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ABSTRACT 
The cylindrical carbon nanotube is an optical wave guide in which the monochromatic guided wave propagates and formulated by 
Maxwell’s wave equations that described by the components of the electric and magnetic fields with different modes. The roots of 
wave equation are obtained as Bessel’s functions that explain the characteristics of guided wave in the carbon nanotube with phase 
components. The transverse electric and magnetic fields in linearly polarized waves are parallel and orthogonal over cross section. 
The normalized propagation function is found with the normalized frequency parameters for the lower order of modes. The guided 
mode as linearly polarized modes of electromagnetic wave with the axial conductivity and the propagation frequency in the carbon 
nanotube.  
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1. Introduction:  
 
              First time the carbon nanotube was discovered on rolling up of graphene i.e., single sheet of graphite 
[1]. It is formed by CVD method. The structure of carbon nanotubes is discussed in the References [2,4 and 
16] that explained about chiral, zigzag, and armchair carbon nanotube, radius of carbon nanotube and metallic 
characteristics with analyzing propagation of the surface Plasmon wave determined by the numerical results 
[2].Measuring of optical absorption spectra is investigated with the large absorption bands optically transitions 
[3]. In energy region, an excitation is of metallic phase experimentally. The optical properties are demonstrated 
[4] with optical absorption spectra (OAS) using arc method showing the peaks of metallic density of state that 
explains optical spectra. The density of state peaks split due to a trigonal warping effect for metallic carbon 
nanotube (MCNT). In (3n, 0) zigzag MCNT, the splitting width is maximum and in armchair MCNT, it is zero.  
             The polymer coating carbon nanotubes give electromagnetic response at low frequency range up to 
107 Hz in infrared region that verified by experiment [5]. An application of polymer carbon nanotube is 
determined with tetra-hertz regime for dielectric that expressed polymer carbon nanotube permittivity. The 
frequency 3THz is used. The polymer coating single wall carbon nanotube is analyzed with electromagnetic 
characteristic and dielectric property in 25 Hz to 100 Hz range of frequency. The effective conductivity has 
been calculated by Waterman – Truell Approach for low frequency peak. The electrical conductivity has been 
described using the Drude model [6] that associate signal propagation of slow surface wave as the Plasmon 
resonance experimentally and theoretically.  
             The electronic structure of carbon nanotubes expressed with quantum optic application. The optical 
properties of carbon nanotube vary fluorescence energies with equal structure. Nakanishi and Ando studied 
about optical response of carbon nanotubes for finite length [7] and it is calculated with induced edge charges 
that excited of Plasmon mode with the wave vector Q(=π/l) in dirty tubes and arise strong electric field due to 
edge charge.  
             Using the equivalent multishell approach, the antenna efficiency and characteristics of propagation of 
electromagnetic waves is expressed for identical finite length metallic carbon nanotube for guided waves with 
slow – wave coefficients [8]. The theoretically investigation of propagation of electromagnetic wave in the 
double wall carbon nanotube is described the propagation frequency of electromagnetic wave within material 
parameter and wave number [9]. Kumar and Shuba have analyzed the symmetric guided wave propagation 
through finite length multiwalled carbon nanotubes with gold core as the antenna and attenuation coefficient 
in 10 to 100 GHz frequency range that represents high attenuation of propagation of surface wave [10, 11]. 
The optical interband didn’t occur in the low frequency regime and the guided wave can be propagated in the 
multiwall carbon nanotube at low or high attenuation with axial surface conductivity depending material 
characteristics. The plane transverse monochromatic wave propagates through the single walled carbon 
nanotube as speed of light and is described by Gaussian wave and solution of Helmholtz partial differential 
equation [12]. Kumar has been also described the behavior of single wall carbon nanotube as wave guide with 
Helmholtz equation and used the electric hertz potential for propagation of electromagnetic wave through 
carbon nanotubes [13].  
             Victor described electromagnetic field in wave guide with Helmholtz equation using spectral parameter 
power series method and obtains dispersion for wave guide that leads group velocity [9] and propagation 
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constant by using numerical approach with Fourier transform and found asymptotic formula for TE wave and 
TM wave [14].  
 
