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Abstracts: In cardiology, there has been a surge in artificial intelligence (AI), machine learning, and deep learning 
techniques. Artificial intelligence (AI) and electronic health records have the potential to advance our knowledge of 
disease states and enable personalized cardiac care in the era of modern medicine. With its latest data fusion 
techniques of non-imaging and imaging data (including cardiac magnetic resonance imaging, echocardiography, and 
cardiac computed tomography), the field of cardiac medicine is evolving, leading the revolution in precision cardiology. 
Although these data were previously used in isolation, new developments in deep learning (DL) and machine learning 
(ML) allow these data sources to be integrated to generate multimodal insights. There is growing interest in the 
application of data fusion, which uses ML and DL techniques to integrate data from multiple modalities into cardiac care.  
We review the most advanced research in this paper, emphasizing how the new methods of data fusion are delivering 
clinical and scientific insights uniquely to the field of cardiovascular medicine. Although multi-modal deep learning yields 
more reliable estimations than multi-modal machine learning and unimodal techniques, it suffers from limitations related 
to scalability and the time-consuming nature of concatenating information.    

Keywords: Multimodal ML (MML), Multimodal Deep Learning (MDL), Cardiac Magnetic Resonance Imaging 

(CMR), Coronary Artery Disease (CAD), Myocardial Infarction (MI), Ischemic Heart Disease (IHD), Logistic 

Regression (LR), Convolutional Neural Networks (CNNs). 

 

1. INTRODUCTION  

The heart and its blood vessels make up the cardiac system in our body [1]. This system can have many 

different issues, some of which include abnormalities of the arterial and venous system, heart valves, and 

endocarditis [2]. Cardiovascular diseases (CVDs), encompass four conditions: aortic atherosclerosis, peripheral 

artery disease (PAD), cerebrovascular disease, and coronary artery disease (CAD) [3-5]. Reduced heart perfusion 

in CAD leads to ischemia [6], which may progress to myocardial infarction (MI) [7, 8]. One-third and half of all cases 

of cardiovascular diseases are caused ischemia [9]. The condition known as cerebrovascular disease is linked to 

transient ischemic attacks (TIAs) and strokes [10]-[12]. A condition known as peripheral arterial disease (PAD) 

primarily affects the limbs and can cause claudication. The condition linked to abdominal and thoracic aneurysms is 

atherosclerotic cardiovascular condition [13, 14].  

A major cause of death and loss of health worldwide is cardiovascular disease [15, 16]. Approximately 17.8 

million deaths worldwide in 2017 were attributed to CVDs, meaning that 330 million years of life were lost and an 

additional 35.6 million years lived with disability [15, 17]. However, in 2019, the data from the Global Burden of 

Disease study estimated 523 million cases of cardiovascular diseases (CVDs) [15]. By 2030, sociodemographic 

changes, such as population aging and the rising prevalence of risk factors (such as obesity, hypertension, and 

diabetes), are expected to raise this number to 23.6 million deaths [18]. Three-quarters of deaths from CVDs occur 

in low-middle-income countries (LMICs), according to the WHO [19]. The ischemic heart disease and ischemic 

stroke are the primary causes of 85% of deaths from CVDs and one-third of these deaths happen too soon in 

individuals under the age of 70 [20, 21]. Ischemic heart disease was ranked at the top among all CVDs as the 

leading cause of mortality causing 9.4 million deaths [15, 22].   
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Early on in their development, CVDs have mild symptoms that gradually worsen [23-25]. When beginning CVD, 

most people experience symptoms like fatigue, breathlessness, swelling in the ankles, fluid retention, and other 

symptoms [26]. The best methods for identifying CVDs are blood tests, electrocardiography (ECG) signals, and 

medical imaging [27]. A wide range of imaging technologies, including computed tomography (CT), multiple types of 

magnetic resonance imaging (MRI), echocardiography (Echo), and X-rays, are used in cardiac assessment [28]. 

However, the patient's medical history, family history, risk factors, lifestyle, and physical examination are also the 

main components of the diagnosis [29].  

We can coordinate the findings from multiple modalities and forecast the presence of disease based on 

procedures and results [30]. Data that spans several contexts and types (such as genetics, text, or imaging) is 

referred to as multimodal data [31]. The basic goal of multimodal data fusion techniques is to merge data with 

values from various scales and distributions into a global feature space, or database, where the data can be more 

consistent [30, 31]. This uniformity can be used to improve performance on tasks like classification and prediction 

[32]. It is possible to predict the prognosis of cardiovascular disease, enhance the identification of required 

therapies, and forecast treatment response by combining various data types [33]. It is hoped that by using multiple 

types of data, more accurate models can be constructed than if only unimodal data is used [31-34]. Although a 

single modality has been the focus of the majority of artificial intelligence research in the cardiac care industry, as 

the field develops, more efforts are being made to use multiple modalities for diagnosing CVDs [35].  

