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Abstract: The study Investigates into the realm of speech recognition, particularly focusing on the evaluation of Hidden 
Markov Models (HMM), leveraging the MalayalamVoice dataset. The research scrutinizes the performance of HMM 
concerning word error rate (WER) and accuracy across varied word lengths, revealing a consistent trend of increased WER 
and decreased accuracy with longer utterances. This underscores the challenges inherent in accurately transcribing extended 
speech segments, accentuating the necessity for algorithmic enhancements. Moreover, analyses across diverse datasets and 
noisy environments underscore the criticality of comprehending dataset characteristics for refining recognition algorithms. 
Additionally, comparisons of different feature extraction methods elucidate the efficacy of Enhanced MFCC, particularly for 
shorter word lengths. However, as the word length extends, the distinctions between extraction methods diminish, highlighting 
the multifaceted nature of speech recognition. Overall, this study underscores the intricacies involved in speech recognition 
and the imperative of algorithmic refinements for augmenting accuracy, especially in practical scenarios. 
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Introduction 
 
The recognition of speech samples from visually impaired individuals is crucial for the operation of a smart 
cane designed for their assistance. By utilizing speech commands, visually impaired users can efficiently 
navigate their surroundings with the smart cane. This technology allows them to communicate their intentions 
and receive feedback or guidance accordingly, enhancing their independence and mobility. Integration of GPS 
technology into the system further enhances its functionality. With GPS, the smart cane can provide real-time 
location information to the user, aiding in navigation and ensuring they can reach their desired destinations 
safely. This combination of speech recognition and GPS technology creates a powerful tool for visually 
impaired individuals, offering them greater autonomy and confidence in their daily travels. 
Overall, the incorporation of speech recognition and GPS technology into the smart cane system represents a 
significant advancement in assistive technology for the visually impaired, empowering them to navigate the 
world with greater ease and independence. 
 
Architecture of the Speech Recognition Module 
 
The Speech recognition system in this study for visually impaired individuals toperates through the following 
steps: 

• Audio Input: The user speaks commands or instructions into a microphone integrated into the smart cane.  

• Signal Processing: The audio signal captured by the microphone is processed to enhance its quality and 
extract relevant features. This processing may involve noise reduction, filtering, and other techniques to 
improve the accuracy of speech recognition. 

• Feature Extraction: From the processed audio signal, key features of the speech, such as frequency 
components and timing patterns, are extracted. These features are then used as input for the speech 
recognition algorithm.  

• Speech Recognition Algorithm: The extracted features are analyzed by a speech recognition algorithm, 
which matches them against a predefined set of speech commands or vocabulary. This algorithm may use 
various techniques such as Hidden Markov Models (HMMs).  

• Command Interpretation: Once the speech is recognized, the system interprets the command or instruction 
conveyed by the user. This interpretation involves mapping the recognized speech to specific actions or 
functionalities within the smart cane system. 

• Response Generation: Based on the interpreted command, the smart cane generates an appropriate 
response. This response may involve providing auditory feedback to the user, initiating navigation 
instructions, or activating other features of the smart cane. 
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Fig 1: Architecture of the Speech Recognition Module 

 
Methodology 
 
In the initial phase of speech recognition, the raw audio waves are fed into a computer, where they are 
represented as simple 1D signals. Since raw audio is essentially an analog signal, it needs to be transformed 
into a digital form that the computer can comprehend. This transformation is achieved through a process called 
sampling, wherein the height of the sound wave is recorded at equally spaced intervals. For speech recognition 
purposes, a typical sampling rate of 8KHz or 16KHz is considered sufficient to capture the frequency range of 
human speech. Each sample is then quantized, typically into 8-bit or 16-bit values. By ensuring that the signal 
is sampled at least twice the highest frequency to be recorded, the original sound wave can be faithfully 
reconstructed from the spaced-out samples. Thus, a 1-second audio clip can be dissected into individual 
samples, denoted as a1, a2, ..., an, facilitating subsequent processing and analysis for speech recognition 
tasks. 
samples a1, a2, an. This can be represented as1D vector=A=[a1, a2,   an] 
 