2. Theoretical Methods 

 
2.1 Carbon Nanotube (CNT):  
 

             Rolled up of graphene sheet called carbon nanotube in cylindrical form behaves as wave guide and 

that formed by CVD method. The structure of carbon nanotubes described by the chiral vector,  𝐶ℎ = 𝑚𝑎1 +

𝑛𝑎2 ≡ (𝑚, 𝑛), and the radius of the tube, 𝑅𝑐 =
√3 𝑏

2𝜋
√𝑚2 + 𝑚𝑛 + 𝑛2, 𝑏 =

𝑎

√3
= 1.42 𝐴°. It is metallic if  |𝑚 − 𝑛| =

3𝑞 ,    𝑞 = 0,1,2,3, ….  

 
Figure1: Graphene structure for armchair, chiral and zigzag carbon nanotubes with chiral vector. 

  
2.2 Optical characteristics:  

 
              The optical nature of carbon nanotubes is quasi one-dimensional properties [3, 4] of chiral and it may 
disappear if carbon nanotubes become larger and larger and used in optical devices. The optical density 
spectra are represented using the Electric Arc process. The purified nanotube represents the optical absorption 
at 4.5eV that corresponds to π – Plasmon in loss energy spectrum that is not seen clearly in as – prepared 
tube. 
              The axial conductivity described by Antonio and et.al, in an optical range that depends on chirality is 
given as  

𝜎𝑧𝑧(𝜔) = −
𝑖𝑒2𝜔

𝜋2ħ𝑅𝑐
{

1

𝜔(𝜔+
𝑖

𝜏
)

∑ ∫
𝜕𝐹𝑐

𝜕𝑝𝑧

𝜕∈𝑐

𝜕𝑝𝑧
𝑑𝑝𝑧

⬚

1𝑠𝑡𝐵𝑍
𝑚
𝑠=1 − 2 ∑ ∫ ∈𝑐

⬚

1𝑠𝑡𝐵𝑍
𝑚
𝑠=1 |𝑅𝑣𝑐|2 𝐹𝑐−𝐹𝑣

ħ2𝜔2(𝜔+
𝑖

𝜏
)−4∈𝑐

2
𝑑𝑝𝑧}      (1)  

 
Where, 𝑒 represents electron charge, ħ represents normalized Plank’s constant, 𝑝𝑧 shows the axial projection 
of quasi momentum of electron, 𝜔 is the angular frequency, 𝐹𝑐 and 𝐹𝑣 are the Fermi distribution function that 

described as 𝐹(∈±) =  
1

𝑒
(

∈±

𝐾𝐵𝑇𝑜
)

+1

 , 𝑇𝑜(= 235𝐾) shows the absolute temperature. In equation (1), second term 

of right side explains the transitions between valence and conductive bands and the interaband motion of π-
electrons are described by first term of right side. The optical interband transition [12] does not occur at the 
low frequency regime. The conductivity, �̃�𝑧𝑧, may be evaluated for chiral metallic carbon nanotube of radius, 

𝑅𝑐 =
√3𝑚𝑏

2𝜋
 , as  �̃�𝑧𝑧 = 𝑖

3𝑒2𝑏𝛾

𝜋2ħ2𝑅𝑐

1

𝜔+𝑖𝑣
, Where, 𝑣are collision frequency and equal to 𝑣𝑧 𝜆⁄  and λ being the mean free 

path of electrons! It is possible that �̃�𝑧𝑧 → 𝜎∞ when, 𝑅𝑐 → ∞ 𝑜𝑟 𝑚 → ∞. The band gap depending on chirality 
around the Fermi energy and electric field distribution of finite length CNTs calculated. Many body works on 

axial conductivity and describes many ways as for chiral, zigzag, (�̃�𝑧𝑧 = 𝑖
2√3𝑒2𝛾

𝑚𝜋ħ2

1

𝜔+𝑖𝑣
), armchair carbon 

nanotubes etc. and all are based on Boltzmann conductivity. The experimental evidence [7] describes the 
optical density spectra (ODS) representing the tetra – hertz peaks and Plasmon nature that explained by peak 
in ODS to lower values for longer carbon nanotubes. If carbon nanotubes are metallic, it contributes in to tetra 
– hertz peak to antenna or Plasmon resonance. The absorption spectrum of single wall carbon nanotube is for 
metallic single wall carbon nanotube of the first allowed transition and it shows the peak at 650nm for metallic 
carbon nanotube. The frequency dependence [5] optical density spectra and conductivity are with peaks of 
tetra – hertz.  
 