Multimodal machine learning (MML) techniques have been analyzed in previous reviews and used in the 

diagnosis of various cardiovascular diseases in the last few years [36-39]. However, there is a gap in the analysis 

and implementation of multimodal deep learning (DL) in the diagnosis of cardiovascular diseases: heart disease, 

ischemic heart disease, atrial fibrillation, stroke, coronary artery disease, and myocardial infarction [40-61]. The 

articles mentioned in this review have utilized deep learning algorithms for the training of one modality and then 

fused two or more different modalities for classification using an ML model [40-61]. MDL offers benefits over MML 

for data fusion. Multimodal deep learning enables the direct application of deep learning algorithms to classification 

tasks by integrating data from multiple modalities at an early stage of the process [62]. In particular, a systematic 

review of the literature has been conducted from the following perspectives: 

RQ1: What is the current state of the art for predicting CVDs using multimodal data, and what are the literature 

and technological gaps in the prediction of heart diseases? 

RQ2: Which multimodal ML frameworks are currently in use, and why there is a need for applying deep learning 

algorithms to analyze multi-modal datasets? 

RQ3: How multimodal ML is different from multimodal DL? 

1.1. Types of Data Modalities for Diagnosing CVDs 

 The different types of data modalities that can contribute to the diagnosis of cardiovascular diseases (CVDs) are 

given below: 

1.1.1. Clinical Data 

A fundamental component of most health and medical research is clinical data [63]. Clinical data is gathered as 

part of official clinical trial programs or in the course of continuing patient care. The data that is collected includes 

biometric and demographic profiles, prescription medication details, diagnoses, treatment modalities, laboratory 

results, statistics on physiological monitoring, hospitalization records, and patient insurance information. 
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For example, blood tests offer data on blood sugar levels, triglycerides, cholesterol levels (LDL, HDL, and total 

cholesterol), and inflammation markers like C-reactive protein (CRP). When assessing the risk of atherosclerosis 

and other cardiovascular diseases, these markers are essential [64]. 

1.1.2. Electrocardiograms 

The electrical activity of the heart is measured indirectly by an ECG, also known as an EKG. To create a 12-lead 

ECG, electrodes containing a conductive medium are applied to each extremity and multiple locations on the chest 

wall [65, 66]. This allows for a recording of the electrical currents within the heart. Every particular portion of an 

electrode offers a trace, or lead. By using 12 leads, a more comprehensive image of the electrical activity in the 

heart can be obtained from 12 distinct perspectives [66]. Its application is essential for the assessment and 

treatment of a variety of cardiovascular conditions, such as arrhythmias, atrial fibrillation, ischemic heart disease, 

and pericardial and myocardial disease [67]. 

1.1.3. Imaging Modalities 

The most common imaging modalities that are used in cardiology are echocardiography, CT angiography, and 

cardiac MRI. Sound waves are used in cardiac ultrasound, also known as echocardiography (Echo), a non-invasive 

technique for imaging heart tissue [68]. Echo evaluates the heart's pumping cavities, analyses blood flow through 

them, and assesses the structure of the heart to assist doctors in identifying different kinds of CVDs [68-70]. The 

other non-invasive imaging method that can be used to identify a range of CVDs is computed tomography (CT) [71]. 

Specifically, cardiac CT offers an anatomical assessment of the heart, with a focus on coronary artery disease [72]. 

Non-contrast CT and contrast-enhanced coronary CT angiography (CTA) are used in this imaging modality [73]. 

One of the main drawbacks of cardiac CT imaging is radiation exposure [72, 73]. The degree of myocardial 

infarction/fibrosis and cardiac chamber volume/function can both be quantitatively assessed using CMR imaging 

[74, 75]. For the diagnosis of various CVDs, such as ischemic heart disease [76], myocarditis [77], and atrial 

fibrillation [78], it is a modality that is advised by guidelines. This aids in the early diagnosis and accurate 

phenotyping of the various CVDs, both of which are critical for prompt and customized patient treatment [79]. 

 

Figure 1: An improved cardiac healthcare approach using wearable sensors, EHRs, and social media data to improve predictive 

analytics with machine learning and deep learning models 
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2. LITERATURE REVIEW 

Javeed et al. stated that there have been several uses of machine learning, data mining techniques, and various 

modalities of data in the past [80]. They conducted a review of automated diagnosis for the prediction of heart 

disease using a variety of modalities, including images, ECG, and clinical data separately. A great number of 

articles were analyzed utilizing different data types and each mode of data was individually discussed. Additionally, 

the limitations of the earlier approaches were presented in this paper along with a critical evaluation of them. The 

paper concludes by outlining some potential paths for future research in the area of automated cardiac disease 

detection using a variety of data modalities and machine learning. 