Denoising the Signal 
 
In the context of audio signal denoising, a multi-step process is employed. Initially, the noisy signal undergoes 
transformation from the time domain to the frequency domain via the Fourier Transform, such as the Fast 
Fourier Transform (FFT), to acquire its spectrum. Subsequently, the noise spectrum is estimated, often derived 
from silent segments within the signal or a separate recording of noise. This estimation typically involves 
computing the average or median of multiple frames' spectra. Following the noise spectrum estimation, 
spectral subtraction is applied, involving the subtraction of the estimated noise spectrum from the spectrum of 
the noisy signal. This subtraction operation aims to mitigate the presence of noise components within the 
signal. Finally, the denoised spectrum is converted back to the time domain through the Inverse Fourier 
Transform, yielding the denoised audio signal. This comprehensive approach to denoising effectively reduces 
noise interference, enhancing the overall quality and clarity of the audio output. 
𝑌(𝑓)=max(𝑋(𝑓)−𝛼𝑁(𝑓),0) 
 Where: 
 Y(f) is the denoised spectrum. 
 X(f) is the noisy signal spectrum. 
 N(f) is the estimated noise spectrum. 
 α is a scaling factor or smoothing parameter (typically between 0 and  1), which controls the amount of 
noise subtraction. 
 
Feature Extraction 
 
Mel Frequency Cepstral Coefficients (MFCCs) have emerged as a pivotal feature in speech and voice 
recognition, with their inception credited to Davis and Murmelstein in 1980. 
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Fig 2: Block Diagram of the Speech Recognition Module 
 
Initially conceived to emulate the perceptual characteristics of the human ear, MFCCs have found application 
beyond speech processing, notably in the analysis of ship-radiated noise. By mimicking auditory perception, 
MFCCs excel in compressing spectral information, reducing dimensionality, and enhancing recognition 
accuracy. Central to the computation of MFCCs is the conversion between linear frequency and Mel frequency, 
encapsulated in the following formula: 

Mel(𝑓) = 2595 × lg (1 +
𝑓

700
) 

 
where Mel(f) denotes the Mel frequency and f denotes the Fourier frequency. 
 Mel Frequency Cepstral Coefficients (MFCC) serve as a technique for extracting spectral characteristics 
from sequences of frames. The process involves transforming the signal into the frequency domain using Fast 
Fourier Transform (FFT), as described by Equation (2.1). Subsequently, following pre-emphasis, framing, and 
windowing of the input signal, FFT is applied to the speech frames, resulting in the derivation of certain 
parameters based on 256-point power spectrum. This power spectrum is then converted into a Mel-frequency 
spectrum utilizing Equations (2.2) and (2.3). Finally, the logarithm of this spectrum is computed, and its inverse 
Fourier transform is performed, as illustrated in Figure 2. This pivotal transformation, facilitated by Mel-scale 
filter banks, imbues the spectral representation with a characteristic shape mirroring the nonlinearities inherent 
in human auditory perception. The transformation equation, encapsulating this pivotal mapping, stands as 
follows: 

𝑋(𝑘) = ∑ 𝑥[𝑛]e−𝑗2𝜋𝑛𝑘 𝑁⁄

𝑁−1

𝑁=0

,  0 ≤ 𝑘 < 𝑁 

𝐹𝑚𝑒𝑙 = 2595 ⋅ log10(1 +
𝑓𝐻𝑧
700

) 

𝐹𝐻𝑧 = 700 ⋅ (10
𝐹𝑚𝑒𝑙
2595 − 1) 

 
This equation epitomizes the essence of MFCC extraction, wherein the spectral information undergoes a 
profound metamorphosis, aligning it intricately with the perceptual intricacies of the human auditory system.  
 

