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Abstract:  
Studies have revealed that the most common kind of cancer in the world is skin cancer. Unrepaired deoxyribonucleic acid 
(DNA) in skin cells can cause genetic abnormalities or mutations that lead to skin cancer. Early detection is crucial because 
skin cancer is more treatable in its early stages and tends to gradually spread to other areas of the body. Early detection of 
signs of skin cancer is essential due to the high mortality, increasing morbidity and expensive medical care of the disease. The 
present study used ligand and structure-based analysis to calculate the interaction between bromo [1,4] benzodiazepine 
derivatives and 4,5 Diaryl Isoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for Cancer. Qikprop revealed 
that the structures of several antiviral drugs were identical to those of bromo[1,4] benzodiazepine derivatives (1a-1j). bromo 
[1,4] benzodiazepine derivatives were employed in an in silicodocking experiment, DFT calculations and simulation techniques 
on skin cancer with PDB ID 2VCI, using Schrodinger Maestro 12.4. Each ligand's interaction was studied, and the potential 
imperative energy was calculated. In summary, a high potency against skin cancer as observed for the derivative of bromo 
[1,4] benzodiazepine derivatives with the best binding energy. 
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1. INTRODUCTION 
 
In the current decade, skin cancer is the fifth most frequent type of cancer and one of the deadliest. [1,2,3,4]. 
Skin cancer is the most prevalent kind of cancer among humans, which is understandable given that the skin 
is the body's biggest organ. [13]. Nonmelanoma skin cancer (NMSC) and melanoma are the two main 
categories for skin cancer. Due to underreporting and a lack of diagnostic criteria, it is difficult to pinpoint the 
precise incidence of skin cancer. Over the past several decades, however, a number of epidemiologic studies 
have indicated an increase in the incidence of both melanoma and NMSC. [5,6]. 1.198 million persons were 
affected by non-melanoma skin cancer in 2020, which was the sixth most prevalent kind of cancer and 
accounted for 6.2% of all cancer cases [7, 8]. 
A significant family of heterocyclic chemicals, [1,4] benzodiazepines are utilized therapeutically to treat a wide 
range of human illnesses. The distinct structure of [1,4] benzodiazepines is modelled after a peptide bond. 
Medicinal chemists' interest in [1,4] benzodiazepines was entirely changed by this intriguing result, from CNS 
acting medicines to anticancer compounds. [12] Over the past few decades, benzodiazepines have been linked 
to a number of findings in the literature that emphasize their anticancer activities. The PubChem database 
contains information on around 35 million compounds. It was made with two Docking apps from the Maestro 
12.4 Schrodinger Glide software. Highlight the binding with either an extreme precision (XP) or standard 
precision (SP) Glide. Strong interactions, sufficient effectiveness against the therapeutic target, and suitable 
ADMET qualities at a therapeutic dosage are characteristics of a high-quality pharmacological candidate [9]. 
Computational methods like drug-likeness prediction, in silico ADMET analysis, molecular docking, and 
molecular dynamics simulations are useful for this since they help find possible pharmaceuticals or compounds 
from different databases and cut down on the time and expense of experiments involved in drug discovery [10]. 
Molecular docking has demonstrated efficacy in predicting the binding energy and mechanism of protein-ligand 
complexes [11], whereas ADMET prediction is a useful tool for assessing a powerful molecule's absorption, 
distribution, metabolism, excretion, and toxicity [9]. The analysis of these studies will determine the 
effectiveness of the benzodiazepine derivatives against skin cancer. 
 
2. Materials and methods: 
 
Chemdraw's structural format (SDF) program was used to build the chemical structure. Bonding analysis and 
simulation studies were performed using Schrödinger's SP, XP, and MGBSA Prime tools. 
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2.1 Protein preparation: 
The RCSB Protein Data Bank (PDB) website provides the X-ray crystal structure and coordinate file for the 
human phosphodiesterase type 5 (2VCI) protein domain in relation to sildenafil [19]. The retrieved protein was 
edited using Swiss-PDB Viewer 4.1.0 to add missing residues, rectify mismatched bonds, and correct side 
chain abnormalities. After giving to the file the name Target. pdb, it was stored for further research. 
 