Moshawrab et al. analyzed the use of MML in cardiac care. They found out that MML facilitates the 

amalgamation of various models in the pursuit of a solitary, all-encompassing resolution to a multifaceted issue [81]. 

The technical aspects of multimodal machine learning were covered in this review. Furthermore, this article delved 

deeply into the application of multimodal machine learning in the identification and prognosis of CVDs, emphasizing 

the outcomes achieved thus far and potential avenues for further advancement in this domain. The article has 

analyzed multimodal ML and data fusion categories in a well-structured manner but the articles relevant to 

cardiovascular diseases have been discussed less. Only a general overview of multimodal ML in cardiac care has 

been provided.  

Ahsan & Siddique used a qualitative approach to identify the problems related to unbalanced data in cardiac 

diseases’ predictions to give a more comprehensive picture of the body of existing literature [82]. They examined 49 

pieces of cited literature with consideration given to the following aspects: type of cardiac disease, algorithm 

applied, current applications, and solutions. Their analysis showed that the existing methods struggle with several 

unresolved issues when handling unbalanced data, which ultimately limits their usefulness and functionality. This 

review highlights the imbalanced datasets problem in multi-modal ML. However, the imbalanced dataset problem 

has been properly analyzed but the use of deep learning algorithms in multi-modality has not been discussed.  

Milosevic et al. summarized the last five years' worth of research on AI applications for multi-modal imaging in 

cardiology [83]. They found out that there have been many encouraging developments in the registration, 

segmentation, and fusion of various MR imaging modalities with CT scans but there are still numerous issues that 

need to be resolved. Papers on modalities like echocardiography, X-ray, and non-imaging modalities are rare. The 

paper presents an extensive review but only the imaging modalities have been discussed.  

Amal et al. reviewed the latest research in multi-modal cardiac care emphasizing how the newest methods for 

data fusion are delivering clinical and scientific insights unique to the field of cardiac care [84]. They concluded that 

clinicians and researchers alike will be able to diagnose and treat cardiovascular diseases (CVD) more accurately, 

precisely, and quickly with the help of these new data fusion capabilities. Although these data were previously used 

in isolation, new developments in deep learning (DL) and machine learning (ML) allow these data sources to be 

integrated to generate multimodal insights. This review study was found to be the most updated in terms of 

multimodality in cardiac care but the number of cited research articles is less. Moreover, the study focuses on 

multimodal machine learning techniques and has not discussed multi-modal deep learning.  

Stahlschmidt et al. discovered that deep fusion strategies frequently perform better than shallow and unimodal 

methods. They analyzed that multimodal deep learning approaches offer the chance to train comprehensive models 

that can understand the intricate regulatory dynamics underlying different diseases, as these data sets become 

more widely available. Similarly, using transfer learning could help datasets from various modalities overcome 

sample size constraints. The review provides a detailed analysis of MDL techniques for versatile biomedical data 

[85]. It was considered for analyzing MDL techniques in diagnosing and predicting cardiovascular diseases. 

Summaira et al. provided a comprehensive review of recent developments in multimodality and a thorough 

examination of baseline techniques from the past and present. A detailed taxonomy that goes into greater detail 
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about the different multimodal deep-learning applications was suggested. These applications' datasets and 

architectures, as well as the metrics used to assess them, were also covered [86]. 

Prior research on automated techniques for CVDs primarily focused on one particular kind of data modality. 

Additionally, a few survey articles with varying foci have been published on multimodality for cardiovascular 

diseases highlighting the use of MML algorithms [80-86]. All those research articles have been analyzed in this 

study which have employed machine learning algorithms for classification or regression and used deep learning 

algorithms for unimodal data training for each data type separately [87-108]. The various MDL fusion techniques for 

heterogeneous data have not been reviewed. This is covered in the current review, where we highlight the use of 

the most advanced MDL fusion techniques which have been utilized in other fields like pulmonology [62] but still not 

in cardiology. Furthermore, we provide a taxonomy that describes subcategories that are helpful for practitioners 

and researchers looking to improve or apply existing methods in addition to outlining the conventional classification 

of early, intermediate, and late fusion. 