 
Fig 4: The extraction process of MFCC. 
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3Pre–emphasis 
Pre-emphasis is the first step in MFCC which will boost the amount of energy of signal at higher frequencies. 
This step processes the passing of signal through a filter which emphasizes higher frequency in the band of 
frequencies the magnitude of some higher frequencies with respect to magnitude of other lower frequencies 
in order to improve the overall SNR. This process will increase the energy of signal at higher frequency.  
 Pre-emphasis employs a filter to amplify higher frequencies. The following illustrates the signal before and 
after processing, demonstrating how the high-frequency components are enhanced. 
 

 
 

Fig 5: Frequency variations after preephasising Framing 
  
The process of segmenting the sampled speech samples into a small frames. The speech signal is divided 
into frames of N samples. Adjacent frames are being separated by M(M < N). Typical values used are M = 100 
and N = 256 (which is equivalent to ˜ 30 m sec windowing 
The feature extraction process is implemented using Mel Frequency Cepstral Coefficients (MFCC) in which 
speech features are extracted for all the speech samples. Then all these features are given to pattern trainer 
for training and are trained by HMM to create HMM model for each word. Then Viterbi decoding will be used 
to select the one with maximum likelihood which is nothing but recognized word. 
 

 
 

Fig 6: Generating Speech Frames 
 
Hamming Windowing 
 Each individual frame is windowed so as to minimize the signal discontinuities at the beginning and end of 
each frame. Hamming window is used as window and it integrates all the closest frequency lines. The 
Hamming window equation is given as: If the window is defined as  
 W (n),0  n   N  1  
  where N = number of samples in each frame  
  Y [n] = Output signal  
  X (n) = input signal. 
W (n) = Hamming window , then the result of windowing signal is shown below: 
Y (n) = X (n) ∗ W (n) (3.2) 
W (n) = 0.54 −(−0.46)Cos(2n/N − 1); 0 < n < N − 1 (3.3) 
 
Mel Filter Bank Processing. 
 The frequency range covered by the spectrum obtained through Fast Fourier Transform (FFT) is extensive, 
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but the voice signal does not adhere to a linear scale. To better capture the characteristics of the voice signal, 
a bank of filters is applied according to the Mel scale. 
 
Mel Filter Bank 
 The triangular filters calculate a weighted sum of spectral components from the filters, aiming to approximate 
a Mel scale in the output process. Each filter's frequency response magnitude follows a triangular shape, 
reaching unity at the center frequency and linearly decreasing to zero at the center frequency of two adjacent 
filters. Subsequently, the output of each filter is the sum of its filtered spectral components. The resulting Mel 
spectrum comprises the output powers of these filters. Next, the logarithm of the Mel spectrum is computed, 
resulting in the log-Mel spectrum output. 
 
Discrete Cosine Transform 
The next step involves converting the log Mel spectrum back into the time domain using the Discrete Cosine 
Transform (DCT). This transformation yields the Mel Frequency Cepstrum Coefficients, often referred to as acoustic 
vectors. Consequently, each input utterance undergoes a transformation into a sequence of these acoustic vectors. 
 
MalayalamVoice” A Comprehensive Speech Dataset  
 
 In this Study, introduced the “MalayalamVoice” dataset creation process, intended to serve as a 
cornerstone in the advancement of research within the realms of speech recognition, natural language 
processing, and accessibility technologies, with a keen focus on the Malayalam language. 
The MalayalamVoice dataset emerges as a seminal contribution to the research fraternity, offering an 
invaluable repository for the training and evaluation of speech recognition models and accessibility 
technologies tailored explicitly for the Malayalam language.  

 
Dataset Description 

Language Malayalam 

Audio Format WAV 

Sampling Rate 48 kHz 

Encoding 16-bit PCM 

Speakers 25 male speakers <br> 30 female speakers 

Content Focus Utterances of words in COCO dataset, Domain-specific sentences for 
visually impaired navigation assistance 

Dataset Statistics 

Total Audio Files 3850 

Total Duration 2Hr 45Sec 

Average Duration per Audio File 2.3Sec 

 
Table 1: Description of MalayalamVoice Data set 

Hidden Markov Modeling 
 HMM serves the purpose of categorizing the features and making accurate decisions. Widely recognized 
as a potent statistical tool in speech recognition and speaker identification systems, HMM possesses the 
capability to model the intricate alignment of speech non-linearly and estimate model parameters. Gaussian 
Mixtures are also employed to model the emission probability distribution function within each state. 
 