2.2  Preparation of Ligands: 
Ligand structures were drawn, stored in SDF format, and then imported by choosing the file. The imported 
ligands (1a-1j) were configured to minimize using the force field OPLS3e. All bromo [1,4] benzodiazepine 
derivative structures underwent minimization computations. 
 
2.3  Docking Study: 
Molecular docking is a vital technique in structural molecular biology and computer-assisted drug development. 
Predicting the dominant binding mode(s) of a ligand with a protein that has a known three-dimensional structure 
is the aim of ligand-protein docking. Effective docking systems need a scoring system that appropriately 
evaluates candidate dockings and efficiently explores high-dimensional areas. Lead optimization greatly 
benefits from the use of docking to do virtual screening on huge chemical libraries, score the findings, and offer 
structural suggestions for how the ligands block the target. [14]. Research on the ligand-binding site, ligand 
orientation, and molecular interactions between proteins and ligands has frequently used this approach [15]. 
The technique is occasionally used in the calculation of protein-ligand binding affinity since scoring systems for 
molecular docking simulation are frequently developed based on thermodynamic energy terms in protein-ligand 
binding [16,17,18]. 
 
2.4 Evaluation of ADME characteristics: 
In the early stages of drug research and development, pharmacological profile evaluation is a crucial duty. The 
Schrodinger QikProp program was used to calculate the ADME characteristics and screen the compounds. 
The proportion of oral absorption by humans (QPPMDCK), water solubility (QPlogS), partition coefficient (QP 
log P octanol/water), and apparent MDCK permeability (QPPMDCK). The prediction of molecular weight, 
hydrogen bond donors and acceptors, and blood-brain barrier permeability (QPlogBB) are among the critical 
features used for ligand screening [ 20,21]. A viable oral medication must satisfy certain guidelines in order to 
be approved: its molecular weight must be between 515 and 762 Da, log P must be 7 or less, and it must have 
between 0 and 5 H-bond donors and 1 to 7 H-bond acceptors, according to research [22]. 
 

 
Table 1: Qikprop results of the compound: 

 
2.5 : Binding free energy: 
Molecular docking's most important phase is calculating binding energy to fit a ligand in a binding site. It is 
usual practice to compute the binding affinities and scoring functions of ligands utilizing binding software such 
as Gold [37] and Auto Dock [38]. Descriptor-based QSAR models augment the concept of virtual screening 
and are often very useful in predicting the biological activities of drugs. [39,40] The constantly expanding 
knowledge of protein libraries combined with virtual screening methodologies based on molecular descriptors 
facilitates the identification of lead compounds, hence augmenting the entire drug development process. In 
order to calculate the binding free energy, one must subtract the total free energies of the protein and ligand 
from the difference in free energies within the complex. 
ΔG(binding) = ΔG(complex) − ΔG(protein) − ΔG(ligand) 
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While the symbols G (complex), G (protein), and G (ligand) represent the free energies of the complex, ligand, 
and binding, respectively, G (binding) represents the binding free energy. 
 
2.6  Molecular dynamics simulation: 
Knowing how simple and macromolecular structures interact at the atomic level is a challenging task for a 
molecular biologist. The Desmond program [23] was utilized to examine molecular interactions at different time 
scales. Protein-ligand combinations that scored highest in the virtual screening were selected based on their 
Glide score. SPC water model was used to store protein-ligand complexes, and box sizes of X = 10, Y = 10, 
and Z = 10 were specified for the orthorhombic water border box. Counter ions were added to the complex to 
bring the solvated system into equilibrium. We reduced the complex energy using an OPLS3e force field [24, 
25]. It was decided to use a molecular dynamics simulation run length of 100 ns, a recording interval of 100 ps, 
and an energy of 1.2 ps. The complexes' RMSD and RMSF were investigated following the molecular dynamics 
run using Maestro's integrated simulation interaction diagram panel. Desmond, a component of Schrodinger's 
Bio suite, was utilized to investigate the stability of a few docked complexes that were discovered using XP 
analysis by running molecular dynamics simulations on them [26–28]. These complexes consist of the protein 
component of the 2VCI (4,5-diarylisooxazole HSP90 chaperone inhibitors) complex and 6-bromo-5-(1,2- 
dibromo-2-phenylethyl)-7-phenyl-2,3,6,7-tetrahydro-1H-1,4-diazepine. 
 