2.3 Numerical Approach:  
 
           We have the standard form of Maxwell’s equations given as  

∇2�⃗⃗� = 𝜇𝜀
𝛿2�⃗⃗�

𝛿𝑡2                                                                                                                       (2)  
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∇2�⃗⃗⃗� = 𝜇𝜀
𝛿2�⃗⃗⃗�

𝛿𝑡2                                                                                                                        (3)  

 
              Let us consider the cylindrical co-ordinate system (𝑟, 𝜙, 𝑧) and the z-axis is along the axis of the 
carbon nanotube waveguide. The cylindrical co-ordinates are expressed with the Cartesian co-ordinates 
shown in Figure 2. 

 
Figure 2: Cylindrical co-ordinate of carbon nanotube (CNT) with Cartesian co-ordinate. 

 
The wave equation is expressed as  
 

𝛿2𝐸𝑧

𝛿𝑟2 +
1

𝑟

𝛿𝐸𝑧

𝛿𝑟
+

1

𝑟2

𝛿2𝐸𝑧

𝛿𝜙2 + 𝑘𝑐
2𝐸𝑧 = 0                                                                                            (4)  

 

 And      
𝛿2𝐻𝑧

𝛿𝑟2 +
1

𝑟

𝛿𝐻𝑧

𝛿𝑟
+

1

𝑟2

𝛿2𝐻𝑧

𝛿𝜙2 + 𝑘𝑐
2𝐻𝑧 = 0                                                                                           (5) 

 

Where, 𝑘𝑐
2 = 𝜔2𝜇𝜀 − 𝛽2 = 𝑘2 − 𝛽2 𝑎𝑛𝑑 𝑘2 = 𝜔2𝜇𝜀 . These equations are obtained by taking the z-component 

of wave equations (2) and (3) and replacing 𝛿2 𝛿𝑡2⁄  𝑎𝑛𝑑 𝛿2 𝛿𝑧2⁄  operator by −𝜔2 𝑎𝑛𝑑 − 𝛽2 respectively. The 

roots of equations (4) and (5) for plane monochromatic wave [14] expressed as   𝐸𝑧 = 𝑒𝑖�⃗⃗�.𝑟�̂�𝑧 and  𝐻𝑧 = 𝑒𝑖�⃗⃗�.𝑟 �̂�𝑧 
that give the characteristic of transverse wave propagating through the carbon nanotube. The electromagnetic 
wave is confined within a cylindrical metallic carbon nanotube wave guide and it propagates either in TM or 
TE mode. In TE and TM modes, the electric field vector and the magnetic field vector lies in transverse plane 
i.e., right angle to the z-direction. Under this condition, we have two things, first 𝐸𝑧 = 0 that  𝐻𝑧  is finite and 

second  𝐻𝑧 = 0  that 𝐸𝑧  is finite. We have the complete solution of equation (4) and (5) expressed as  
 

𝐸𝑧 = [𝑃𝐽𝑛(𝑘𝑐𝑟) + 𝑄𝐾𝑛(𝑘𝑐𝑟)]𝐹𝑒𝑖𝑛𝜙                                                                                       (6)  
 

And        𝐻𝑧 = [𝐿𝐽𝑛(𝑘𝑐𝑟) + 𝑀𝐾𝑛(𝑘𝑐𝑟)]𝐹𝑒𝑖𝑛𝜙                                                                                      (7) 
 
Here, 𝐹, 𝑃, 𝑄, 𝐿 𝑎𝑛𝑑 𝑀 are all arbitrary constants. 𝐽𝑛(𝑘𝑐𝑟) is the Bessel’s function and  𝐾𝑛(𝑘𝑐𝑟) is the modified 

