSC. (D, h). Most of the time, users are only
interested in a portion of the uncoded systematic
component of a file, which is stored in one of the K
nodes. Studies conducted in the past made the
assumption that readers would want to have
access to the whole contents of the use of a
codeword to define the K-tree is a significant
change, taking into consideration the fact that
every single piece of information is now kept in the
K-tree. On the other hand, this simplifies things too
much and does not really represent reality. As an
example, erasure coding is only accessible in WAS
for files that exceed a certain size barrier, which
might be as high as three gigabytes. The majority
of individuals only use a tiny portion of the three
gigabytes that are accessible, therefore it should
not come as a surprise that it is a waste. This is in
accordance with the functionality that was
envisioned for the HTSC (D, h). Due to this reason,
we will be focusing our attention on reading
requests from customers who are only interested
in a portion of the information that is stored in one

of the K data nodes. "Inferences taken from this
study,

Discussion

Our mathematical methodology in this research
allows us to examine how request-specific file
sizes affect the latency performance of replication
and encoding. We provide a basic description of
the latency-cost tradeoffs and propose two reading
algorithms, FRedS and FRanS. When working with
a varied dataset consisting of 88 samples, we
additionally investigate the efficiency of coding and
replication in relation to latency. Through
comprehensive simulations using actual service
"time traces from Amazon S3”, we show the impact
of storage cost, system load, cancellation cost, and
non-uniform data popularity on delay performance.
We also provide qualitative observations to support
this connection.
Data and genetic material. Our comparison of
coding and replication latency performance under
the same storage cost reveals that, contrary to
earlier findings, there are numerous factors to
consider, the most important of which is whether
the data popularity is uniform or not, making it
difficult to draw any firm conclusions after
considering real-world constraints.

Conclusion

To answer your question in a general sense, "In
order to save your data using HTSC(D) or FH

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 5, pp 1192-1199

1197

HTSC, you will need to combine your files into a
single large one of size M, say 1 to 3 GB, and then
divide it into K parts (D, h)." The parameters of
HTSC (D, h) or FH FH HTSC may be used to
determine the fixed size M. This can be done by
utilising the available storage space at each node
during the calculation. That is, D and H. Most of the
time, users are only interested in a portion of the
uncoded systematic component of a file, which is
stored in one of the K nodes. Studies that were
conducted in the past assumed that readers would
want to have access to the whole contents of a
"Considering that every bit of information is now
stored in the K-tree, the use of a codeword to
describe it is a major shift." On the other hand, this
simplifies things too much and does not really
represent reality. As an example, erasure coding is
only accessible in WAS for files that exceed a
certain size barrier, which might be as high as three
gigabytes. The majority of individuals only use a
tiny portion of the three gigabytes that are
accessible, therefore it should not come as a
surprise that it is a waste. This is in accordance
with the functionality that was envisioned for the
HTSC (D, h). Due to this reason, we will be
focusing our attention on reading requests from
customers who are only interested in a portion of
the information that is stored in one of the K data
nodes. "Inferences drawn from this research"

11. References

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file

system,” in ACM SIGOPS Operating Systems Review, vol.
37, no. 5. ACM, 2019, pp. 29–43.

[2] M. Foley, “High availability HDFS,” in 28th IEEE Conference
on Massive Data Storage, MSST, vol. 12, 2018.

[3] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan,
J. Li, S. Yekhanin et al., “Erasure coding in Windows Azure
storage,” in USENIX ATC, 2017, pp. 15–26.

[4] N. B. Shah, K. Lee, and K. Ramchandran, “The MDS queue:
Analysing the latency performance of erasure codes,” in
IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 861–865.

[5] B. Y. Kong, J. Jo, H. Jeong, M. Hwang, S. Cha, B. Kim, and
I.-C. Park, “Low- complexity low-latency architecture for
matching of data encoded with hard systematic error-
correcting codes,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 7, pp. 1648–1652,
2017.

[6] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchan- dran, “A solution to the network challenges of
data recovery in erasure-coded distributed storage
systems: A study on the Facebook warehouse cluster,” in
Presented as part of the 5th USENIX Workshop on Hot
Topics in Storage and File Systems. USENIX, 2019.

[7] A. Fikes, “Storage architecture and challenges,” Talk at the
Faculty Summit, 2018.

[8] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in
globally distributed storage sys- tems.” in OSDI, 2019, pp.
61–74.

[9] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchan- dran, “Network coding for distributed storage
systems,” IEEE

Transactions on Information Theory, vol. 56, no. 9, pp. 4539–
4551, 2018. [10] K. V. Rashmi, N. B. Shah, and P. V. Kumar,
“Optimal exact-regenerating codes for distributed storage at
the msr and mbr points via a productmatrix construction,”
IEEE Transactions on Information Theory, vol. 57, no. 8, pp.
5227–5239, 2017.

[11] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran,
and C. Suh, “Asymp- totic interference alignment for optimal
repair of MDS codes in distributed data storage,” 2018.