3. METHODOLOGY 

The overall methodology that was used for this systematic literature review is given as: 

3.1. Articles Collection 

Several protocols adhered to guarantee an excellent review of the literature on multimodal data analysis through 

multi-modal deep learning for CVD diagnosis. In January 2024, a thorough search of peer-reviewed literature was 

carried out (reports, editorials, posters, dissertations, and short papers were not included). Preferred reporting items 

for systematic reviews and meta-analyses (PRISMA) guidelines were considered. All articles were extracted 

containing terms: CVDs, stroke, ischemic heart disease, atrial fibrillation, multi-modal deep learning, coronary artery 

disease, multi-modal machine learning, myocardial infarction, and multimodality from PubMed, Google Scholar, 

Cochrane, CINAHIL, MDPI, Elsevier, and IEEE-Xplore. 403 peer-reviewed publications were found through the 

search process. The specific criteria defined in the search strategy were used to choose the literature for this study: 

only heart disease (HD), Ischemic Heart Disease (IHD), atrial fibrillation, stroke, aortic atherosclerosis, and coronary 

artery disease (CAD) were targeted, and the articles published after 2014 were included only.  

3.2. Search Strategy 

During the selection process, the overall validity of the literature review is assessed, so defining precise inclusion 

and exclusion criteria is crucial [109]. We used six quality standards given below, which were influenced by relevant 

literature [110]. Studies focusing on multimodal data analysis using deep learning were therefore qualified for 

inclusion. The papers were first evaluated based on their titles and then abstracts and then on the basis of their 

complete texts using the defined criteria of the selection process. The overall strategy is depicted in Figure 2. The 

quality standards that were considered for the inclusion of research articles are given below: 

1. Articles published within the last ten years were included 

2. The studies that investigated the use of MML and MDL for the prediction or diagnosis of CVDs 

3. Research articles that used multi-modal data such as clinical features, images, and ECG, for analysis 

4. Studies that clearly explained the architecture, data preprocessing, feature extraction, and fusion 

techniques of the deep learning and machine learning models used 

5. Studies that mentioned the measurable outcomes related to accuracy, sensitivity, specificity, and AUC or 

ROC. 
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6. Only peer-reviewed journals and conferences were included to ensure credibility and quality 

 

Figure 2: Reviewing Literature and Filtering Stages 

4. RESEARCH FINDINGS 

The findings of this systematic review are given below: 

4.1. Data Fusion 

"The process of combining data to refine state estimates and predictions" is the precise definition of data fusion 

[111]. Fusion is primarily carried out at three levels: early fusion, late fusion, and joint fusion. It can occur at various 

points during a modeling process. Data fusion is the discipline that covers the process of combining data from 

various sources using machine learning or deep learning algorithms. To process more than one kind of data, the 

"data fusion" technique is essential [111]. The authors of [112] provide evidence in favor of this definition by stating 

that a process involving the association, correlating, or fusion of data from one or more sources to produce enriched 

information is referred to as data fusion. There are three distinct approaches to implementing data fusion which go 

by different names depending on the research area and domain of application. There is no agreement on the best 

way to combine disparate data in data fusion given in the literature [111-113]. The different types of data fusion in 

cardiology are given in Figure 3.  
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Figure 3: Stages of Data Fusion for diagnosing 

cardiovascular diseases using multi-modal datasets 

Figure 4: Current Multimodal ML approaches which    

are being used in cardiology 

Early Fusion is the type of data fusion that is the most basic, combining several data sources into a single 

feature vector before a single machine learning algorithm uses it. It is also referred to as low-level fusion. As such, it 

can be called a multiple-data input and single-algorithm output [114]. One problem with early fusion is that when the 

data are highly dissimilar, it is unclear how to combine the data from various modalities. Ali et al. suggested data 

normalization as a potential solution to this problem. The different data values and distributions can be scaled or 

normalized between 1 and 0 with different normalization techniques, allowing for the combining of data. Additionally, 

by lowering the noise, this strategy may enhance model predictions [115].  

When all data sources have the same format, intermediate fusion occurs in the interim period between an ML 

architecture's input and output. This is also known as feature-stage fusion. Features are combined in this phase to 

carry out different tasks like feature selection, decision-making, or data-driven prediction [114]. For instance, mean 

muscle radiodensity and the VAT/SAT ratio were first extracted and then merged with clinical data in Zambrano 

Chaves et al.’s construction of the segmentation plus clinical fusion algorithm [89]. Late Fusion is the process of 

combining conclusions from several machine learning algorithms that were trained on various sets of data. This is 

also called decision-level fusion. Additionally, different classifiers' decisions are combined according to different 
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rules [4]. For example, the EHR data and biomarkers data fusion model by Zhao et al is an example of late fusion 

[106]. 

