Harmonic Mean Cordial Labeling of One Chord $\boldsymbol{C}_{\boldsymbol{n}}$ V G

Harsh Gandhi ${ }^{1 *}$, Jaydeep Parejiya ${ }^{2}$, M M Jariya ${ }^{3}$ and Ramesh Solanki ${ }^{4}$
${ }^{1 *, 3}$ Children’s University, Gandhinagar - 382021, Gujarat (India),
hrgmaths@gmail.com ${ }^{1}$, mahesh.jariya@gmail.com ${ }^{3}$
${ }^{2}$ Goverment Polytechnic College, Rajkot - 360004, Gujarat (India), parejiyajay@gmail.com²
${ }^{4}$ Goverment Polytechnic College, Vyara - 394650, Gujarat (India), rameshsolanki_maths12@yahoo.com ${ }^{4}$

Abstract

All the graphs considered in this article are simple and undirected. Let $G=(V(G), E(G))$ be a simple undirected graph. A function $f: V(G) \rightarrow\{1,2\}$ is called Harmonic Mean Cordial if the induced function $f^{*}: E(G) \rightarrow\{1,2\}$ defined by $f^{*}(u v)=\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$ satisfies the condition $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for any $i, j \in\{1,2\}$, where $v_{f}(x)$ and $e_{f}(x)$ denote the number of vertices and number of edges with label x respectively and $\lfloor x\rfloor$ denotes the greatest integer less than or equals to x. A graph G is called a harmonic mean cordial graph if it admits harmonic mean cordial labeling. In this article, we have discussed the harmonic mean cordial labeling of One Chord $C_{n} \vee G$.

Keywords: Harmonic Mean Cordial Labeling, Complete graph, Cycle, One Chord Cycle, Join of two graphs. MSC 2010 No.: 05C78

1. INTRODUCTION

We begin with simple, finite, connected and undirected graph $G=(V(G), E(G))$. For terminology and notation not defined here we follow Balakrishnan and Ranganathan [1].

In [2] J. Gowri and J. Jayapriya defined Harmonic Mean Cordial labeling of graph G. Let $G=(V(G), E(G))$ be a simple undirected Graph. A function $f: V(G) \rightarrow\{1,2\}$ is called Harmonic Mean Cordial if the induced function $f^{*}: E(G) \rightarrow\{1,2\}$ defined by $f^{*}(u v)=\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$ satisfies the condition $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for any $i, j \in\{1,2\}$, where $v_{f}(x)$ and $e_{f}(x)$ denote the number of vertices and number of edges with label x respectively and $\lfloor x\rfloor$ denotes the greatest integer less than or equals to x. A graph G is called a harmonic mean cordial graph if it admits harmonic mean cordial labeling. For the sake of convenience of the reader we use 'HMC' for harmonic mean cordial labeling and ' $C_{(1, n-1)}$ ' for One Chord Cycle Graph. It is useful to recall some useful definitions of graph theory to make this article self-contained. Motivated by the interesting results proved in $[3,4,5]$ and on Root Cube Mean Cordial Labeling in [6], we have discussed HMC labeling of Harmonic Mean Cordial labeling of One Chord C_{n} V G.

Definition 1 [7] A Chord of a cycle C_{n} is an edge not in C_{n} whose endpoints lie in C_{n}.
Definition 2 [1] Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. Then union of G_{1} and G_{2} is denoted by $G_{1} \cup$ G_{2} is the graphs whose vertex set is $V_{1} \cup V_{2}$ and edge set is $E_{1} \cup E_{2}$. When G_{1} and G_{2} are vertex disjoint $G_{1} \cup$ G_{2} is called sum of G_{1} and G_{2} and it is denoted by $G_{1}+G_{2}$.
Definition 3 [1] Let G_{1} and G_{2} be two vertex disjoint graphs. Then the join $G_{1} \vee G_{2}$ of G_{1} and G_{2} is the super graph of $G_{1}+G_{2}$ in which each vertex of G_{1} is also adjacent to every vertex of G_{2}.

In Theorem 2.1, we have proved that the complete graph $K_{n} \vee C_{(1, m-1)}$ is not HMC for any $n, m \geq 2$ and $n, m \in \mathbb{N}$. In Theorem 2.2, we have proved that $C_{(1, m-1)} V C_{(1, n-1)}$ is not HMC for any $n, m \geq 2$ and $n, m \in \mathbb{N}$.

2. MAIN RESULTS

Proposition 2.1.

$K_{n} \vee C_{(1, n-1)}$ is not HMC for $n \geq 2$.

Proof:

Suppose that $K_{n} \vee C_{(1, n-1)}$ is HMC. Note that, $\left\lvert\, V\left(K_{n} \vee C_{(1, n-1))} \mid=2 n\right.$ and $\left|E\left(K_{n} \vee C_{(1, n-1)}\right)\right|=n \frac{(n-1)}{2}+n+n^{2}+1\right.$. Since, $\left|V\left(K_{n} \vee C_{(1, n-1)}\right)\right|=2 n$ and we have assume that $K_{n} \vee C_{(1, n-1)}$ is HMC. We have $v_{f}(1)=v_{f}(2)=n$.