2.7  Density Functional Theory(DFT): 
The density functional theory (DFT) computations were carried out on the synthesized bromo [1,4] 
benzodiazepine derivatives (1a–1j). All calculations were performed using ORCA 4.2.1 at the B3LYP/def2-SVP 
level of theory. The current work concentrates primarily on the estimation of different molecular characteristics 
and reactivity descriptors using the energies of frontier molecular orbitals. [29,30]. To evaluate the reactivity of 
the compounds, the highest occupied molecular orbital (HOMO) energy, lowest unoccupied molecular orbital 
(LUMO) energy, and energy gap between the HOMO and LUMO were calculated. [31] These values aid in 
estimating the reactivity order of the produced compounds (1a–j). The HOMO energy of a molecule represents 
its capacity to donate electrons. The LUMO energy, on the other hand, indicates the electron-accepting 
capability of the system. [32,33]. Greater reactivity and the possibility of chemical interactions with biological 
molecule targets are often indicated by a narrower HOMO-LUMO gap. [34,35] There was a propensity to gain 
or lose electrons, according on the predicted ionization potential and electron affinity. Nonetheless, their 
stability and capacity to attract electrons are reflected in their electronegativity and chemical hardness. The 
ability of a molecule to conduct electrophilic reactions may be gauged by its electrophilicity. The reactivity 
patterns of these substances in diverse chemical processes were clarified with the help of these descriptors. 
 
3  Results: 
 
3.1  Protein Data Bank (PDB): 
Protein Data Bank (PDB ID: 2VCI) [19] provides the 3D structures of the 4,5 Diaryl Isoxazole Hsp90 Chaperone 
Inhibitors: Potential Therapeutic Agents for Cancer. [36] 
 

 
Figure 1:4,5 Diaryl Isoxazole Hsp90 Chaperone Inhibitors(PDB ID:2VCI) 

 
3.2 Molecular Docking Investigation: 
Utilizing XP docking, the chosen medication was docked with the target protein, 4,5-Diaryl Isoxazole Hsp90 
Chaperone Inhibitors (2VCI). Ten bromo [1,4] benzodiazepine derivative compounds were also put through XP 
docking. The top three compounds among the bromodiazepine derivatives varied in their top three dock scores 
and positions, according to the data. 4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxyphenyl) ethyl) -2,3,6,7- 
tetrahydro-1H-1,4-diazepin-7-yl) benzene-1,2-diol was the most highly rated substance. Compound 1B, with a 
dock score of -5.9 kcal/mol, established two hydrogen bonds with Asp 54 and Lys 58 (2). 3-bromo-6-bromo-5- 
(1,2-dibromo-2-(2,3,4-trimethoxyphenyl)ethyl)-7-(2,3,4 trimethoxyphenyl) -2,3,6,7-tetrahydro-1H-1,4- 
diazepine was the second-placed chemical with a docking score of -5.2 kcal/mol, but it had no interaction. 4- 
(6-bromo-5-(1,2-dibromo-2-(4hydroxyphenyl) ethyl) -2,3,6,7-tetrahydro-1H-1,4-diazepin-7-yl) phenol had a 
docking score of -5.0 kcal/mol and established three hydrogen bonds with Leu 48, Ser 52, and Gly 108. With 
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a dock score of -6.0 kcal/mol, the commonly used medication, Binimetinib, formed three hydrogen bonds with 
the residues Lys 58, Gly 07, and Leu 107 during its contact with these three residues. The targeted protein 
interacted with nine of the 10 diazepine derivatives, whereas no interaction was seen with the 1F drug. 
 
