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Abstract— One of the most crucial security challenges of the modern day is detecting cyber attacks, and a network monitoring 
system to detect any intrusion commonly known as Network Intrusion Detection System (NIDS) are essential for this. Various 
machine learning approaches have been used in numerous research to build robust NIDS that can identify cyberthreats. While 
the majority of NIDS research focuses on developing novel AI/ML models to increase classification/detection accuracy, every 
model generates a percentage of false positive (FP) alarms in the real world. The mechanism for handling FP alarms is rarely 
covered in studies. Managing the volume of FP alarms on a busy network takes a lot of time for security staff. Automation of FP 
alert filtering is crucial because of this. In this research, we leverage kernel density estimation to present an automated FP alert 
filtering technique. Regardless of the NIDS that is in place, our suggested plan can help security staff with the alert verification 
process. Our tests demonstrate that, in terms of error ratio, our suggested system performs 32% to 60% better than alternative 
algorithms. Additionally, our suggested plan cuts down on the alert verification process's duration by 73%. 
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I. INTRODUCTION 
 
An essential function of network intrusion detection systems, or NIDS, is to identify various network intrusion 
and threats within the internal network and against the external threat sources to the system network. Network 
administrator or a monitoring system can rely on the configured firewall rules to stop network conversations 
that causes NIDS alarms in response to external network risks. Regarding the internal network danger, security 
staff should keep a tight eye on network traffic in order to spot hosts that have been affected by malware and 
take additional steps to remove it. 
The two primary NIDS [5][6][7][8][11] types that are now in use are rule-based and anomaly-based. Since 
detection rules for rule-based NIDS are meticulously built by security specialists upon incident summarization, 
they are dependable solutions for threat detection. Although rule-based systems generate fewer FP alerts, the 
process of building rules takes time, and the rules are limited to detecting known network threats. However, 
anomaly-based network intrusion detection systems (NIDS) are designed to identify unfamiliar network threats 
by identifying abnormalities in network data. The drawback of anomaly-based solutions is that they generate 
more FP alerts compared to the rule-based solutions. 
Due to the advancements in applications of machine learning approaches, numerous studies have been 
conducted [1][2][3][4][9][10][12] add AI/ML techniques to NIDS; therefore, they will be referred to as ML based 
intrusion detection approach. Depending on the goals, ML based intrusion detection approach might be 
anomaly- or rule-based. While retaining a trustworthy detection accuracy, ML based intrusion detection 
approach eliminate the laborious job of creating rules, as efficiency is determined by assessing rate of FP 
and FN alerts which defines the error rate of the approach. 
When FN alerts are displayed, there is a problem with FP alert filtering. FP alarms persist even though ML 
based intrusion detection approach can obtain results (85% to 99%) with a relatively good accuracy in the 
evaluation of test datasets. It will therefore be necessary for network security professionals to verify alerts. 
The number of alarms generated by ML based intrusion detection approach in a busy network might be 
astounding. In order to save up security staff time to verify actual positive warnings, we therefore devise an 
automated system that can help decrease the amount of FP alerts. 
In this research, we use kernel density estimator (KDE) trying to solve the FP alert filtering problem. KDE is 
based on the anomaly score that we initially compute for every host that causes an alert. KDE is used to 
identify hosts that are maliciously infected and ones that are not. Security staff can concentrate on the alarms 
that are brought on by infected hosts due to malware propagation once they have been discovered. Workload 
for alert verification is thereby decreased.  
 
