Quality Characterization of Groundwater for Human Consumption using Water Quality Index for Gandhinagar District, Gujarat

Darshna B.Joshi¹, Yogesh S.Patel²

¹ Research Scholar, Sankalchand Patel University, Visnagar, Gujarat, India

² Department of Civil Engineering, Sankalchand Patel University, Visnagar, Gujarat, India

Abstract: As we know, Water is an important parameter for survival of biotic component. Current analysis deals with ground water characteristic of Gandhinagar District, Gujarat. The properties of water and the water quality index are closely related. It is a number between 1 and 100 that represents the overall water quality at a specific location and time based on different water quality attributes. Better water quality is demonstrated by a lower water quality index. The land use pattern and waste disposal system have the most impacts on groundwater quality. The word "water quality" refers to the physical, chemical, or biological properties of the water. This was discovered by the collection of 50 groundwater samples from various locations across Gandhinagar and the comprehensive physicochemical examination of each sample. The following 10 factors have been taken into account when calculating the WQI.: PH, Sodium (Na+), Total Hardness(CaCO3), Calcium, Magnesium, Chloride, Fluorides, Iron, Nitrate and Sulphate(SO4). The Bureau of Indian Standards (BIS, 2012) has been taken into account when determining whether groundwater is fit for drinking and for calculating WQI. Understanding the structure and operation of a specific water body may be aided by the physicochemical investigation. For the Gandhinagar District, the WQI was determined to be within the advised ranges, and all significant villages have values that fall into the Good category for water quality (B grade).

1. INTRODUCTION

Water is one of the most priceless elements in India's huge variety of natural resources, which include a vast array of agricultural resources. One of the most important natural riches in the world is water. One of the most priceless and vital natural resources are water. The common proverb "Without water, there is no life" refers to the fact that water is a necessary component of all daily tasks that sustain life. [1] Water not only sustains the life of animals and plants but also holds a special place in various businesses [2]. India also faces the issue of water scarcity brought on by the country's rapid population increase, industrialization, and urbanization. Understanding the structure and operation of a specific water body may be aided by the physicochemical investigation [3, 4 and 5]. The primary cause of bore well water pollution in many communities is the use of pesticides, fertilizers, manures, and lime waste dumps, among other things. Numerous researchers have examined the physicochemical characteristics of drinking or ground water in numerous communities throughout various talukas in Gujarat State [6,7]. Numerous studies have concentrated on the hydro-chemical properties and pollution of groundwater caused by anthropogenic wastewater intervention, mostly by agricultural operations and industrial and domestic wastewater, in diverse basins as well as in metropolitan areas. [8]. Monitoring the water quality of numerous rivers and ground waters requires a rising number of regular assessments of various water quality variables [9, 10]. India lacks a suitable water plan, and its water resources are being developed in an uncontrolled manner due to short-term economic objectives and political expediency. [11]. Due to a lack of surface water supplies, the majority of people in India rely primarily on groundwater resources for applications including drinking, residential, industrial, and agricultural irrigation. In this study, 50 groundwater samples taken from wells and hand pumps were analyzed for their physicochemical characteristics and compared to WHO drinking and household water quality criteria based on the Water Quality Index (WQI). The Bureau of Indian Standards (BIS), formerly known as the Indian Standard Institute (ISI), has prescribed the quality specifications for drinking water in its document IS 10500:2012. These specifications serve as a benchmark to assess the suitability of water for consumption.

2. MATERIAL AND METHODS

2.1 Study Area

Gandhinagar is located at coordinates 23.22 degrees north and 72.68 degrees east. It sits at an average elevation of 81 meters (266 feet). Positioned on the western banks of the Sabarmati River, Gandhinagar is situated in the northeast-central part of Gujarat. The city spans an area of 326 square kilometers.

During the summer months, the Sabarmati River experiences reduced water flow, leading to a narrow stream of water. Gandhinagar is often referred to as the 'Tree Capital of India' due to its abundant greenery. The topography of Gandhinagar exhibits significant variation, with most of the land being arid and dry, dependent on the prevailing climatic conditions.

Gandhinagar boasts various wetland features, including mudflats, lakes, creeks, salt marshes, swamps, estuaries, and reservoirs.

