
International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 3, pp 3874-3877

3874

NIDS Based False Positive Alert Screening Approach Using Machine
Leaning

Prof. Priyanka R. Raval*

*Computer Engineering Department, Government Engineering College, Rajkot, Gujarat, India
priyankaraval.gec@gmail.com

*Corresponding Author: Prof. Priyanka R. Raval
*Computer Engineering Department, Government Engineering College, Rajkot, Gujarat, India
priyankaraval.gec@gmail.com

Abstract— One of the most crucial security challenges of the modern day is detecting cyber attacks, and a network monitoring
system to detect any intrusion commonly known as Network Intrusion Detection System (NIDS) are essential for this. Various
machine learning approaches have been used in numerous research to build robust NIDS that can identify cyberthreats. While
the majority of NIDS research focuses on developing novel AI/ML models to increase classification/detection accuracy, every
model generates a percentage of false positive (FP) alarms in the real world. The mechanism for handling FP alarms is rarely
covered in studies. Managing the volume of FP alarms on a busy network takes a lot of time for security staff. Automation of FP
alert filtering is crucial because of this. In this research, we leverage kernel density estimation to present an automated FP alert
filtering technique. Regardless of the NIDS that is in place, our suggested plan can help security staff with the alert verification
process. Our tests demonstrate that, in terms of error ratio, our suggested system performs 32% to 60% better than alternative
algorithms. Additionally, our suggested plan cuts down on the alert verification process's duration by 73%.

Keywords: Cyber security, Intrusion Detection System (IDS), Alert verification, Alert prioritization, Alert
Fusion, Machine learning (ML), False Alert, Adaptive Filtering.

I. INTRODUCTION

An essential function of network intrusion detection systems, or NIDS, is to identify various network intrusion
and threats within the internal network and against the external threat sources to the system network. Network
administrator or a monitoring system can rely on the configured firewall rules to stop network conversations
that causes NIDS alarms in response to external network risks. Regarding the internal network danger, security
staff should keep a tight eye on network traffic in order to spot hosts that have been affected by malware and
take additional steps to remove it.
The two primary NIDS [5][6][7][8][11] types that are now in use are rule-based and anomaly-based. Since
detection rules for rule-based NIDS are meticulously built by security specialists upon incident summarization,
they are dependable solutions for threat detection. Although rule-based systems generate fewer FP alerts, the
process of building rules takes time, and the rules are limited to detecting known network threats. However,
anomaly-based network intrusion detection systems (NIDS) are designed to identify unfamiliar network threats
by identifying abnormalities in network data. The drawback of anomaly-based solutions is that they generate
more FP alerts compared to the rule-based solutions.
Due to the advancements in applications of machine learning approaches, numerous studies have been
conducted [1][2][3][4][9][10][12] add AI/ML techniques to NIDS; therefore, they will be referred to as ML based
intrusion detection approach. Depending on the goals, ML based intrusion detection approach might be
anomaly- or rule-based. While retaining a trustworthy detection accuracy, ML based intrusion detection
approach eliminate the laborious job of creating rules, as efficiency is determined by assessing rate of FP
and FN alerts which defines the error rate of the approach.
When FN alerts are displayed, there is a problem with FP alert filtering. FP alarms persist even though ML
based intrusion detection approach can obtain results (85% to 99%) with a relatively good accuracy in the
evaluation of test datasets. It will therefore be necessary for network security professionals to verify alerts.
The number of alarms generated by ML based intrusion detection approach in a busy network might be
astounding. In order to save up security staff time to verify actual positive warnings, we therefore devise an
automated system that can help decrease the amount of FP alerts.
In this research, we use kernel density estimator (KDE) trying to solve the FP alert filtering problem. KDE is
based on the anomaly score that we initially compute for every host that causes an alert. KDE is used to
identify hosts that are maliciously infected and ones that are not. Security staff can concentrate on the alarms
that are brought on by infected hosts due to malware propagation once they have been discovered. Workload
for alert verification is thereby decreased.