Early fusion, can transform all data from various modalities into a single representation that can be classified 

using reliable classical models like Support Vector Machine or Random Forest, is the most popular type of fusion 

[87, 88]. Nonetheless, a late fusion approach is more convenient to use when the input modalities are highly 

uncorrelated and have widely differing dimensionality and sampling rates as shown in all the relevant papers [89-

108]. Furthermore, because late fusion's performance is so problem-specific, there is no concrete proof that it is 

superior to early fusion. However, both early and late fusion provide the greatest flexibility in terms of the number of 

deep learning and machine learning models that can be used to analyze the data [87-108]. All the articles that have 

been mentioned in Table I have utilized the intermediate or late fusion approach. In most cases, each modality's 

data has been trained first using a neural network, and then each modality's data is classified using a machine 

learning algorithm [87-108]. 
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Table I: The summarized literature review for the diagnosis of cardiovascular diseases using a multi-modal machine learning approach 

Author, Year Target Variable Input Features Models Dataset Outcome Output Results 

Tiwari -

 2022 

Heart Disease 14 Clinical features 

 

MML Heart Disease University of 

California Irvine dataset-303 records  

Early Prediction of Heart 

Disease 

Binary Acc.: 87.91 

García-

Ordás et al. - 

2023 

Heart Disease 11 Clinical features 

Demographics 

MLP and CNN-

SAE 

Cleveland, Hungarian, 

Switzerland, Long Beach, stalog-918 

samples 

Risk of Heart Disease Binary Acc.: 90.88 

Zambrano 

Chaves et al. -

 2023 

Ischemic 

Heart Disease 

Abdominopelvic CT 

Images 

Clinical features 

XGBoost OL3I dataset 1-prediction 

5-year prediction  

 

Binary AUROC: 0.86 

AUCPR: 0.76 

You et al. - 

2023 

Ischemic 

Heart Disease 

Exercise ECG 

Clinical Risk Factors 

LSTM - LR UK Biobank – 58,892 12- year prediction Binary Acc.: 73.68 

Liaqat et al. 

- 2020 

Atrial 

Fibrillation 

ECG Data 

Clinical features 

MML-LSTM MIT-BIH Atrial Fibrillation Dataset Detection of AF Binary Acc.: 98 

Atta-Fosu 

et al. - 2021 

Atrial 

Fibrillation 

Cardiac CT scans 

Clinical data 

XGBoost Pre-catheter ablation CT scans-68 

Patients with AF recurrence within 

the first year of ablation: 37 

Patients without AF recurrence: 31 

 

AF Recurrence or No 

Recurrence 

Binary AUC: 0.78 

Tang et al. 

- 2022 

Atrial 

Fibrillation 

Intracardiac atrial 

signals 

12-leads ECG 

Clinical features 

MML-CatBoost Patients who underwent catheter 

ablation - 156 

AF Recurrence or No 

Recurrence 

Binary Acc.: 85.9 

Zhou et al. 

- 2023 

Cardiovascula

r mortality 

12-leads ECG – 250 

features 

EHR data – 93 

features 

 

MML-XGBoost Total subjects with heart failure: 

2,868 

New onset AF (Atrial Fibrillation): 

1,150  

New onset stroke/TIA (Transient 

Ischemic Attack): 668  

 

AF and Stroke Multi-

class 

Acc.: 89 

Rawshani 

et al. - 2024 

Atrial 

Fibrillation 

12-leads ECG 

Demographics – Age, 

sex 

HRV 

MML-AlexNet PTB-XL, CPSC Extra, Georgia – 

35,634 

Prediction Binary AUROC: 0.92 

Kim et al. -

 2020 

Atrial 

Fibrillation 

3D Images of Left 

Atrium-CT 

3D Images of LA- 

Echo 

Patient 

Demographics 

MML-CNN Catholic Medical Center, South 

Korea - 527 

Recurrence of AF after 

PVI 

Binary AUC: 0.61 

Li et al. - 2021 Cardiovascular 

disease 

ECG data 

PCG data 

MML-LSTM PhysioNet/CinC Challenge 2016 - 405 Presence of CVD Binary AUROC: 0.93 

Brugnara et al. 

- 2020 

Acute 

ischemic stroke 

Clinical data 

CT Images-Native 

MML-GB Germany dataset - 246 Accurate Prediction of mRS-

90 

Multi-class Acc.: 80 
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CT, CT angio,  

CT Perfusion 

Endovascular 

treatment data 

Zihni et al. -

 2020 

Stroke Clinical data 

TOF – MRA 

 