Figure 1: Gandhinagar Tehsil map.

2.2 Selection of Sampling Points

The primary criteria for selecting sampling points were determined based on several factors, including population density, areas with industrial or anthropogenic activities such as wastewater discharge from industries, sewage disposal from Gandhinagar Municipal Corporation, and the river catchment areas. These factors were taken into consideration to ensure a representative sampling of various sources that could potentially impact water quality in Gandhinagar. It was crucial to assess the water quality in areas where the direct discharge of solid waste and industrial waste into rivers occurred. Special attention was given to selecting sampling locations that had sufficient groundwater potential. The Gujarat Government played a key role in identifying suitable sites and drilling bore wells for this purpose. This ensured comprehensive monitoring of water quality and the identification of any potential pollution sources in Gandhinagar.

2.3. Sample Collection

In May 2019, the drinking water samples from the entire Gandhinagar district in Gujarat State were collected from 50 different villages. The samples were collected in the morning hours from bore wells situated in various villages across Gandhinagar taluka. The sampling process covered villages located in the north, south, east, and west regions of the district, ensuring a comprehensive representation of the water quality in Gandhinagar.[12]

In this study, the examination of water quality in Gandhinagar involved the assessment of several key parameters. The major parameters considered were pH, Sodium (Na+), Total Hardness (CaCO3), Calcium, Magnesium, Chloride, Fluorides, Iron, Nitrate, and Sulphate (SO4). A total of 50 sampling data points were obtained from the State Water Data Centre (SWDC), with its regional office located at Kherva, Mehesana.

The water samples were collected in polythene bottles and analyzed for the aforementioned parameters using standard procedures outlined by the SWDC unit [13]. The analysis followed the prescribed methods as described in (Table 1), which provided guidelines for the examination of the water quality parameters.

Quality parameters studied	Method used
рН	Recorded by pH meter
Sodium (Na+)	Flame photometric method
тн	EDTA titration
СН	EDTA titration
Magnesium Harness	EDTA titration
Chloride	Mohr's method
Fluoride	Alizarin spectrophotometric method
Iron(Fe)	Colorimetric method
Nitrate(NO3-)	Colorimetric PDA method
Sulphate(SO4)	Gravimetric method

Table 1: Methods used for analysis of quality parameters for water

Sampling data for groundwater quality analysis for both drinking and irrigation purposes were obtained from the regional office located in Kherva, Mehsana, which is the State Water Data Centre (SWDC). A total of 50 water samples were collected and analyzed. The details of the analysis are presented in the table below (Table 2)

Sr no	Tahsil / Taluk	Village
1	Dehgam	Antroli
2	Dehgam	Dehgam-I
3	Dehgam	Dehgam-II
4	Dehgam	Dehgam-III
5	Dehgam	Devkaran Na Muvada
6	Dehgam	Dharisana
7	Dehgam	Harsoli
8	Dehgam	Hilol
9	Dehgam	Jindva
10	Dehgam	Kadjodra
11	Dehgam	Palaiya I
12	Dehgam	Patna Kuva
13	Dehgam	Sanoda
14	Dehgam	Palaiya II
15	Gandhinagar	Adraj Moti

Table 2 Details of Pre and post monsoon 2019 sampling Locations

Sr no	Tahsil / Taluk	Village
16	Gandhinagar	Bhat-I
17	Gandhinagar	Bhat-II
18	Gandhinagar	Gandhinagar
19	Gandhinagar	Gandhinagar-II
20	Gandhinagar	Indroda
21	Gandhinagar	Isanpur Mota-I
22	Gandhinagar	Isanpur Mota-II
23	Gandhinagar	Isanpur Mota-III
24	Gandhinagar	Karai
25	Gandhinagar	Koba
26	Gandhinagar	Koteshwar
27	Gandhinagar	Magodi
28	Gandhinagar	Medra
29	Gandhinagar	Unava
30	Gandhinagar	Valad
31	Kalol	Aluva
32	Kalol	Bhoyan Moti
33	Kalol	Chhatral
34	Kalol	Dingucha-I
35	Kalol	Dingucha-II
36	Kalol	Limbodara
37	Kalol	Mubarakpura
38	Kalol	Nasmed(Dabhla)
39	Kalol	Rancharada
40	Mansa	Bilodra
41	Mansa	Delvad
42	Mansa	Rampura
43	Mansa	Mansa
44	Mansa	Lodra
45	Mansa	Parbatpura
46	Mansa	Pundhara-I
47	Mansa	Pundhara-II
48	Mansa	Rangpur-I
49	Mansa	Rangpur-II
50	Mansa	Samou