II. RELATED WORK

As far as we are aware, no relevant work has been done to directly solve the FP filtering of the alert issue.
We will concentrate on introducing various ML based intrusion detection approach and related accuracy in
this section, as the problem of FP filtering of the alert is related to the accuracy that these systems create.

mailto:priyankaraval.gec@gmail.com
mailto:priyankaraval.gec@gmail.com

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 3, pp 3874-3877

3875

Based on AI/ML techniques, supervised, unsupervised, and hybrid ML based intrusion detection approach
can be classified into three categories. Malicious network traffic must be accurately classified, regardless of
the difficulty in gathering data, which is the primary objective of ML based intrusion detection approach.
Classification accuracy is therefore a crucial indicator.
One benefit of the supervised machine learning approach is its high accuracy. Labelled data is necessary,
though, and additional testing is needed to ensure that malicious conversations in the network traffic are not
included in the training data sets is accurately detected in cases of unknown threat. In order to create a
malicious network traffic detection model, this study area uses feature extraction or selection on labelled data
samples. The goal of Narang et al. [10] was to differentiate safe P2P software from P2P botnet activity. The
writers combined 5-tuple network flows into 2-tuple chats, then took characteristics out of the dialogues. In
order to train a detection model, the collected features were fed into supervised machine learning methods
such as BayesNet, J48, and Adaboost with REP tree. When assessing the model's ability to classify data
samples, it was 95% correct. Using the NSL-KDD dataset, Aljawarneh et al. [1] suggested a hybrid approach
in feature-selection and ensemble classifier method. When it came to testing data sample categorization, our
model was 99.81% accurate.
Unsupervised learning techniques have the advantage of not requiring labelled data and being adept at
identifying unknown risks. The drawbacks of unsupervised techniques include reduced detection accuracy in
comparison to supervised ones and ad-hoc threshold value configuration for the classification of harmless
and dangerous network conversations. In order to cluster multi-resolution flow (network flow in various time
intervals), Casas et al. [3] presented a clustering technique that combined sub-space clustering, density-
based clustering, and evidence accumulation clustering. A predetermined threshold was employed to identify
the abnormality of the network flows, which were ranked according to their degree of irregularity. Considering
that the model produced categorical predictions, its accuracy ranged from 50% to 100% when assessing data
sample classification. Prior to network traffic clustering, Bhuyan et al. [2] used a feature selection approach
based on generalized entropy and mutual information. To find anomalies in the network flows, the authors
employed an outlier score function and a user-specified threshold value on the clustering outcomes.
Considering that the model produced categorical predictions, its accuracy ranged from 78% to 99% when
assessing data sample classification.
While improving detection accuracy in unsupervised algorithms, a hybrid approach supplements the
requirement for labelled data fields in supervised ML approaches. Even if a supervised method is employed
to identify harmful network activity, more verification is still needed to determine the accuracy of detecting
unknown threats. By using clustering techniques—the cluster centroid and nearest neighbour—Lin et al. [9]
were able to compute two distances that were employed as features and train a supervised model for the
purpose of identifying malicious network flows. When evaluating the model for data sample classification, the
accuracy rate was 99.76%. For feature extraction, reference [12] suggested the nonsymmetric deep
autoencoder (NDAE). In addition to limiting the feature dimensions, NDAE banned handcrafted feature
engineering.
A random forest model was trained with the retrieved features in order to classify malicious network flows.
When examining the model's ability to classify data samples, its accuracy was 85.42%.

III. THE PROPOSED APPROACH

When FP alerts are generated, we want to develop an automated way to reduce the amount of work that needs
to be done by humans to verify AI/ML-based NIDS signals. Stated differently, our goal is to develop an
algorithm—which we refer to as the FP filtering algorithm—that will lower the proportion of alerts that are
deemed FPs.
Preprocessing and the algorithm are the two subsections that make up our suggested approach. Alerts are
converted into host-based anomaly ratings through preprocessing. In the algorithm portion, a FP filtering
algorithm for detecting hosts infected with malware is provided. Security staff can now concentrate on
confirming the alarms that the malware-infected hosts are generating.