II. RELATED WORK 
 
As far as we are aware, no relevant work has been done to directly solve the FP filtering of the alert issue. 
We will concentrate on introducing various ML based intrusion detection approach and related accuracy in 
this section, as the problem of FP filtering of the alert is related to the accuracy that these systems create.  
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Based on AI/ML techniques, supervised, unsupervised, and hybrid ML based intrusion detection approach 
can be classified into three categories. Malicious network traffic must be accurately classified, regardless of 
the difficulty in gathering data, which is the primary objective of ML based intrusion detection approach. 
Classification accuracy is therefore a crucial indicator.  
One benefit of the supervised machine learning approach is its high accuracy. Labelled data is necessary, 
though, and additional testing is needed to ensure that malicious conversations in the network traffic are not 
included in the training data sets is accurately detected in cases of unknown threat. In order to create a 
malicious network traffic detection model, this study area uses feature extraction or selection on labelled data 
samples. The goal of Narang et al. [10] was to differentiate safe P2P software from P2P botnet activity. The 
writers combined 5-tuple network flows into 2-tuple chats, then took characteristics out of the dialogues. In 
order to train a detection model, the collected features were fed into supervised machine learning methods 
such as BayesNet, J48, and Adaboost with REP tree. When assessing the model's ability to classify data 
samples, it was 95% correct. Using the NSL-KDD dataset, Aljawarneh et al. [1] suggested a hybrid approach 
in feature-selection and ensemble classifier method. When it came to testing data sample categorization, our 
model was 99.81% accurate. 
Unsupervised learning techniques have the advantage of not requiring labelled data and being adept at 
identifying unknown risks. The drawbacks of unsupervised techniques include reduced detection accuracy in 
comparison to supervised ones and ad-hoc threshold value configuration for the classification of harmless 
and dangerous network conversations. In order to cluster multi-resolution flow (network flow in various time 
intervals), Casas et al. [3] presented a clustering technique that combined sub-space clustering, density-
based clustering, and evidence accumulation clustering. A predetermined threshold was employed to identify 
the abnormality of the network flows, which were ranked according to their degree of irregularity. Considering 
that the model produced categorical predictions, its accuracy ranged from 50% to 100% when assessing data 
sample classification. Prior to network traffic clustering, Bhuyan et al. [2] used a feature selection approach 
based on generalized entropy and mutual information. To find anomalies in the network flows, the authors 
employed an outlier score function and a user-specified threshold value on the clustering outcomes. 
Considering that the model produced categorical predictions, its accuracy ranged from 78% to 99% when 
assessing data sample classification. 
While improving detection accuracy in unsupervised algorithms, a hybrid approach supplements the 
requirement for labelled data fields in supervised ML approaches. Even if a supervised method is employed 
to identify harmful network activity, more verification is still needed to determine the accuracy of detecting 
unknown threats. By using clustering techniques—the cluster centroid and nearest neighbour—Lin et al. [9] 
were able to compute two distances that were employed as features and train a supervised model for the 
purpose of identifying malicious network flows. When evaluating the model for data sample classification, the 
accuracy rate was 99.76%. For feature extraction, reference [12] suggested the nonsymmetric deep 
autoencoder (NDAE). In addition to limiting the feature dimensions, NDAE banned handcrafted feature 
engineering. 
A random forest model was trained with the retrieved features in order to classify malicious network flows. 
When examining the model's ability to classify data samples, its accuracy was 85.42%. 

 
III. THE PROPOSED APPROACH 
 
When FP alerts are generated, we want to develop an automated way to reduce the amount of work that needs 
to be done by humans to verify AI/ML-based NIDS signals. Stated differently, our goal is to develop an 
algorithm—which we refer to as the FP filtering algorithm—that will lower the proportion of alerts that are 
deemed FPs. 
Preprocessing and the algorithm are the two subsections that make up our suggested approach. Alerts are 
converted into host-based anomaly ratings through preprocessing. In the algorithm portion, a FP filtering 
algorithm for detecting hosts infected with malware is provided. Security staff can now concentrate on 
confirming the alarms that the malware-infected hosts are generating. 

 
A. Preprocessing 
Our suggested strategy aims to reduce the workload associated with alert verification by filtering out ML based 
intrusion detection approach FP alerts. Thus, as a prerequisite, we will require an ML based intrusion detection 
approach to generate alerts. 
Three different forms of ML based intrusion detection approach are known to exist, based on the corresponding 
work in section II; regardless of the techniques used in these types, classification accuracy is a crucial metric 
for assessing the models. As a result, we choose a model for network conversation preprocessing based more 
on accuracy than technique. We first summarize the relevant literature [2][12][3][10][4][9], and then we build a 
96% accurate random forest model for the classification of harmful network conversation. We will so receive 
roughly 4% of FP and FN warnings.  
We utilize Su et al. [13] to determine the anomalous score for every host once all of the alerts have been 
gathered. [13] used the dendrogram of the clustering result to compute the anomaly score after applying the 
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hierarchical clustering approach to the gathered alerts. Based on the inclination that harmless hosts are simple 
to aggregate early into the common groups since these hosts issued less alarms, the anomaly scoring system 
was developed. However, since they produced more alarms and differed from harmless hosts, infected hosts 
would be grouped into clusters later. An anomaly score that is near to 0 indicates a potentially harmless host, 
whereas a score that is close to 1 indicates the reverse. An anomaly score ranks the host according to the 
likelihood of malware infection. 
 