2.4 Water Quality Index

To determine the Water Quality Index (WQI) using the weighted arithmetic method, the following steps are typically executed:

- Select the specific aspects of water quality that will be considered during the analysis. pH, temperature, dissolved oxygen, total dissolved solids (TDS), turbidity, and biochemical oxygen demand (BOD) are some examples of these factors. The objectives of the study and any applicable regulations or guidelines govern the selection of the parameters.
- 2 Assigning Weights: Assign the proper weights to each criterion based on its proportional importance in determining the water's quality. These weights indicate how significant each parameter is in determining the overall quality of the water. Typically, weights range from 0 to 1, with higher weights indicating greater significance.
- 3 Data acquisition: Collect water samples from a variety of sources or sampling points while using the correct sample collection procedures and following all applicable protocols. Depending on the objectives and specifications of the study, a different number of samples may be taken.
- 4 Analysis in a Lab: In a lab, evaluate the gathered water samples using defined test procedures for each parameter. Each parameter in the samples has quantitative values according to the results.
- 5 The parameter values received from the laboratory analysis should be normalized to a similar scale or range, typically 0 to 100. This normalization makes it easier to aggregate and compare various parameters.
- 6 Sub-indices are calculated for each parameter by multiplying its normalized value by the weight that was allocated to it. The relative weighting of each parameter in the final WQI computation is taken into account in this stage.
- 7 WQI Calculation: To determine the overall Water Quality Index (WQI), add the sub-indices obtained in step 6 together. The summation yields a single numerical result that summarizes the evaluation of the water's overall quality.
- 8 Using a predetermined scale or classification system, interpret the calculated WQI value. This makes it possible to classify water quality as excellent, good, fair, poor, or extremely poor, giving decision-makers and managers useful data.

It is crucial to keep in mind that the precise computations and weighting factors may change depending on regional or national regulations, academic research, or local regulatory frameworks.

(1)

(2)

(3)

(4)

 $WQI = \Sigma WQI / \Sigma W_i$

Where, Wi is relative weight, wi is the weight of every parameter and n is the quantity of parameter.

$$Q_i=100(V_i-V_0/S_n-V_0)...$$

 V_i is estimated concentration of ith parameter in the analyzed water. V_0 is the ideal value of this parameter in pure water $V_0=0$ (except pH =7.0 and DO = 14.6 mg/l .S_n is recommended standard value of ith parameter. The unit weight (W_i) for each water quality parameter is calculated by using the following equation.

W_i=K/S_n.....

K = the proportionality constant for calculating the Water Quality Index (WQI)

k=1/(Σ(1/Sn)).....

 Table 3 Details Analysis of Pre monsoon 2019

Village	PH	NA	ТН	CA	MG	FE	CI	SO ₄	NO ₃	F
Antroli	8	235	650	60	122	0.02	206	202	65	1
Dehgam-I	8	270	300	32	53	0	411	93	27	0
Dehgam-II	8	190	545	52	107	0	345	210	19	1
Dehgam-III	8	241	500	36	99	0.57	213	200	48	1
Devkaran Na Muvada	8	219	620	56	117	0	227	142	100	1