A. Preprocessing
Our suggested strategy aims to reduce the workload associated with alert verification by filtering out ML based
intrusion detection approach FP alerts. Thus, as a prerequisite, we will require an ML based intrusion detection
approach to generate alerts.
Three different forms of ML based intrusion detection approach are known to exist, based on the corresponding
work in section II; regardless of the techniques used in these types, classification accuracy is a crucial metric
for assessing the models. As a result, we choose a model for network conversation preprocessing based more
on accuracy than technique. We first summarize the relevant literature [2][12][3][10][4][9], and then we build a
96% accurate random forest model for the classification of harmful network conversation. We will so receive
roughly 4% of FP and FN warnings.
We utilize Su et al. [13] to determine the anomalous score for every host once all of the alerts have been
gathered. [13] used the dendrogram of the clustering result to compute the anomaly score after applying the

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 3, pp 3874-3877

3876

hierarchical clustering approach to the gathered alerts. Based on the inclination that harmless hosts are simple
to aggregate early into the common groups since these hosts issued less alarms, the anomaly scoring system
was developed. However, since they produced more alarms and differed from harmless hosts, infected hosts
would be grouped into clusters later. An anomaly score that is near to 0 indicates a potentially harmless host,
whereas a score that is close to 1 indicates the reverse. An anomaly score ranks the host according to the
likelihood of malware infection.

B. Alert Filtering Algorithm
The classification of hosts infected with malware is guided by a threshold value of anomaly scores. On the
other hand, choosing the threshold point might be subjective and takes practice. As a result, we provide an
automated method to determine the threshold.
It has been determined that the KDE methodology is appropriate for computing threshold values. Based on
our observations, hosts that are not afflicted with malware likely to have similar anomaly ratings to those of
harmless hosts. In accordance with our findings, we use KDE to project the anomaly score density and
measure the difference between two densities to get a threshold value that will separate hosts free of malware
from those that are infected.

Figure 1: KDE findings plotted on a line

We apply the minimal search locally on the line graph that KDE generates (Figure 1) to get the threshold point.
The density distribution of anomaly scores is computed by KDE and displayed as a line graph. Density is
shown by the Y-axis, and anomaly scores are represented by the X-axis. Populations are said to consist of
peaks. In the best scenario, a threshold value is immediately discernible if there are only two peaks (indicating
a distinct difference between hosts infected with malware and hosts that are not) or if there is no local minimum
(signifying that all hosts are deemed innocent). In the event that several local minimums are given, the
threshold point is determined by taking the median of the local minimums.

C. Dataset
A combination of sampled malicious network conversation and actual network conversation makes up the
experimental dataset. We gather four hours of actual network conversation from each of the forty hosts that
make up our faculty. Consequently, more than 12,000 network flows are gathered. The CTU-13 [4] dataset is
the source of the sampled malicious network conversation. The sample is made up of seven different malware
samples, which represent a variety of botnet malware: Neris, Rbot, Virut, Menti, Sogou, Murlo, and Nsis.ay.
We mix in sampled malicious network conversation and randomly choose hosts from actual network
conversation to simulate malicious network activity.
Once the relevant work has been summarized in section 2, we choose and train an ML model. When it comes
to classifying malicious network conversation, the ML model is roughly 92% accurate. Our dataset causes the
machine learning model to produce approximately 1000 FP alerts, or FP network flows. If security staff works
eight hours a day, there will be a spike in FP alerts above two thousand, which will be challenging for any staff
member to handle without assistance from a FP filtering approach.

D. Experimental Results
The four false alert filtering techniques under comparison are used to categorize and arrange the trial
outcomes. Based on the suggested scheme performance, the comparative findings are divided into three
categories: Better (if there are less FP/FN/Error alerts), Neutral (if there are equal FP/FN/Error alerts), and
Worse (if there are more FP/FN/Error alerts).
i.Scenario A: One compromised host One compromised host is the source of the malicious network
conversation in this scenario. Seven scenario A examples are accessible for the studies because there are
seven types of malwares available.

ii.Scenario B: Two compromised hosts Two compromised hosts are the source of the malicious network
conversation in this scenario. Various malware infections affect the malevolent hosts. There are 21 scenario
B examples available for the experiments because there are 7 malwares available.

iii.Scenario C: Three compromised hostsThree compromised hosts are the source of the malicious network

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 3, pp 3874-3877

3877

activity in this scenario. Similar to case B, distinct malware infects the hosts. 35 scenario C examples are
offered for the trials, with 7 malwares accessible.

iv.Scenario D: 0 Host Infection The network conversation in this case is entirely innocuous. Consequently, there
is only one case for the experiment in this scenario.
The four scenarios (A-D) have improved by 42%, 60%, 33%, and 32%, in that order. Considering that our
suggested strategy produces more FP in scenario D, it is only 34% better; In addition to eliminating FPs, an
effective FP filtering algorithm should work to keep FNs to a minimum. Overall, our suggested plan produces
a few more FP warnings than the competition, but we decrease a lot more FN notifications. Compared to the
techniques mentioned, our suggested scheme is more efficient under the evaluation metric assumption.