[12] N. B. Shah, K. Rashmi, P. V. Kumar, and K. Ramchandran,
“Explicit codes minimizing repair bandwidth for distributed
storage,” in 93 Information Theory Workshop (ITW), 2010
IEEE. IEEE, 2019, pp. 1–5.

[13] V. R. Cadambe, S. A. Jafar, and H. Maleki, “Distributed data
storage with minimum storage regenerating codes-exact
and functional repair are asymp- totically equally efficient,”
arXiv preprint arXiv:1004.4299,

2018.
[14] N. B. Shah, K. Rashmi, P. V. Kumar, and K. Ramchandran,

“Interference alignment in regenerating codes for
distributed storage: Necessity and code constructions,”
IEEE Transactions on Information Theory, vol. 58, no. 4, pp.
2134–2158, 2017.

[15] A. Duminuco and E. Biersack, “A practical study of
regenerating codes for peer-to-peer backup systems,” in
29th IEEE International Conference on Dis- tributed
Computing Systems. IEEE, 2019, pp. 376–384.

[16] A. Duminuco and E. W. Biersack, “Hierarchical codes: A
flexible tradeoff for erasure codes in peer-to-peer storage
systems,” Peer-to-peer Networking and Applications, vol. 3,
no. 1, pp. 52–66, 2018.

[17] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.
Dimakis, R. Vadali, S. Chen, and D. Borthakur, “Xoring
elephants: Novel erasure codes for big data,” in
Proceedings of the 39th international conference on Very
Large Data Bases. VLDB Endowment, 2019, pp. 325–336.

[18] J. Li and B. Li, “Erasure coding for cloud storage systems:
A survey,” Tsinghua Science and Technology, vol. 18, no. 3,
pp. 259–272, 2018.

[19] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A
survey on network codes for distributed storage,”
Proceedings of the IEEE, vol. 99, no. 3, pp. 476–489, 2017.

[20] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and
P. Rohatgi, “Ef- ficient Rijndael encryption implementation
with composite field arithmetic,” in Cryptographic Hardware
and Embedded Systems?CHES

2019. Springer, 2019, pp. 171–184.
[21] J. Brutlag, “Speed matters for Google web search,” Google.

June, 2019.
[22] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran,

“Codes can reduce queueing delay in data centers,” in IEEE
International Symposium on Infor- mation Theory (ISIT),
2018, pp. 2766–2770.

[23] N. B. Shah, K. Lee, and K. Ramchandran, “When do
redundant requests re- duce latency?” in the 51st Annual
Allerton Conference on Communication, Control, and
Computing. IEEE, 2018, pp. 731–738.

[24] G. Liang and U. C. Kozat, “TOFEC: Achieving optimal
throughput-delay trade-off of cloud storage using erasure
codes,” in Proceedings of INFOCOM. IEEE, 2019, pp. 826–
834.

[25] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage
trade-off in content download from coded distributed
storage systems,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 5, pp. 989–997, 2018. 94

[26] Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen, “Joint
latency and cost optimization for erasurecoded data center
storage,” ACM SIGMETRICS Per- formance Evaluation
Review, vol. 42, no. 2, pp. 3–14, 2018.

[27] B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field-analysis
of coding versus replication in cloud storage systems,” in
Proceedings of INFOCOM. IEEE, 2016.

[28] G. Liang and U. C. Kozat, “Fast Cloud: Pushing the
envelope on delay perfor- mance of cloud storage with
coding,” IEEE/ACM Transactions on Network- ing, vol. 22,
no. 6, pp. 2012–2025, 2018.

[29] G. Ananthanarayanan, S. Agarwal, S. Kandula, A.
Greenberg, I. Stoica, D. Harlan, and E. Harris, “Scarlett:
coping with skewed content popularity in mapreduce
clusters,” in Proceedings of the sixth conference on
Computer systems. ACM, 2019, pp. 287–300.

[30] A. Kala Karun and K. Chitharanjan, “A review on
hadoophdfs infrastructure extensions,” in Conference on
Information & Communication Technologies (ICT). IEEE,
2018, pp. 132–137.

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 5, pp 1192-1199

1198

[31] M. Harchol-Balter, Performance Modeling and Design of
Computer Systems: Queueing Theory in Action. Cambridge
University Press, 2019.

[32] H. A. David and H. N. Nagaraja, Order statistics. Wiley
Online Library, 2019..

[33] M. Rahman and L. Pearson, “Moments for order statistics
in shift parameter exponential distribution,” Journal of
Statistical Research, vol. 36, no. 1, pp. 75–83, 2019.

[34] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and
them applications. John Wiley & Sons, 2018.

[35] Q. Shuai, V. O. K. Li, and Y. Zhu, “Performance models of
access latency in cloud storage systems,” in Fourth
Workshop on Architectures and Systems for Big Data,
2019.

[36] M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: An
efficient scheme for tolerating double disk failures in raid
architectures,” IEEE Transactions on Computers, vol. 44,
no. 2, pp. 192–202, 2019.

[37] L. Xu and J. Bruck, “X-code: Mds array codes with optimal
encoding, IEEE Transactions on Information Theory, vol.
45, no. 1, pp. 272–276, 2017.