Village	PH	NA	TH	CA	MG	FE	CI	SO ₄	NO ₃	F
Dharisana	8	180	620	48	122	0	249	19	140	1
Harsoli	8	257	550	40	109	0.46	213	78	111	1
Hilol	9	190	550	12	126	0.16	213	91	125	1
Jindva	8	258	580	56	106	0	298	208	144	1
Kadjodra	9	220	580	51	108	0	326	228	16	1
Palaiya-I	8	219	620	56	117	0	227	142	100	1
Patna Kuva	8	190	550	50	122	0	249	19	140	1
Sanoda	9	245	546	34	110	1	213	78	111	1
Palaiya-II	8	150	334	198	80	0	656	429	34	1
Adraj Moti	7.2	129	430	103	76	0.9	128	134	42	0.9
Bhat-I	7.6	224	238	43	57.5	1.1	108	135	34	2.1
Bhat-II	8	207	567	24	37.7	1.3	165	225	70	1.3
Gandhinagar	7.77	120	543	37	65.1	1.6	156	150	20	1.6
Gandhinagar-II	7.4	135	350	45	68.7	0.7	85	158	60	0.7
Indroda	7.96	156	565	65	55	1.04	134	140	34	1
Isanpur Mota-I	7.84	165	459	34	34	1.4	165	232	70	1.4
Isanpur Mota-II	7.6	140	500	86	23.9	1	109	252	99	1
Isanpur Mota-III	7.3	120	340	67	52	1.5	129	222	56	1.5
Karai	7.27	147	657	72	46.3	1.2	167	99	50	1.2
Koba	7.6	143	489	76	43	1.2	122	34	43	2.2
Koteshwar	7.1	122	430	45	32	0.9	149	146	35	2.65
Magodi	8	134	450	78	30	0.9	145	134	42	0.9
Medra	7.5	333	223	67	43	2.1	112	335	120	2.1
Unava	7.2	125	435	58	23.7	1.3	109	159	70	1.3
Valad	7.2	201	399	76	35	1.04	165	140	134	1.04
Aluva	8	245	330	190	42	0.01	650	422	90	1.5
Bhoyan Moti	8.2	310	290	123	73.8	0	621	350	56	1.6
Chhatral	7.73	324	320	168	41.5	0.01	640	422	44	1.5
Dingucha-I	7.8	320	250	134	80	0	625	350	54	1.6
Dingucha-II	7.9	190	360	170	76	0.01	640	422	44	1.5
Limbodara	8.2	256	280	106	56	0	646	350	34	1.6
Mubarakpura	7.6	324	330	178	56	0.01	632	422	45	1.5
Nasmed(Dabhla)	7.7	320	330	120	56.9	0	622	350	56	1.6
Rancharada	8.7	330	390	134	42	0.01	590	422	55	1.5
Bilodra	8	211	250	157	77.6	0.02	579	355	65	1.6
Delvad	8.2	149	300	136	89.7	0	576	410	23	1.2
Rampura	7.9	170	340	132	90.1	0.01	598	380	43	1.55

Village	PH	NA	TH	CA	MG	FE	CI	SO ₄	NO ₃	F
Mansa	8.3	190	330	157	78.9	0	611	429	22	1.5
Lodra	8.5	149	380	136	89.7	0	574	410	34	1.2
Parbatpura	7.8	170	250	130	78.9	0.01	591	380	22	1.55
Pundhara-I	7.9	211	200	157	77.6	0.02	624	355	56	1.65
Pundhara-II	8.2	149	400	130	89.7	0	567	410	60	1.2
Rangpur-I	7.8	150	250	130	101	0.01	591	380	67	1.2
Rangpur-II	8.1	190	334	156	75	0	568	429	44	1.6
Samou	8.3	234	345	160	80	0.02	610	429	56	1.8

Table 4 Calculations of WQI for Pre Monsoon 2019 Data

Sr. No.	Tahsil / Taluk	Village	WQI	AVE WQI
1	Dehgam	Antroli	41.43	
2	Dehgam	Dehgam-I	36.87	
3	Dehgam	Dehgam-II	43.15	
4	Dehgam	Dehgam-III	66.16	
5	Dehgam	Devkaran Na Muvada	29.18	
6	Dehgam	Dharisana	30.16	
7	Dehgam	Harsoli	143.18	16 59
8	Dehgam	Hilol	50.05	40.30
9	Dehgam	Jindva	48.50	
10	Dehgam	Kadjodra	15.52	
11	Dehgam	Palaiya	29.12	
12	Dehgam	Patna Kuva	30.13	
13	Dehgam	Sanoda	55.23	
14	DEHGAM	Palaiya	33.56	
15	Gandhinagar	Adraj Moti	30.36	
16	Gandhinagar	Bhat-I	29.11	
17	Gandhinagar	Bhat-II	32.45	
18	Gandhinagar	Gandhinagar	54.78	
19	Gandhinagar	Gandhinagar-II	67.35	
20	Gandhinagar	Indroda	40.28	
21	Gandhinagar	Isanpur Mota-I	42.81	41.16
22	Gandhinagar	Isanpur Mota-II	24.68	
23	Gandhinagar	Isanpur Mota-III	38.12	
24	Gandhinagar	Karai	31.70	
25	Gandhinagar	Koba	53.26	
26	Gandhinagar	Koteshwar	70.58	
27	Gandhinagar	Magodi	36.66	1