MML, CNN 1000Plus study - 316 Outcome Prediction Binary AUC: 0.75 

Yu et al. - 2020 Stroke facial motion 

Speech data 

MML-ResNet  Stroke dataset - 376 Prediction  Binary Acc.: 79.27 

Billot et al. -

 2022 

Stroke Neuroimaging data 

Demographics 

Behavioral data 

MML-RF Treatment Response Data - 55 Post Stroke language 

Rehablitation 

Binary F1: 0.87 

Cai et al. - 2022 Stroke One-minute facial 

video data 

Audio data 

MML-CNN  Eddy Scurlock Stroke Center at 

Texas Hospital  

Prediction Binary Acc.: 73.7 

Agrawal et al. - 

2021 

Coronary 

Artery Disease 

Survey data 

Biomarkers data 

Clinical Diagnoses 

Anthropometric 

measure 

ML4HEN-COX UK Biobank - 13782 10-year risk score for CAD. Regression C: 0.796 

Bagheri et al. - 

2020 

Atherosclerotic 

Cardiovascular 

condition 

Demographics 

Historical data 

Laboratory data 

 

MI-LSTM  UMC Utrecht - 5603 Prediction Binary AUC: 0.84 

Puyol-Antón et 

al. - 2022 

Symptomatic 

Heart Failure 

CMR data 

2D-Echo data 

MML - SVM UK Biobank – 700 

EchoNet-Dynamic – 10, 030 

Gut and ST Thomas NHS 

Foundation – CRT- 100 

GSTFT – Echo - 12 

Cardiac 

Resynchronization therapy 

Response Prediction 

Binary Acc.: 77.38 

Zhang et al. -

 2020 

Coronary 

Artery Disease 

Echocardiography 

Phonocardiography 

Biomarker levels 

Holter monitoring 

SVM CAD Patients – 32 

Normal - 30 

Prediction Binary Acc.: 96.67 

Yoon & 

Kang - 2023 

Cardiovascula

r Disease 

12-lead ECG data Res-Net-50 

and LR 

Chapman University Shaoxing 

People’s Hospital  

Prediction Binary Acc.: 93.97 

Xiao et al. -

 2023 

Myocardial 

Infarction 

12-lead ECG data 

Demographics 

Multi-modal 

ML-CNN 

PTB-XL – 21,837 Prediction Binary Acc.: 87.4 

Sievering et 

al. - 2023 

Myocardial 

Infarction 

Invasive Coronary 

Angiography Images 

Clinical data 

Multi-modal 

ML-ANN 

Switzerland - 445 Prediction Binary Acc.: 81.12 
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4.2. Multi-modal ML Vs. Multi-modal DL  

The development of algorithms and models that can comprehend and learn from vast and multiple modalities of 

data, such as text, image data, audio, and video, is the aim of multimodal machine learning as depicted in Figure 4. 

Research on MML is booming, and it has the potential to revolutionize many different fields specifically biomedical 

science. To create effective that can utilize versatile instances from numerous modalities and produce more reliable 

and accurate predictions in the real world, it is imperative to comprehend the technical aspects of MML. As a result, 

whether a dataset is multimodal or unimodal in architecture, multimodal datasets define the data itself. And, these 

datasets are independent of the nature of the algorithms used to analyze the data. However, an early fusion 

approach that is a form of MML and MDL is thought to involve combining multimodal datasets. It helps in unifying 

their representation into a single vector, and then analyzing them using an ML model or a DL model. 

MML has been used extensively for examining and deciphering complex cardiac data that came from various 

modalities and sources [87-108]. To improve the viability and usability of MML in cardiac care, researchers have 

overcome the particular difficulties that came with working with diverse datasets [89-108]. However, there were 

many challenges in unifying and standardizing different data sources and creating connections between them. 

Combining heterogeneous data that only slightly overlap or do not share any common characteristics has been 

challenging. Furthermore, there were differences in the amount of pre-processing steps required for data from 

various sources, particularly when it came to noise reduction and managing missing values [87-108]. This obstacle 

is evident in the fact that till now, the majority of multimodal representations were just unimodal representations 

concatenated together [87-108]. To guarantee accuracy and dependability, preprocessing and normalization of data 

was done [87-108]. In addition, the process of fusion was difficult whether it was used on the data itself [87-91] or 

on several pre-trained models to identify a single result [92-108].  

MDL offers benefits over MML for data fusion. The traditional version of deep neural networks (DNNs) is fully 

connected neural networks (FCNNs). These DNNs use multiple hidden layers of nonlinear computational operations 

to map input x to label y through [85]. By identifying straightforward relationships between underlying disentangled 

data, these algorithms seek to discover highest representations of the input data that enhance the predictions of a 

final classifier model or algorithm [85, 86]. The deeper layers or hidden layers combine earlier layers' simple 

abstractions of the data to create more abstract representations that are explanatory for the learning task. Most 

importantly, nonlinear relationships between different modalities and cross-modality relationships can be modeled 

by multimodal DL [86]. Table II compares the MML with the MDL technique. 