 During the training process, various parameters including observation parameters, transition probability 
matrix, prior probabilities, and Gaussian distribution are re-estimated iteratively to optimize their values, as 
depicted in Figure 3. Consequently, these updated HMM parameters are utilized to compute likelihood scores, 
which play a crucial role in determining the best path between frames for recognizing the unknown word. 
 
Evaluation Process 
 In the evaluation process, involving the observation sequence 𝑂O and the model parameters 𝜆λ, the 
Forward (𝛼α) and Backward (𝛽β) algorithms are employed to determine the probability of the observation 

sequence given the model, denoted as 𝑃(𝑂∣𝜆)P(O∣λ) [12]. Illustrated in Figure 4, the forward and backward 
probabilities are combined to assess the likelihood that any sequence of states has generated the observed 
sequence of observations. 
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Fig 7: Mel Frequency Cepstral Coefficients (MFCC) block diagram 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 8:Three states hidden Markov model. 

 
 
Training Process 
 
 With the observation sequence 𝑂O and model parameters 𝜆λ at hand, the Baum-Welch algorithm is 
employed to readjust and re-estimate the transition probability matrix and Gaussian mixture parameters, 
including mean and covariance, which optimally characterize the process. Additionally, the Baum-Welch 
algorithm is utilized to learn and encode the characteristics of the observation sequence, facilitating the 
recognition of similar observation sequences. 
 
Decoding 
 In the decoding process, the Viterbi algorithm is employed to compare between the training and testing 
data, determining the optimal scoring path of the state sequence by selecting the highest probabilities between 
the model and the testing data. The maximal probability of state sequences is defined using Equation, and the 
selection of the optimal scoring path of the state sequence is calculated utilizing the following function: 

𝛿𝑡(𝑖) = max(𝑃(𝑞(1), 𝑞(2),⋯ , 𝑞(𝑡 − 1); 𝑜(1), 𝑜(2),⋯ , 𝑜(𝑡)|𝜆)) 
Python Implementation: 
# Load testing list from .mat file defstart_recognition(testing_list_file,dim):testing_list=sio.loadmat(testing_list 
_file) 
 
HMM with MalayalamVoice data 
 This study assesses the effectiveness of HMM through various performance metrics such as word error 
rate and accuracy, using the MalayalamVoice dataset. MalayalamVoice dataset mainly focused for creating 
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assistive technology like smart cane.  The HMM speech recognition algorithm is employed initially on real-time 
noisy speech and subsequently on noise-filtered speech. The ensuing table, labeled as Table , encapsulates 
the performance evaluation of HMM. 
 

 
 

Table 2: Performance evaluation of HMM with MalayalamVoice data 
  
The table presents a clear trend in the performance of a speech recognition system concerning word length, 
as indicated by Word Error Rate (%) and Accuracy (%). With an increase in word length from 10 to 35, there's 
a consistent rise in the Word Error Rate (%), climbing from 2.2% to 10.3%, indicating a greater likelihood of 
misidentification with longer words. Conversely, Accuracy (%) demonstrates a corresponding decline from 
97.8% to 89.7% as word length extends, reflecting the system's reduced ability to accurately transcribe longer 
utterances. This inverse relationship underscores the inherent challenges in accurately recognizing and 
transcribing lengthier words within a speech recognition framework, emphasizing the need for targeted 
algorithmic enhancements to mitigate error rates and bolster accuracy, particularly in real-world applications 
where longer phrases or sentences are common. 
  