Sr. No.	Tahsil / Taluk	Village	WQI	AVE WQI
28	Gandhinagar	Medra	49.76	
29	Gandhinagar	Unava	30.68	
30	Gandhinagar	Valad	26.03	
31	Kalol	Aluva	39.13	
32	Kalol	Bhoyan Moti	39.13	
33	Kalol	Chhatral	38.60	
34	Kalol	Dingucha-I	39.21	
35	Kalol	Dingucha-II	39.44	41.15
36	Kalol	Limbodara	36.37	
37	Kalol	Mubarakpura	61.02	
38	Kalol	Nasmed(Dabhla)	38.63	
39	Kalol	Rancharada	38.82	
40	Mansa	Bilodra	44.22	
41	Mansa	Delvad	30.33	
42	Mansa	Rampura	87.18	
43	Mansa	Mansa	36.83	
44	Mansa	Lodra	30.56	
45	Mansa	Parbatpura	40.08	42.4
46	Mansa	Pundhara-I	45.19	
47	Mansa	Pundhara-II	30.76	
48	Mansa	Rangpur-I	33.39	
49	Mansa	Rangpur-II	39.12	
50	Mansa	Samou	48.78	

Table 5 Details Analysis of Post monsoon 2019

Village	pН	NA	TH	CA	MG	Fe	CI	SO ₄	NO ₃	F
Antroli	7	222	550	55	111	0.02	212	220	56	1.32
Dehgam-I	8.20	256	340	34	34	0.2	345	143	34	0.33
Dehgam-II	8.2	178	456	45	78	0.08	234	234	32	0.61
Dehgam-III	7.75	230	458	50	87	0.17	211	213	43	1.2
Devkaran Na Muvada	7.5	256	600	45	45	0.09	235	146	123	1.5
Dharisana	8.16	198	589	65	99.9	0	254	190	134	1
Harsoli	7	234	510	34	102	0.46	211	87	154	1.23
Hilol	8.77	187	520	23	122	0.16	198	98	111	1.22
Jindva	8.18	250	550	50	107	0.3	300	243	123	0.85
Kadjodra	8.2	180	540	70	98	0	312	245	120	0.51
Palaiya-I	7.3	233	600	34	41	0.1	245	176	99	1.1
Patna Kuva	8	168	456	54	45	0.07	189	28	143	1.09