Table II: Difference between multi-modal ML and multi-modal DL 

Aspect Multi-modal Machine Learning Multi-modal Deep Learning 

Definition involves merging data from 

several modalities to enhance 

prediction accuracy or decision-

making. 

enhances prediction or classification tasks by automatically learning 

representations of data from multi-modalities using layered neural 

networks. 

 

Data Fusion 

Strategy 

Early Fusion: Merges data before 

algorithm application 

Late Fusion: combines features 

at the output level 

Hybrid Fusion: Combination of 

both early and late fusion 

Feature-level fusion: Before feeding features into a deep learning 

model, features extracted from various modalities are combined  

Decision-level Fusion: Outputs from models trained on various 

modalities are integrated.  

Intermediate fusion: Integrates decisions or features at deep neural 

network layers that are hidden 

Algorithms ML algorithms integrated with neural 

networks 

Integrated deep neural networks 

Challenges Manual Feature Selection Automated Feature Extraction 

Advantages Less Computational Power Enhanced Accuracy and precision 

MLD techniques have been widely used to combine biomedical applications for drug repurposing, cancer patient 

clustering, and disease-gene pair prediction. A multimodal Deep Boltzmann Machine (DBM) was used by Suk et al. 

based on positron emission tomography (PET) scans and magnetic resonance imaging (MRI). Their model 

outperformed SVM and LDA [116]. In order to aid in pan-cancer classification, Zhang et al. presented a thorough 

Variational Autoencoder (VAE) framework that included learning a task-specific unified representation from data of 
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two modalities i.e., DNA methylation and gene expression [117]. This architecture continuously outperformed a 

support vector machine. 

Malik & Anees proposed four novel convolutional neural network (CNN) models. These CNNs were trained on 

different image-level representations for the classification of nine different chest diseases. Additionally, the 

suggested CNN made use of several novel techniques, including multiple-way data generation (MWDG), dropout, 

batch normalization layers (BANL), max-pooling layer, and rank-based average pooling (RBAP). The sounds of 

coughing were converted into a visual representation using the scalogram method. The Synthetic Minority Over 

Sampling Technique (SMOTE) approach was used to calibrate the Chest X-Ray (CXR) and Computer Tomography 

(CT) scans, along with the cough sound images (CSI) of nine distinct chest disorders, before starting to train the 

developed model. The suggested model was trained and evaluated using data from 24 publicly available chest 

illness cases datasets of CXR, CT scan, and CSI [62]. No such research has been conducted for the diagnosis of 

CVDs using a multimodal DL approach especially using multi-modal images (CMR, CCT, and ECHO) and ECG 

signals. Figure 5 gives the multimodal DL approach that can be utilized in cardiac care.  

 

Figure 5: Entire process for analyzing heart diseases: from gathering multimodal cardiac data to preprocessing, validation, and 

training multi-modal deep learning models 

5. CHALLENGES AND LIMITATIONS  

It is difficult to combine data from various sources that have different intrinsic distributions and the data having 

varying degrees of structure. In a way that is not possible for a single modality like ECG alone, data fusion 

techniques seek to combine several data observations from CMR, CCT, and clinical data into a coherent and varied 

depiction to diagnose a CVD. But fusion itself faces difficulties from high dimensionality, missing or sparse data, and 
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noisy and irrelevant images that could impact model performance. Further difficulties arise from the possibility that 

such a combination of data may call for more complex data (containing images, videos, and text) normalization 

procedures (which include correcting errors and variations ingrained in data from various sources) and more 

advanced models rather than pre-trained models [87-108], which may be computationally costly to train.  Model 

"explainability" suffers as a result of this fusion of data and level of complexity. For instance, the sonographer's skill 

level has a significant impact on the quality of the ECHO data. As a result of its high reliance on a human skill, data 

fidelity from ECHO can differ greatly, which could have an impact on model’s performance [118]. However, this 

problem highlights the potential of multimodal data fusion, which can augment variable data by integrating 

knowledge from various sources. 

Usually, to understand what additional performance data fusion produces, MML and DL models are compared to 

models with fewer data modalities. Evaluation metrics include measurements of accuracy, specificity, sensitivity, 

calibration, AUC, AUCPR, and positive and negative predictive values. These metrics are generally the same 

across ML and DL domains. The goal of the study and the dataset are the primary determinants of the evaluation 

metric to choose. For instance, to classify the probability of myocardial infarction as the reason behind chest pain, 

healthcare practitioners must grasp both model calibration and AUC. Model calibration is the degree to which the 

risk predicted by a model corresponds to the total risk that is observed in the particular population that is being 

studied. Additionally, practitioners can assess the likelihood that both positive and negative results are true using 

precision-recall metrics like the AUCPR [87-108]. The degree of balance in the datasets used for model testing and 

training is another crucial factor. For example, in many patient populations under study, the percentage of patients 

with a given disease is substantially lower than that of patients without it. In this case, evaluating a model's 

performance using alternative metrics like the F1 score, which combines precision and recall through their harmonic 

mean is more equitable than evaluating each metric separately [87-108].  