B. Alert Filtering Algorithm 
The classification of hosts infected with malware is guided by a threshold value of anomaly scores. On the 
other hand, choosing the threshold point might be subjective and takes practice. As a result, we provide an 
automated method to determine the threshold.  
It has been determined that the KDE methodology is appropriate for computing threshold values. Based on 
our observations, hosts that are not afflicted with malware likely to have similar anomaly ratings to those of 
harmless hosts. In accordance with our findings, we use KDE to project the anomaly score density and 
measure the difference between two densities to get a threshold value that will separate hosts free of malware 
from those that are infected. 
 

 
Figure 1: KDE findings plotted on a line 

 
We apply the minimal search locally on the line graph that KDE generates (Figure 1) to get the threshold point. 
The density distribution of anomaly scores is computed by KDE and displayed as a line graph. Density is 
shown by the Y-axis, and anomaly scores are represented by the X-axis. Populations are said to consist of 
peaks. In the best scenario, a threshold value is immediately discernible if there are only two peaks (indicating 
a distinct difference between hosts infected with malware and hosts that are not) or if there is no local minimum 
(signifying that all hosts are deemed innocent). In the event that several local minimums are given, the 
threshold point is determined by taking the median of the local minimums. 
 
C. Dataset 
A combination of sampled malicious network conversation and actual network conversation makes up the 
experimental dataset. We gather four hours of actual network conversation from each of the forty hosts that 
make up our faculty. Consequently, more than 12,000 network flows are gathered. The CTU-13 [4] dataset is 
the source of the sampled malicious network conversation. The sample is made up of seven different malware 
samples, which represent a variety of botnet malware: Neris, Rbot, Virut, Menti, Sogou, Murlo, and Nsis.ay. 
We mix in sampled malicious network conversation and randomly choose hosts from actual network 
conversation to simulate malicious network activity.  
Once the relevant work has been summarized in section 2, we choose and train an ML model. When it comes 
to classifying malicious network conversation, the ML model is roughly 92% accurate. Our dataset causes the 
machine learning model to produce approximately 1000 FP alerts, or FP network flows. If security staff works 
eight hours a day, there will be a spike in FP alerts above two thousand, which will be challenging for any staff 
member to handle without assistance from a FP filtering approach. 
 
D. Experimental Results 
The four false alert filtering techniques under comparison are used to categorize and arrange the trial 
outcomes. Based on the suggested scheme performance, the comparative findings are divided into three 
categories: Better (if there are less FP/FN/Error alerts), Neutral (if there are equal FP/FN/Error alerts), and 
Worse (if there are more FP/FN/Error alerts). 
i.Scenario A: One compromised host One compromised host is the source of the malicious network 
conversation in this scenario. Seven scenario A examples are accessible for the studies because there are 
seven types of malwares available.  

ii.Scenario B: Two compromised hosts Two compromised hosts are the source of the malicious network 
conversation in this scenario. Various malware infections affect the malevolent hosts. There are 21 scenario 
B examples available for the experiments because there are 7 malwares available.  

iii.Scenario C: Three compromised hostsThree compromised hosts are the source of the malicious network 
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activity in this scenario. Similar to case B, distinct malware infects the hosts. 35 scenario C examples are 
offered for the trials, with 7 malwares accessible.  

iv.Scenario D: 0 Host Infection The network conversation in this case is entirely innocuous. Consequently, there 
is only one case for the experiment in this scenario.  
The four scenarios (A-D) have improved by 42%, 60%, 33%, and 32%, in that order. Considering that our 
suggested strategy produces more FP in scenario D, it is only 34% better; In addition to eliminating FPs, an 
effective FP filtering algorithm should work to keep FNs to a minimum. Overall, our suggested plan produces 
a few more FP warnings than the competition, but we decrease a lot more FN notifications. Compared to the 
techniques mentioned, our suggested scheme is more efficient under the evaluation metric assumption. 

 
IV. CONCLUSIONS 
 
As previously indicated, ML based intrusion detection approach is excellent at spotting malicious network 
conversation. Nevertheless, no ML based intrusion detection approach could guarantee a 100% detection 
accuracy rate in the field. To identify risks, security staff will need to rigorously verify ML based intrusion detection 
approach notifications. Due to time constraints, security staff is only able to confirm a few notifications every day. 
We suggest a FP filtering algorithm to help with the alert verification task in order to reduce the workload 
associated with it. Our tests reveal that, when compared to four common FP filtering methods, our suggested 
strategy reduces FP alarms by 32% to 60%. By implementing our suggested plan, security staff can reduce alert 
verification time by 75%. 
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