 

Figure 2: Molecular docking of Structures of 1A to 1J and its Standard drug 

 
 

Table 2: XP Docking Results of the compounds: 
S.No Compound Name Dock Score No of residues Interacting residues Bond Length 

1. Structure 1B -5.9 3 Asp 54, Lys 58(2) 2.19, 2.31, 3.60 

2. Structure 1F -5.2 - - - 

3. Structure 1C -5.0 3 Leu 48, Ser 52, Gly 108 2.42, 2.25, 2.13 

4. Structure 1I -4.9 1 Lys 58 1.92 

5. Structure 1D -4.5 2 Asp 54 (salt bridge), Lys 58 4.17, 2.25 

6. Structure 1A -4.4 1 Lys 58 3.11 

7. Structure 1H -4.2 1 Lys 58 2.37 

8. Structure 1E -3.7 2 Lys 58(2) (Pi-cation) 2.09, 3.07 

9. Structure 1G -3.5 3 Lys 58(3) (Pi-cation, Salt bridge) 2.03, 3.24, 4.56 

10. Structure 1J -2.6 1 Lys 58 1.94 

11. Standard drug -6.0 3 Lys 58, Gly 07, Leu 107 1.97, 1.91, 2.43 

 
3.3 Binding free energy calculation: 
Table 3 can be used to compute the target-ligand complexes' free energies. In this instance, the stronger the 
connection, the larger the negative number. It was determined that the medication's binding affinity was -37.21. 
Structure 1B’s binding affinity was higher than that of a typical drug. In our investigation, Structure 1I’s exhibits 
free energy values that are quite low compared to other target-ligand complexes. The bulk of the chemicals 
typically have a rather high binding affinity. The reference ligand value and the free energy value of Structure 
6 are the most similar. 
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Table 3: Binding free energy calculations of the compound 
S.No Compound MMGBSA dG Bind 

1. Structure 1B -41.95 

2. Structure 1F -32.61 

3. Structure 1C -21.45 

4. Structure 1I -11.58 

5. Structure 1D -16.83 

6. Structure 1A -14.67 

7. Structure 1H -27.79 

8. Structure 1E -27.73 

9. Structure 1G -28.10 

10. Structure 1J -21.74 

11 Standard Drug -37.21 

 
3.4 Molecular dynamic simulation: 
3.4.1 RMSD analysis: 
During dynamics analysis, the stability of the protein-ligand complex was ascertained using the RMSD values 
of the protein backbone, as seen in Fig 3. By employing a complex docked structure with 4-(6-bromo-5-(1,2- 
dibromo-2-(3,4-dihydroxy phenyl)ethyl)-2,3,6,7-tetrahydro-1H-1,4-diazepine-7-yl)benzene-1,2-diol, the 
stability of the 4,5-Diaryl Isoxazole Hsp90 Chaperone Inhibitors Component was assessed. 
 
Figure 3: RMSD plotof the Docked complex structure of 4,5-Diaryl Isooxazole Hsp90 Chaperone with 

4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxyphenyl)ethyl)-2,3,6,7- tetrahydro-1H-1,4-diazepin-7- 
yl)benzene-1,2-diol. 

 
 

3.4.2 RMSF Analysis: 
The compound showed stability between 0 to 50 ns, with fluctuations in the protein's C alpha atoms and heavy 
ligand atoms within a 3Å range. This implies a robust connection between the protein and ligand, enhancing 
the complex's stability. [41] 
 
Figure 4: RMSD plotof the Docked complex structure of 4,5-Diaryl Isooxazole Hsp90 Chaperone with 