Village	рН	NA	TH	CA	MG	Fe	Cl	SO ₄	NO ₃	F
Sanoda	8.7	100	389	33	76	0.09	221	39	90	1.17
Palaiya-II	7.8	123	339	178	111	0.09	546	146	29	1.31
Adraj Moti	7	134	431	79	67	0.03	120	165	45	0.9
Bhat-I	7.5	232	300	54	45.6	0.01	178	120	35	1.08
Bhat-II	7.9	198	433	34	30.2	0.005	165	199	87	1.2
Gandhinagar	7.5	134	432	33	67.1	0.03	129	145	45	1.09
Gandhinagar-II	7.2	135	401	42	76	0.002	109	134	56	0.76
Indroda	8.00	167	598	60	65.1	0	128	122	45	1.70
Isanpur Mota-I	7.5	145	350	32	56.5	0.03	165	22	34	1.02
Isanpur Mota-II	7.3	134	437	8	33.1	0	145	243	109	1.01
Isanpur Mota-III	7.2	111	340	55	43.1	0.01	165	221	65	0.59
Karai	7.11	165	650	64	34	0.011	134	89	67	1
Koba	7.5	134	490	59	43	0	125	32	45	1.04
Koteshwar	7	178	420	43	21	0.9	167	134	65	0.91
Magodi	7.8	122	430	69	35	0.06	122	122	54	0.99
Medra	7.3	267	334	56	39.1	0.001	109	324	99	1.19
Unava	7.1	123	400	34	32.2	0	112	167	75	1.36
Valad	7.2	197	453	65	33	0	143	143	132	1.14
Aluva	7.8	234	441	120	23	0.01	234	154	98	1.59
Bhoyan Moti	8	345	345	99	70	0	230	328	65	1.63
Chhatral	7.6	287	300	120	54.1	0.01	256	397	34	1.11
Dingucha-I	7.6	200	278	130	78	0	365	350	89	1.56
Dingucha-II	7.7	187	300	166	67.1	0.01	345	321	34	1.23
Limbodara	8.1	178	250	98	55.5	0.08	234	287	23	1.6
Mubarakpura	7.2	287	300	133	55.98	0.01	450	234	33	1.2
Nasmed(Dabhla)	7.5	245	321	109	56	0.03	456	327	66	1.41
Rancharada	8.2	324	359	124	40	0.01	234	234	52	1.81
Bilodra	7.9	178	268	154	45	0.02	122	309	45	1.1
Delvad	8	123	296	123	78.1	0.1	550	380	43	1.09
Rampura	7.5	177	325	131	45	0.01	554	380	31	1.05
Mansa	8.1	123	311	146	65	0.08	456	390	67	0.09
Lodra	8.2	145	358	129	87	0.3	500	410	23	1.2
Parbatpura	7.5	123	235	120	77.1	0.04	567	390	65	1.02
Pundhara-I	7.5	233	234	123	67	0.01	590.1	355	25	1.01
Pundhara-II	8.1	267	387	145	78	0.09	543	410	56	1.2
Rangpur-I	7.7	231	287	119	109	0.01	576	380	59	1.12
Rangpur-II	7.9	171	324	143	67	0.02	554	430	40	1.51
Samou	8.1	210	340	133	87	0.02	543	346	32	1.8

Sr. No.	Tahsil / Taluk	Village	WQI	AVE WQI
1	Dehgam	Antroli	38.18	
2	Dehgam	Dehgam-I	58.35	
3	Dehgam	Dehgam-II	36.26	
4	Dehgam	Dehgam-III	71.41	
5	Dehgam	Devkaran Na Muvada	58.43	
6	Dehgam	Dharisana	27.05	
7	Dehgam	Harsoli	80.89	50.00
8	Dehgam	Hilol	71.2	52.20
9	Dehgam	Jindva	71.11	
10	Dehgam	Kadjodra	16.1	
11	Dehgam	Palaiya	51.63	
12	Dehgam	Patna Kuva	44.64	
13	Dehgam	Sanoda	51.49	
14	Dehgam	Palaiya	55.31	
15	Gandhinagar	Adraj Moti	30.05	
16	Gandhinagar	Bhat-I	28.47	
17	Gandhinagar	Bhat-II	30.17	
18	Gandhinagar	Gandhinagar	55.7	
19	Gandhinagar	Gandhinagar-II	68.78	
20	Gandhinagar	Indroda	40.5	
21	Gandhinagar	Isanpur Mota-I	32.13	
22	Gandhinagar	Isanpur Mota-II	24.84	13 77
23	Gandhinagar	Isanpur Mota-III	88.88	43.77
24	Gandhinagar	Karai	27.1	
25	Gandhinagar	Koba	49.67	
26	Gandhinagar	Koteshwar	95.34	
27	Gandhinagar	Magodi	38.79	
28	Gandhinagar	Medra	29.32	
29	Gandhinagar	Unava	32.14	
30	Gandhinagar	Valad	28.14	
31	Kalol	Aluva	40.27	
32	Kalol	Bhoyan Moti	39.56	
33	Kalol	Chhatral	51.85	10 10
34	Kalol	Dingucha-I	38.36	72.12
35	Kalol	Dingucha-II	32.91	
36	Kalol	Limbodara	57.52	