Multimodal approaches often perform better than unimodal ones, as demonstrated by DL-based fusion 

strategies. Moreover, multimodal DL techniques are frequently found to perform noticeably better than multimodal 

ML techniques. Even though the literature is probably biased toward positive outcomes, it is now evident that DL-

based fusion consistently produces the anticipated gains. The same difficulties that MML in cardiac care faces 

generally i.e., data volume, quality, and interpretability are also faced by multimodal DL approaches. However, 

fusion strategies are required to address multimodal-specific challenges like missing entire modalities. Various 

methods have been suggested, including multimodal dropout, generative models, and multitask learning. In addition 

to incorporating strategies to improve clinical relevance during the learning process, techniques should show 

resilience in handling a variety of missing modalities patterns. Furthermore, fusion strategies must take these 

combinations of modalities into account as more heterogeneous data become available. For this challenge, 

heterogeneous fusion and late fusion are especially well-suited. 

6. DISCUSSION AND FUTURE WORK 

Using a variety of data sets that might not all follow the same structure, format, or type and that are usually 

compatible with traditional ML algorithms is known as MML. The MDL is for the use of deep learning algorithms for 

training multimodal data. These methods accommodate variations in data characteristics and improve learning by 

enabling models to be trained across multiple modalities. Multimodal ML and Multimodal DL could be used to train 

models on a sizable distributed dataset of patient data from various clinics or hospitals in the field of disease 

diagnosis. This approach makes it possible to combine knowledge and information to solve challenging issues. 

More comprehensive and varied datasets can be used to create models that are more reliable and accurate [119]. 

However, there are various perspectives on how MDL can be applied for disease prediction, particularly 

cardiovascular diseases, and these are covered in detail in this section. 

There are plenty of opportunities for additional research in multimodal data fusion, even with all of the 

advancements in the field. However, data fusion for medical imaging is still difficult. To enable fusion to be 

implemented more quickly and easily, more effective algorithms might be required before clinical applications can 

be realized [120]. Representation learning in the analysis of images, which enables automated image segmentation 
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and speeds up the creation of fusion images, is partially to blame for this improvement. Real-time predictions are 

critical in use cases where decisions need to be made more quickly, and faster model predictions will be necessary 

to make this possible [121]. The creation of innovative, user-friendly frameworks to help researchers comprehend 

the information gained or lost from various data modalities should be one of the next areas of study. Although 

multimodal data fusion can yield better performing models, this is not always the case [122]. Therefore, a more solid 

framework for assessing the effectiveness of different data modalities will benefit researchers. 

Furthermore, putting data integrity first from a data-centric standpoint can enhance model projections, helping 

researchers to fully utilize AI in the healthcare industry. Especially cardiac medicine. Although standards and 

regulations for reporting data quality have received less attention up to this point, new reporting standards and 

guidelines must be operationalized. There are several reasons why enhancing data quality is just as vital as 

developing new technologies, but the two most crucial ones are reproducibility and generalizability in research. 

When developing data fusion algorithms, it is important to take into account not only the quality of the data but also 

its relativity to the model and an effective comparison to standardized guidelines, as these factors can have a 

significant impact on model adoption. Finally, to further validate the usefulness of fusion modeling, prospective 

studies comparing variations in care resulting from multimodal fusion modeling to traditional modeling or current 

regulatory guidelines should be the main focus of future research directions.  

CONCLUSION 

In conclusion, Multimodal DL is a novel approach that permits the concurrent use of several DL models and data 

types in the development of intricate diagnostic models encompassing MDL and MML. By addressing the issue of 

data heterogeneity, multimodal DL has the potential to greatly increase the accuracy and efficacy of computer-aided 

diagnostic (CAD) applications, particularly in cardiology, where it is becoming a crucial component of routine patient 

care. Specifically, the technical aspects of MDL, like workflows and data fusion, were discussed, and the 

distinctions from other technologies, like Ensemble Learning, were emphasized. A summary of the current use of 

multimodal machine learning in the diagnosis and prognosis of cardiovascular disease was also given, emphasizing 

the promising outcomes to date and the potential for improvement utilizing MDL in the diagnosis of cardiovascular 

diseases. As with any rapidly developing technology, there are still issues that need to be resolved, including patient 

privacy, bias, and the interpretability of results. But these challenges can likely be overcome with more study and 

innovation, and multimodal machine learning will keep being crucial to the creation of AI applications across a range 

of industries, most notably healthcare. 
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