4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxyphenyl)ethyl)-2,3,6,7- tetrahydro-1H-1,4-diazepin-7- 
yl)benzene-1,2-diol. 
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3.4.3 Protein-ligand interactions: 
There are four types of interactions that proteins and their ligands can have: hydrogen bonds, hydrophobic 
bonds, water bridges, and ionic bonds. Hydrogen bonds, in particular, are important in pharmaceutical design 
because they impact medication selectivity, metabolism, and absorption. [42,43] A prominent hydrogen bond 
was observed between the ligand and key residues in the complex structure of 4,5-Diaryl Isoxazole Hsp90 
Chaperone Inhibitors with 4-(6-bromo-5-(1,2-dibromo-2-(3,4-di hydroxyphenyl) ethyl). -2,3,6,7-tetrahydro-1H- 
1,4-diazepin-7-yl) benzene-1,2-diol. This indicates a strong interaction at the binding site. ASN 51, SER 52, 
ASP 93, GLY 97, GLY 135, and THR 184 were all implicated in hydrogen interactions. ASN 51, ASP 54, LUS 
58, ASN 106, THR 109, ILE 110, ALA 111, GLY 135, GLY 137, and TYR 139 also created water bridges, 
whereas ALA 55, MET 98, LEU 107, and PHE 138 established hydrophobic connections. (Ref Figure:11) 
According to the timeline depiction (Figure 6 below), the residues are ASN 51, ALA 55, ASP 93, GLY 97, and 
GLY 135. PHE 138, THR 184, and others maintained the connections for the longest feasible duration during 
the experiment. 
The contacts between the residues ASP 93, GLY 97, THR 184, GLY 135, ASN 51, TYR 139, and THR 109 
were maintained in proportions of 100%, 77%, 55%, 34%, 37%, 55%, and 58% across the simulation duration, 
respectively, according to the 2D depiction of the complexed structure. Figure 11 shows the interaction of 4,5- 
Diaryl Isoxazole Hsp90 Chaperone Inhibitors with 4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxy phenyl) ethyl). 
-2,3,6,7-tetrahydro-1H-1,4-diazepin-7-yl) benzene-1,2-diol (Ref. Figure 7) 
The compound produced by 4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxyphenyl) ethyl)-2,3,6,7-tetrahydro-1H- 
1,4-diazepin-7-yl) benzene-1,2-diol and 4,5-Diaryl Isoxazole Hsp90 Chaperone was stable, based upon the 
results of the Molecular Dynamics simulation research. In the XP study, it demonstrated significant interactions 
with the functionally conserved residues ASP 93 and GLY 97, as well as the interacting residues ASP 54 and 
LYS 58(2). This simulation study suggests that 4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxyphenyl) ethyl)- 
2,3,6,7-tetrahydro-1H-1,4-diazepin-7-yl) benzene-1,2-diol could possess anticancer properties with 4,5-Diaryl 
Isoxazole Hsp90 Chaperone. 
 

Figure 5:Graph illustrating the interaction between protein and ligands in a Docked complex 
structure of 4,5-Diaryl Isooxazole Hsp90 Chaperone with 4-(6-bromo-5-(1,2-dibromo-2-(3,4- 

dihydroxyphenyl)ethyl)-2,3,6,7- tetrahydro-1H-1,4-diazepin-7-yl)benzene-1,2-diol. 

 
 

Figure 6: Time line representation of complex structure of 4,5-Diaryl Isooxazole Hsp90 Chaperone 
with 4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxyphenyl)ethyl)-2,3,6,7- tetrahydro-1H-1,4-diazepin-7- 

yl)benzene-1,2-diol. 
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Figure 7: 2D structure of interaction of 4,5-Diaryl Isooxazole Hsp90 Chaperone with 4-(6-bromo-5- 
(1,2-dibromo-2-(3,4-dihydroxyphenyl)ethyl)-2,3,6,7- tetrahydro-1H-1,4-diazepin-7-yl)benzene-1,2-diol. 
 
3.4.4 Molecular electrostatic potential surface: 
 
Figure:8 Optimized Structures of compound 4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxyphenyl)ethyl)- 

2,3,6,7- tetrahydro-1H-1,4-diazepin-7-yl)benzene-1,2-diol showing electrostatic potential surface 
 

 
 