Bessel’s function that all infinite at origin (𝑟 = 0). The functions𝐽𝑛(𝑘𝑐𝑟)and𝐾𝑛(𝑘𝑐𝑟)are with 𝑘𝑐𝑟 for the value of 

𝑛 = 0,1,2,3, … … . The arbitrary constant 𝑄 𝑎𝑛𝑑 𝑀 must be equal to zero if 𝐸𝑧 𝑎𝑛𝑑 𝐻𝑧 is finite at (𝑟 = 0). Now we 
use the common designation 𝐽𝑛(𝑢𝑟) and 𝐸𝑧 𝑎𝑛𝑑 𝐻𝑧  including phase components expressed as   
 

𝐸𝑧 = 𝐴1 𝐽𝑛(𝑢𝑟)𝑒𝑗𝑛𝜙𝑒𝑗(𝜔𝑡−𝛽𝑧)                                                                                                 (8)  
 

And        𝐻𝑧 = 𝐵1 𝐽𝑛(𝑢𝑟)𝑒𝑗𝑛𝜙𝑒𝑗(𝜔𝑡−𝛽𝑧)                                                                                                 (9) 
 
Where, 𝐴1 = 𝑃𝐹, 𝐵1 = 𝐿𝐹 and𝑢𝑟 = 𝑘𝑐𝑟. The Eigen value equation for β expressed as  
 

              (𝐼𝑛 + 𝐾𝑛)(𝐾1
2𝐼𝑛 + 𝐾2

2𝐾𝑛) = (
𝛽𝑛

𝑟
)

2

(
1

𝑢2 +
1

𝑠2)
2

                                                                        (10)  

 

Where, 𝐼𝑛 =
𝐽𝑛

′ (𝑢𝑟)

𝑢𝐽𝑛(𝑢𝑟)
  𝑎𝑛𝑑 𝐾𝑛 = 𝐾𝑛

′ =
𝐾𝑛

′ (𝑠𝑟)

𝑠𝐾𝑛(𝑠𝑟)
. The discrete values of β restricted to the range 𝐾2 ≤  𝛽 ≤ 𝐾1 .The 

modified second kind Bessel function 𝐾𝑛(𝑠𝑟) for large values of r is given as 𝐾𝑛(𝑠𝑟) =
𝑒−𝑠𝑟

√𝑠𝑟
 and 𝐾𝑛(𝑠𝑟) →

0 as 𝑠𝑟 → ∞ provides s is a positive real quantity. The right side of equation (10) vanishes and we have  
 

𝐼0 + 𝐾0 = 0                                                                                                                        (11)  
 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 5, pp 1114-1120 

 

1117 

 

 And      
𝐽𝑎

′ (𝑢𝑟)

𝑢𝐽0(𝑢𝑟)
+

𝐾𝑛
′ (𝑠𝑟)

𝑠𝐾0(𝑠𝑟)
= 0                                                                                                              (11a) 

 
Again   𝐽0

′ (𝑢𝑟) = −𝐽1(𝑢𝑟)  𝑎𝑛𝑑  𝐾0
′(𝑠𝑟) = −𝐾1(𝑠𝑟) so,  

 

             
𝐽1(𝑢𝑟)

𝑢𝐽0(𝑢𝑟)
+

𝐾1(𝑠𝑟)

𝑠𝐾0(𝑠𝑟)
= 0                                                                                                               (12)  

 
That corresponds to transverse magnetic mode TMop (Ez=0) and   
 

            𝐾1
2𝐼0 + 𝐾2

2𝐾0
2 = 0                                                                                                                 (13)  

 

Or,        
𝐾1

2𝐽1(𝑢𝑟)

𝑢𝐽0(𝑢𝑟)
+

𝐾2
2𝐾1(𝑠𝑟)

𝑠𝐾0(𝑠𝑟)
= 0                                                                                                           (14)  