[38] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J.
Leong, and S. Sankar, “Row-diagonal parity for double disk
failure correction,” in Pro- ceedings of the 3rd USENIX
Conference on File and Storage

Technologies, 2019, pp. 1–14.
[39] C. Huang and L. Xu, “Star: An efficient coding scheme for

correcting triple storage node failures,” IEEE Transactions
on Computers, vol. 57, 95 no. 7, pp. 889–901, 2018.

[40] J. L. Hafner, “Weaver codes: Highly fault tolerant erasure
codes for storage systems.” in FAST, vol. 5, 2019, pp. 16–
16.

[41] L. E. Dickson, Linear groups: With an exposition of the
Galois field theory. Courier Dover Publications, 2018.

[42] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based
erasure codes in storage systems: Constructions, efficient
recovery, and tradeoffs,” in Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on.
IEEE, 2019, pp. 1–14.

[43] L. Kleinrock, Queueing Systems: Volume 2: Computer
Applications. John Wiley & Sons New York, 1976, vol. 82.

[44] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling,
“HDFS RAID,” in Hadoop User Group Meeting, 2016.

[45] Q. Shuai and V. O. K. Li, “A general model of latency
performance in dis- tributed storage systems,” Department
of Electrical and Electronic Engineer- ing, The University of
Hong Kong, Tech. Rep. No.TR-2015-03, April 2019.

[46] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang,
“Rethinking erasure codes for cloud file systems:
Minimizing I/O for recovery and degraded reads,” in Proc.
of USENIX FAST, 2018.

[47] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop distributed file system,” in Mass Storage Systems
and Technologies (MSST), 2018 IEEE 26th Symposium on.
IEEE, 2019, pp. 1–10.

[48] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and
E. Hyytia, “Re- ducing latency via redundant requests:
Exact analysis,” in Proceedings of the 2015 SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems. ACM, 2019, pp. 347– 360.

[49] Q. Shuai and V. O. Li, “Delay performance of direct reads
in distributed stor- age systems with coding,” in 17th
International Conference on High Perfor- mance Computing
and Communications (HPCC). IEEE, 2017, pp. 184–189.

[50] G. Joshi, E. Soljanin, and G. Wornell, “Queues with
redundancy: Latency- cost analysis,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 2, pp. 54–56,
2016.

[51] S. Chen, Y. Sun, U. C. Kozat, L. Huang, P. Sinha, G. Liang,
X. Liu, and N. B. Shroff, “When queueing meets coding:
Optimal-latency data retrieve scheme in storage clouds,” in
Proceedings of INFOCOM. IEEE, 2018, pp. 1042–1050.

[52] S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the
download time of availability codes,” in International
Symposium on Information Theory 96 (ISIT). IEEE, 2016,
pp. 1467–1471.

[53] R. Nelson and A. N. Tantawi, “Approximate analysis of
fork/join synchroniza- tion in parallel queues,” IEEE
Transactions on Computers, vol. 37, no. 6, pp. 739–743,
2019.

[54] E. Varki, A. Merchant, and H. Chen, “The m/m/1 fork-join
queue with variable sub-tasks,” Unpublished, available
online, 2018.

[55] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content
download,” in the 50th Annual Allerton Conference on
Communication, Control, and Comput- ing. IEEE, 2019, pp.
326–333.

[56] P. J. Bickel et al., “Some contributions to the theory of order
statistics,” in Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1:
Statistics. The Regents of the University of California, 2016.

[57] G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy
techniques for latency reduction in cloud systems,” arXiv
preprint arXiv:1508.03599, 2019.

[58] N. Papadatos, “Maximum variance of order statistics,”
Annals of the Institute of Statistical Mathematics, vol. 47,
no. 1, pp. 185–193, 2016.

[59] G. Szekely and T. Mori, “An extremal property of
rectangular distributions,” Statistics & probability letters, vol.
3, no. 2, pp. 107–109, 2019.

[60] W. Hu¨ rlimann, “Generalized algebraic bounds on order
statistics functions, with application to reinsurance and
catastrophe risk,” in Proceedings of the 31st International
ASTIN Colloquium, Porto Cervo,

2018, pp. 115–129.
[61] D. Bertsimas, K. Natarajan, and C.-P. Teo, “Tight bounds

on expected order statistics,” Probability in the Engineering
and Informational Sciences, vol. 20, no. 04, pp. 667–686,
2016.

[62] R. Rodrigues and B. Liskov, “High availability in DHTs:
Erasure coding vs. replication,” in Peer-to-Peer Systems IV.
Springer, 2019, pp. 226– 239.

[63] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan, “Subtleties
in tolerating corre- lated failures in wide-area storage
systems.” in NSDI, vol. 6, 2016, pp. 225– 238.

[64] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the
locality of code- word symbols,” 2019.

DOI: https://doi.org/10.15379/ijmst.v10i5.3791

This is an open access article licensed under the terms of the

Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/), which permits

unrestricted, non-commercial use, distribution and reproduction

in any medium, provided the work is properly cited.

https://doi.org/10.15379/ijmst.v10i5.3791