To analyze the compound of 4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxy phenyl) ethyl)-2,3,6,7-tetrahydro-1H- 
1,4-diazepin-7-yl) benzene-1,2-diol, non-bonding interactions between molecules, and to anticipate the 
reactivity characteristics of molecular systems, such as the identification of probable electrophilic and 
nucleophilic reaction sites, the electrostatic potential (ESP) surface is a potent descriptor The MEP surface 
analysis of the molecule was computed by the DFT calculation using the optimized structure and the B3LYP/6- 
31G(d,p) basis set. The chemical under investigation's mapped electrostatic potential surface is displayed in 
Fig. 8. The red and blue hues of the MEP structure represent more electron-rich and electron-poor areas, 
respectively. There is a discernible polarization effect to the chemical. The electropositive atoms (hydrogen) 
are localized over the positive potential regions in the MEP, whereas the electronegative atoms (oxygen, 
nitrogen, and sulfur) are concentrated over the negative potential areas. The sulfur atom does, however, have 
a less negative potential location than the other electronegative atoms in the molecule. Consequently, locations 
with more positive electrostatic potential and greater negative electronegative potential tend to attract more 
nucleophilic and electrophilic organisms. 
 
3.4.5 Electrostatic results and Mullikan electronegativity: 
A molecule's ability to donate and receive electrons may be ascertained using its HOMO and LUMO energy 
levels. These molecular orbitals are important for understanding biological mechanisms, luminescence, 
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photochemical processes, electrical and optical properties, UV-VIS, quantum chemistry, and pharmaceutical 
research [44–49]. Structural stability is demonstrated by the energy gap of the frontier molecular orbital, or 
FMO. The chemical reactivity and kinetic stability of a molecule are further characteristics revealed by FMOs. 
Additionally, the FMOs help predict the most reactive region of a chemical under investigation. The 4-(6-bromo- 
5-(1,2-dibromo-2-(3,4-dihydroxy phenyl) ethyl)-2,3,6,7-tetrahydro-1H-1,4-diazepin-7-yl) benzene-1,2-diol 
anticipated energy orbitals for the HOMO and LUMO-0.24 and -0.078 eV, respectively.It was found that the 
aforementioned organic molecule had an energy gap of 0.16 eV between its (ΔEHOMO-LUMO) FMOs. The 
analyzed molecule displays strong chemical reactivity, biological activity, and polarizability, as evidenced by 
the decreased HOMO and LUMO energy gaps. The compound's FMO distribution is shown in Figure 9. 
 

Figure 9: HOMO and LUMO of the compound 4-(6-bromo-5-(1,2-dibromo-2-(3,4-dihydroxyphenyl) 
ethyl)-2,3,6,7- tetrahydro-1H-1,4-diazepin-7-yl) benzene-1,2-diol. 

 
 
The computed values for the assessed molecule's chemical potential, chemical hardness, electrophilicity index, 
and chemical softness were 0.08, -0.15, 0.15 eV, and 12.2 eV-1, in that order. An indicator of a compound's 
capacity to attach to biomolecules is its electrophilicity index [50–52]. The greater the molecule's electrophilicity 
index value, the more electrophilic a species it may become and the greater its ability to bind biomolecules. A 
lower chemical hardness value and a larger negative chemical potential value imply that the chemical under 
investigation is soft and polarizable. Furthermore, partial detections of HOMO orbitals have been made on the 
nitrogen atoms (N20, N23), a phenyl ring that is joined by four hydroxygen groups, and mostly on the oxygen 
atoms (O25, O26, O27, and O28). (Fig. 9). 
 
4. Conclusion: 
 
By using molecular docking, the developed derivative's binding potential was hypothesized. The 1B molecule 
was found being the most effective against skin cancer by molecular docking analyses of all 10 molecules. 
Following that, MD simulations and DFT were used to verify and validate the precision and correctness of 
binding with the 4,5-diaryl isoxazole Hsp90 chaperone inhibitors. The suggested compound displays excellent 
stability in the active site of 4,5-diaryl isoxazole Hsp90 Chaperone, according to MD simulations. To evaluate 
the ligand-protein complex's stability, RMSD, and RMSF values, MD simulation was performed.The estimated 
DFT characteristics demonstrate that the substance is chemically reactive. Additionally, the drug-likeness was 
revealed by ADMET assays. According to the material, these results encourage further in vitro and in vivo 
anticancer research. 
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