WER= (NS+NI+ND) / N  
Where NS=number of substitutions 
NI = number of insertions 
ND= number of deletions 
N = Total number of words spoken 
The accuracy percentage is calculated as: Accuracy = 100 – WER (3.2)  
 

 
 
Equations illustrate a direct relationship between the terms WER and accuracy, indicating that changes in one 
variable correspond to proportional changes in the other. 
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Comparison with Other Malayalam datasets 

 
 

Table 3: Performance evaluationComparison with Other Malayalam datasets 
  
The table presents error rates (%) for different word lengths across four distinct datasets: MalayalamVoice, 
Indic Malayalam, Festvox IIITH Malayalam, and MSC Reviewed speech. The data reveals a consistent pattern 
of increasing error rates with longer word lengths across all datasets. This suggests that as the length of words 
grows, speech recognition systems encounter greater difficulty in accurately transcribing spoken language. 
Additionally, variations in error rates between datasets highlight potential differences in the performance and 
characteristics of the respective recognition models or datasets. Understanding these trends is crucial for 
optimizing speech recognition algorithms and enhancing their effectiveness, particularly when processing 
longer words, thus contributing to advancements in speech processing technology. 

 
 

Fig 4: Performance evaluation Comparison with Other Malayalam datasets 
Noisy and Noiseless Environment 

 
 

Table 4: Pperformance evaluation in noisy Environment 
  
The provided dataset showcases the Word Error Rate (WER) percentages for both noisy and noiseless speech 
across varying word lengths. As we observe the table, there's a discernible trend indicating an increase in 
WER with longer word lengths for both noisy and noiseless conditions. For instance, at a word length of 10, 
the WER is 4.3% in noisy speech and 2.2% in noiseless speech. However, as the word length extends to 35, 
the WER escalates to 12.9% in noisy speech and 10.3% in noiseless speech. This pattern suggests that longer 
words pose greater challenges for accurate speech recognition across both noisy and noiseless environments. 
Furthermore, when comparing the WER between noisy and noiseless conditions, we consistently observe a 
lower WER in the noiseless speech scenario across all word lengths. 
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Performance Analysis with Different Feature Extraction Methods 

 
Table 5: Performance Analysis with Different Feature Extraction Methods 

The table showcases the performance of various feature extraction methods, including Enhanced MFCC, 
Linear Predictive Coding (LPC), and Perceptual Linear Prediction (PLP), across different word lengths. 
Notably, for shorter word lengths such as 10 and 15, the Enhanced MFCC consistently demonstrates the 
lowest Word Error Rates (WERs) compared to LPC and PLP, with values of 2.2% and 4.1% respectively. 
However, as the word length increases, the WERs tend to converge, indicating a diminishing gap between the 
performance of different feature extraction methods. Particularly at longer word lengths of 30 and 35, while 
Enhanced MFCC still maintains a competitive edge with WERs of 9.5% and 10.3% respectively, the differences 
between the methods become less pronounced. This suggests that for longer utterances, factors beyond 
feature extraction may play a more significant role in determining recognition accuracy. 

 

 
Conclusion 
 
This study focuses into the evaluation of speech recognition algorithms, particularly focusing on Hidden Markov 
Models (HMM), using the MalayalamVoice dataset. Initially, the performance of HMM is analysed concerning 
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word error rate (WER) and accuracy across different word lengths, revealing a consistent increase in WER 
and decrease in accuracy as word length extends. This trend highlights the challenges in accurately 
transcribing longer utterances, emphasizing the need for algorithmic improvements. Furthermore, error rates 
across various datasets underscore the importance of understanding dataset characteristics for optimizing 
recognition algorithms. The chapter also explores the impact of noisy environments on speech recognition, 
noting an increase in WER with longer word lengths in both noisy and noiseless conditions. Additionally, 
comparisons between different feature extraction methods demonstrate the superiority of Enhanced MFCC for 
shorter word lengths, although with diminishing differences as word length increases. Overall, the chapter 
emphasizes the complexities involved in speech recognition and the significance of algorithmic enhancements 
for improving accuracy, particularly in real-world applications. 
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