Table 6 Calculations of WQI for Post Monsoon 2019 Data

Sr. No.	Tahsil / Taluk	Village	WQI	AVE WQI
37	Kalol	Mubarakpura	31.78	
38	Kalol	Nasmed(Dabhla)	41.67	
39	Kalol	Rancharada	45.18	
40	Mansa	Bilodra	31.96	
41	Mansa	Delvad	52.19	
42	Mansa	Rampura	85.49	
43	Mansa	Mansa	56.22	
44	Mansa	Lodra	54.72	
45	Mansa	Parbatpura	29.08	44.53
46	Mansa	Pundhara-I	27.77	
47	Mansa	Pundhara-II	32.97	
48	Mansa	Rangpur-I	31.74	
49	Mansa	Rangpur-II	39.23	
50	Mansa	Samou	48.46	

3. RESULT

Based on the information provided, the Water Quality Index (WQI) analysis for Gandhinagar District was conducted using the Weighted Arithmetic Water Quality Index Method. The results of the analysis for both pre-monsoon and post-monsoon 2019 are presented in Table 4 and Table 6, respectively.

Table 7 provides the rating or classification of the WQI values obtained for each station. It indicates that all stations, except for the post-monsoon data for the Dehgam station, fall within the 26 to 50 category range of the Water Quality Index. The specific ratings or categories associated with these WQI values may vary depending on the scale or classification system used in the study.

From the provided formula and the calculated Water Quality Index (WQI) values, the quality of water in Gandhinagar District can be assessed. By referring to the Water Quality Ratings in Table 7, it is possible to determine the rating or classification of the water quality based on the obtained WQI values. This classification helps in evaluating whether the water is suitable for drinking or not.

Additionally, Figure 2 presents a comparison between the pre-monsoon and post-monsoon WQI values, allowing for an analysis of any changes in water quality between these two periods.

To provide further insights or interpretations, it would be helpful to have access to Table 7 and Figure 2 along with their respective data.

Based on the information provided and the analysis presented in Figure 2, it can be inferred that the Water Quality Index (WQI) for post-monsoon is higher compared to pre-monsoon. This suggests that the quality of water tends to degrade after the rainy season.

The observations from the current study indicate that the WQI values ranged from 41.15 to 46.58 before the rainy season, while they ranged from 42.12 to 52.28 after the rainy season. This indicates a slight increase in the WQI values after the rainy season, indicating a relatively lower water quality compared to the pre-monsoon period.

It's important to note that the interpretation of water quality trends and the impact of the rainy season on water quality may vary depending on specific factors such as the local environment, sources of water, and sampling locations. Further analysis and investigation may be required to determine the exact reasons for the observed changes in water quality before and after the rainy season.

Based on the provided information, the post-monsoon Water Quality Index (WQI) for Deham village falls under the poor zone. This indicates that the water quality in Deham village is relatively lower or less suitable for drinking or other purposes after the rainy season.

WQI value	Rating of Water Quality	Grading
0-25	Excellent water quality	А
26-50	Good water quality	В
51-75	Poor water quality	С
76-100	Very Poor water quality	D
Above 100	Unsuitable for water quality	E

Table 7 Water Quality rating as per weighted arithmetic Water Quality Index Method

Figure 2: Water Quality Index for Pre and Post monsoon 2019.

4. CONCLUSION

Based on the provided information and the Water Quality Index (WQI) values calculated using the given formula, the quality and suitability of water for human health can be assessed. By referring to Table-9 and examining the physicochemical parameters such as pH, Sodium (Na+), Total Hardness (CaCO3), Calcium, Magnesium, Chloride, Fluorides, Iron, Nitrate, and Sulphate (SO4) at the fifty different stations in the study area, it is observed that all values are within the recommended limits.

Furthermore, based on the grading system used, it can be concluded that all major villages fall under the category of "Good Water Quality" with a grading of B. This implies that the water quality in these villages is considered suitable for human consumption and other purposes, as all parameters meet the recommended limits.

These findings indicate that the water in the study area is within the acceptable range for the mentioned physicochemical parameters and can be deemed safe for human consumption.