 
          That corresponds to transverse electric mode TEop (Hz=0). The parameter associated with the cutoff 
condition and referred to V-number or V-parameter is given as  
 

𝑉2 = 𝑟2(𝑢2 + 𝑠2)                                                                                                               (15)  
 

The number of modes exists in waveguide function of V that represented by the normalized propagation 
function ‘b’ from equation (15) as  
 

𝑉2−𝑟2𝑢2

𝑉2 =
𝑟2𝑠2

𝑉2 = 𝑏                                                                                                            (16)  

 

The V – parameter is related to number of modes M expressed as 𝑀 =
𝑉2

2
. The mode (n, p) is derived by 

adding (n – 1) and (n + 1) solutions in the core given by  
 

𝐸𝑧 = 𝐸0{𝐽𝑛−1(𝑢𝑟) cos(𝑛 − 1)𝜙 + 𝐽𝑛+1(𝑢𝑟) cos(𝑛 + 1)𝜙}                                                   (17)  
 

𝐻𝑧 = 𝐻0{𝐽𝑛−1(𝑢𝑟) cos(𝑛 − 1)𝜙 + 𝐽𝑛+1(𝑢𝑟) cos(𝑛 + 1)𝜙}                                                   (18)  
 

So, the Bessel function as  

                 𝐽𝑛−1(𝑢𝑟) + 𝐽𝑛+1(𝑢𝑟) =
2𝑛

𝑢𝑟
𝐽𝑛(𝑢𝑟)                                                                                      (19)  

 
From equation (17) and (18) we have  
 

                
   𝐻𝑧

𝐸𝑧
=

𝐻0

𝐸0
                                                                                                                           (20) 

We know the amplitude of E and B as  
𝐵0

𝐸0
= √𝜀𝜇√1 + (

𝜎

𝜀𝜔
)

2

   then we can calculate 
𝐻𝑧

𝐸𝑧
 as  

                 (
𝐻𝑧

𝐸𝑧
)

4

= (
𝜇

𝜇0
2)

2

{𝜀 + (
𝜎

𝜔
)

2

}                                                                                                  (21)  

 
The frequency of propagation of electromagnetic wave, 𝜔, is calculated by the relationship for m = 0, and m ≠ 
0 respectively and may written as  
 

                   𝜔2 =
4𝑒2𝑣𝐹

𝜀0𝜋2ħ
ln (

1.123

𝑘𝑅𝑐
) 𝑘                                                                                                     (22)  

 

And            𝜔 =
1

𝑅𝑐
√𝑚 (𝛼 𝑚 +

𝑒2𝑣𝐹

𝜀0𝜋2ħ
)                                                                                                (23)  

 
3. Results and Discussion:  

 
                        The guided electromagnetic energy travels in carbon nanotube waveguide if mode is away from 
cutoff frequency. The electromagnetic field patterns and propagation constant for modes are similar. For (n, p) 
= (0, 1) and (2, 1), the differences with pair modes TE01 and TM01 reduces to zero i.e., limit of weakly guiding 
shown in Figure 3. We have found that the components of longitudinal field as 𝐸𝑧 𝑎𝑛𝑑 𝐻𝑧  are smaller than that 
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of the main transverse components of the guided wave solutions. Transverse electric and magnetic fields are 
parallel and orthogonal over cross-section in the linearly polarized (LP) modes (𝐿𝑃11 = 𝑇𝐸01, 𝑇𝑀01) of waves.  
 

 
Figure 3: Corresponding modes TE and TM in CNT waveguide with linearly polarized modes (LP). 

 
              There are equivalent roots with the reversed field polarities for each LP modes with degenerate 
solutions. The weak guide approximation relative to the boundary condition given as  
 

𝑢𝑛𝑝
𝐽𝑛−1(𝑢𝑛𝑝𝑟)

𝐽𝑛(𝑢𝑛𝑝𝑟)
= −𝑠𝑛𝑝

𝑠𝑛−1(𝑠𝑛𝑝𝑟)

𝑆𝑛(𝑠𝑛𝑝𝑟)
                                                                                            (24)  

 
So, we have 𝑢𝑛𝑝 𝑎𝑛𝑑 𝑠𝑛𝑝 with numerical solution and 𝛽𝑛𝑝 for guided mode may be determined. 