IV. CONCLUSIONS

As previously indicated, ML based intrusion detection approach is excellent at spotting malicious network
conversation. Nevertheless, no ML based intrusion detection approach could guarantee a 100% detection
accuracy rate in the field. To identify risks, security staff will need to rigorously verify ML based intrusion detection
approach notifications. Due to time constraints, security staff is only able to confirm a few notifications every day.
We suggest a FP filtering algorithm to help with the alert verification task in order to reduce the workload
associated with it. Our tests reveal that, when compared to four common FP filtering methods, our suggested
strategy reduces FP alarms by 32% to 60%. By implementing our suggested plan, security staff can reduce alert
verification time by 75%.

REFERENCES

[1] Aljawarneh, S., Aldwairi, M., and Yassein, M. B. 2018. Anomaly-based Intrusion Detection System through Feature Selection

Analysis and Building hybrid Efficient Model. Journal of Computational Science, vol. 25, 2018, pp. 152– 160.

[2] Bhuyan, M. H., Bhattacharyya, D. K., and Kalita, J. K. 2016. A Multi-Step Outlier-based Anomaly Detection Approach to Network-
Wide Traffic. Information Sciences, vol. 348, 2016, pp. 243–271.

[3] Casas, P., Mazel, J., and Owezarski, P. 2012. Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without
Knowledge. Computer Communications, vol. 35, Issue 7, 2012, pp. 772–783.

[4] Garca, S., Grill, M., Stiborek, J., and Zunino, A. 2014. An Empirical Comparison of Botnet Detection Methods.Computers &
Security, vol. 45, 2014, pp. 100–123

[5] Gu, G., Perdisci, R., Zhang, J., and Lee, W. 2008. BotMiner: Clustering Analysis of Network Traffic for Protocol- and Structure-
Independent Botnet Detection. In Proceedings of the 17th Conference on Security Symposium (SS'08). USENIX Association,
Berkeley, CA, USA, pp. 139–154.

[6] Hu, W., Hu, W. and Maybank, S. 2008. AdaBoost-Based Algorithm for Network Intrusion Detection. In IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 2, April 2008, pp. 577–583.

[7] Kim, G., Lee, S., and Kim, S. 2014. A Novel Hybrid Intrusion Detection Method Integrating Anomaly Detection with Misuse Detection.
Expert Systems with Applications, vol. 41, Issue 4, Part 2, 2014, pp. 1690–1700.

[8] Koc, L., Mazzuchi, T. A., and Sarkani, S. 2012. A Network Intrusion Detection System based on a Hidden Naïve Bayes Multiclass
Classifier. Expert Syst. Appl. 39, December 2012, pp. 13492–13500.

[9] Lin, W. C., Ke, S. W., and Tsai, C. F. 2015. CANN: an Intrusion Detection System based on Combining Cluster Centers and Nearest
Neighbors. Knowledge-Based Systems, vol. 78, 2015, pp. 13–21.

[10] Narang, P., Hota, C., and Venkatakrishnan, V. 2014. Peershark: Flow-Clustering and Conversation-Generation for Malicious Peer-
to-Peer Traffic Identification. EURASIP Journal on Information Security 2014, 2014, Article 15.

[11] Roesch, M. 1999. Snort - Lightweight Intrusion Detection for Networks. In Proceedings of the 13th USENIX Conference on System
Administration (LISA '99). USENIX Association, Berkeley, CA, USA, pp. 229–238.

[12] Shone, N., Ngoc, T. N., Phai, V. D. and Shi, Q. 2018. A Deep Learning Approach to Network Intrusion Detection. In IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 1, February 2018, pp. 41–50.

[13] Su, Y. H., and Tzeng, W. G. 2017. The Forward-Backward String: A New Robust Feature for Botnet Detection. M. S. Thesis, CS
Dept., NCTU, Hsinchu, Taiwan ,2017, Accessed on: July 2019, Available: http: //etd.lib.nctu.edu.tw /cdrfb3/record /nctu
/#GT070456522

DOI: https://doi.org/10.15379/ijmst.v10i3.3789

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and
reproduction in any medium, provided the work is properly cited.

http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456522
http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456522
https://doi.org/10.15379/ijmst.v10i3.3789