It's important to note that the specific recommended limits and grading system used for water quality assessment may vary based on regional or national guidelines and standards.

Acknowledgements

The author expresses sincere gratitude to the staff of the State Water Data Centre (SWDC), Regional Office at Kherwa, Mehsana for their cooperation and providing the necessary data for the research. Their assistance and support were crucial in carrying out the study effectively.

The author would also like to extend deep appreciation to the Gujarat Water Supply and Sewerage Board (GWSSB) and all the staff members in Gandhinagar for their valuable time and contribution to the research work. Their input and cooperation were instrumental in the successful completion of the study.

Acknowledging the contributions of these individuals and organizations demonstrates the author's recognition of their assistance and highlights the collaborative efforts that made the research possible.

5. REFERENCES

- [1] Mayur C. Shah, Prateek G. Shilpkar and Pradip B. Acharya, (2007). Ground Water Quality of Gandhinagar Taluka, Gujarat, India. E-Journal of Chemistry, Vol. 5, No.3, pp. 435-446, July 2008.
- [2] Venkata Mushini, Rao Subba, Rao Vaddi Dhilleswara and Bethapudi Samuel Anand Andrews, Assessment of Quality of Drinking Water at Srikurmam in Srikakulam District, Andhra Pradesh, India, International Research Journal of Environment Sciences, 1(2), 13-20 (2012).
- [3] Patil Shilpa G., Chonde Sonal G., Jadhav Aasawari S. and Raut Prakash D., Impact of Physico-Chemical Characteristics of Shivaji University lakes on Phytoplankton Communities, Kolhapur, India, Research Journal of Recent Sciences, 1(2), 56-60 (2012).
- [4] Sargaonkar R. and Deshpande V., Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environ Monit Assess., 89(1), 43-67 (2003).
- [5] Singh, U.K., Kumar M., Chauhan R., Jha P.K., Ramanathan A.L. and Subramanian V., Assessment of the impact of landfill on groundwater quality: A case study of the Pirana site in western India, Environmental Monitoring and Assessment, 141, 309–321 (2008).
- [6] Water Quality Index of Surface Water Bodies of Gujarat, India N.C. Kankal, M.M. Indurkar, S.K. Gudadhe and S.R. Wate Asian J. Exp. Sci., Vol. 26, No. 1, 2012; 39-48.
- [7] WHO (1994): Guidelines for drinking water quality Recommendations). World Health Organization, Geneva.
- [8] N.J. Raju. Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah district, Andhra Pradesh, South India, Environmental Geology, 52, 1067–1074 (2007).
- [9] Bartram J., and Balance, R. Water quality monitoring—a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. Geneva: UNEP and WHO. ISBN 0-419-22320-7 (1996).
- [10] Hirsch R.M., Alexander R.B. and Smith R.A., Selection of methods for the detection and estimation of trends in water quality, Water resources research, 27(5), 803–813 (1991).
- [11] Borah, K.K., Bhuyan, B. and Sarma, H.P. 2008. Water quality issues in the tea garden belt of Darrang District, Assam. International Journal of Chemical Sciences, 6(4): 1942-1959.
- [12] Shah Mayur C, Shilpkar Prateek G. And Acharya Pradip B. —Ground Water Quality Of Gandhinagar Taluka, Gujarat, Indiall, E-Journal Of Chemistry, Vol. 5, No.3, Pp. 435-446, July 2008.
- [13] Singh, U.K., Kumar M., Chauhan R., Jha P.K., Ramanathan A.L. and Subramanian V., Assessment of the impact of landfill on groundwater quality: A case study of the Pirana site in western India, Environmental Monitoring and Assessment, 141, 309–321 (2008).
- [14] BIS (Bureau of Indian Standards) 10500, Indian standard drinking water specification, Second revision, (2012).
- [15] WHO, (World Health Organization), Guidelines for drinking water quality 2 ed., 1, 188 (1993).
- [16] P. Jain, J.D. Sharma, D. Sohu, P. Sharma, International Journal of Environmental Science and Technology, 2(4), 373(2005).
- [17] http://cgwb.gov.in/wqoverview.html

DOI: https://doi.org/10.15379/ijmst.v10i5.3694

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.