              The variation between (
𝐻𝑧

𝐸𝑧
)

2

𝑎𝑛𝑑 (
𝜎

𝜔
) is parabola shown in Figure 4 and represents increasing the 

fields or conductivity. The quasi transverse structures of electromagnetic guided waves are characterized with 
low attenuation. 

 
Figure 4: Plot the square of fraction of magnetic field and electric field along z – direction to the fraction of 

conductivity and propagation frequency. As soon as increasing the  (
𝜎

𝜔
) , (

𝐻𝑧

𝐸𝑧
)

2

will increase. Therefore, the 

electromagnetic field depends on the conductivity as well as propagation frequency. 
 
                 Equation (22) is quasi-acoustic mode and equation (23) is sensitive for geometry of nanotube and 
they represent when Rc increases, ω decreases see Figure 5. The parameter k in region ω/q < c (speed of 
light), k2 = q2 – ω2/c2 it means we have the slow TM wave. Consider ω = vq and we have the speed lines of 
the three electron beams expressed by Figure 6. We have maximum phase and group velocity for the 

maximum propagation frequency and vice-versa by the expression, 𝑣𝑝 = 𝑣𝑔 =
𝛿𝜔

𝛿𝑘
  𝑎𝑛𝑑 𝑣𝑝 ∙ 𝑣𝑔 = 𝑣2 .  
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Figure 5: Variation of propagation frequency,  𝜔 , with the radius, Rc, of carbon nanotube. 

  

 
Figure 6: The velocity of electron beams in different CNTs for m = 0 (a), 1(b). As increasing the 

electromagnetic wave frequency, decreasing the radial penetration depth for TM surface. The range of 
velocities is 0.93x106 to 4x106 m/s [2]. 

 
               The propagation function ‘b’ as a function of ‘V’ for the lower order of modes is shown in Figure7. All 
modes can exist for values of ‘V’ that exceeds the limit value. The value of V(ur) = 2.405 is the first root lower 
order Bessel function J0(ur) = 0. If 𝑉 ≤ 2.4 as 2.356 for wavelength = 0.8μm, the propagation is possible. So, 
the guided wave can propagate through optical carbon nanotube wave guide. 
 

 
Figure 7: b – the normalized propagation function as the function of V – parameter and the curves of TE0p 

and TM0p modes for (0,1). 
 

4. Conclusions: 
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             We have discussed about the guided waves in the optical carbon nanotube wave guide. The optical 
characteristics of carbon nanotube are described by optical density spectra and optical range of axial 
conductivity. The roots of Maxwell’s equations for cylindrical carbon nanotube have been given the Bessel’s 
functions that explain the nature of propagation of electromagnetic waves in TE and TM modes in carbon 
nanotube as guided waves. We have found the normalized propagation function ‘b’ and the number of modes 
within V – parameter. Both the electric and magnetic fields are parallel and orthogonal in linearly polarized 
waves showing by Cartesian components. The variations of square of fraction of magnetic field and electric 
field along z – direction are to the fraction of axial conductivity and the propagation frequency. The 
electromagnetic wave is with the axial conductivity and the propagation frequency. For lower frequency, the 
electromagnetic wave is higher. As increasing the radius of carbon nanotube, decreasing the propagation 
frequency i.e., for small radius, we have found the higher frequency. The velocity of electron beam in optical 
carbon nanotube wave guide is of range 106.  
              As results, the guided waves in optical carbon nanotube wave guide is verified by normalized 
propagation function with V – parameter and described by Bessel’s function and orthogonal linearly polarized 
wave in TE and TM modes. The velocity of guided wave is explained with phase velocity and group velocity 
as the speed of electron beam in carbon nanotube wave guide with the electromagnetic propagation frequency. 
So, we have maximum phase and group velocity for the maximum propagation frequency and vice-versa. We 
have concluded that the electromagnetic wave travels with maximum velocity and maximum frequency through 
the small radius carbon nanotube wave guide. 
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