Case 1: All the vertices of label 1 and label 2 are in sequence in $\boldsymbol{C}_{(1, n-1)}$

Suppose that we have r number of vertices with label 1 in K_{n}. So, we have ($n-r$) vertices of of label 1 in $C_{(1, n-1)}$. Hence, we have $(n-r)$ vertices of label 2 in K_{n} and r vertices of label
2 in $C_{(1, n-1)}$. Note that, $e_{f}(1)=(n-r) r+r \frac{(r-1)}{2}+(n-r)^{2}+(n-r+1)+n r+1$ and $e_{f}(2)=\frac{(n-r)(n-r-1)}{2}+r(n-r)+(r-1)$.

Now, $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+r^{2}+\frac{3 n}{2}-3 r+3$. If $r \geq 3$ then as $n \geq 4$, we have $e_{f}(1)-e_{f}(2)>1$.
If $r=1$ and $r=2$ then $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+\frac{3 n}{2}+1>1$. So, $e_{f}(1)-e_{f}(2)>1$.
Case 2: Some of the vertices of label 2 are not in sequence in $\boldsymbol{C}_{(1, n-1)}$
Suppose that we have r number of vertices with label 1 in K_{n}. So, we have $(n-r)$ vertices of label 1 in $C_{(1, n-1)}$. Hence, we have $(n-r)$ vertices of label 2 in K_{n} and r vertices of label 2 in $C_{(1, n-1)}$. Suppose that there exist j number of vertices with label 2 are not in sequence in $C_{(1, n-1)}$. Then, we have $e_{f}(1)=\frac{r(r-1)}{2}+r(n-r)+r n+(n-r)^{2}+(n-r+j+1)$ and $e_{f}(2)=(r-j-1)+\frac{(n-r-1)(n-r)}{2}+r(n-r)$ Now, $e_{f}(2)$ in case $2 \leq e_{f}(2)$ in case 1 and $e_{f}(1)$ in case $2 \geq e_{f}(1)$ in case 1 . So, $e_{f}(1)-e_{f}(2)$ in this case $\geq e_{f}(1)-e_{f}(2)$ in case 1 . Now, we have already proved in case 1 that $e_{f}(1)-e_{f}(2)>1$.
Case 3: We have \boldsymbol{n} number of vertices with label 1 in K_{n} and \boldsymbol{n} number of vertices with label $\mathbf{2}$ in $\boldsymbol{C}_{(1, n-1)}$ Then, we have $e_{f}(1)=\frac{n(n-1)}{2}+n^{2}$ and $e_{f}(2)=n+1$. Then, $e_{f}(1)-e_{f}(2)=\frac{n(n-1)}{2}+n^{2}-n-1=$ $\frac{3 n^{2}}{2}-\frac{3 n}{2}-1>1$ as $n^{2}>n$.
Case 4: We have \boldsymbol{n} number of vertices with label $\mathbf{2}$ in $\boldsymbol{K}_{\boldsymbol{n}}$ and \boldsymbol{n} number of vertices with label 1 in $\boldsymbol{C}_{(1, n-1)}$ Then we have, $e_{f}(1)=n^{2}+n+1$ and $e_{f}(2)=\frac{n(n-1)}{2}$. Then, $e_{f}(1)-e_{f}(2)=n^{2}+n+1-\frac{n(n-1)}{2}=$ $\frac{n^{2}}{2}+\frac{3 n}{2}+1>1$. Hence, $K_{n} \vee C_{(1, n-1)}$ is not HMC.

Proposition 2.2.

$K_{n} \vee C_{(1, m-1)}$ is not HMC, where $m+n$ is even and $m, n \geq 2$.

Proof:

Note that, $\left|V\left(K_{n} \vee C_{(1, m-1)}\right)\right|=m+n$. Suppose that $K_{n} \vee C_{(1, m-1)}$ is Harmonic mean cordial.
Then we have, $\left|v_{f}(1)\right|=\frac{m+n}{2}=\left|v_{f}(2)\right|$.
Case 1: All the vertices with label 1 and label 2 are in sequence in $C_{(1, m-1)}$
Suppose that we have r number of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n}{2}-r\right)$ vertices with label 1 in $\mathrm{C}_{(1, m-1)}$. Hence, we have ($n-r$) vertices with label 2 in K_{n} and $m-\left(\frac{m+n}{2}-r\right)=\left(\frac{m-n}{2}+r\right)$ vertices with label 2 in $C_{(1, m-1)}$. Then we have, $e_{f}(1)=\frac{r(r-1)}{2}+r m+(n-r)\left(\frac{m+n}{2}-r\right)+\left(\frac{m+n}{2}-r+1\right)+r(n-r)$ and $e_{f}(2)=\frac{(n-r)(n-r-1)}{2}+(n-r)\left(\frac{m-n}{2}+r\right)+\left(\frac{m-n}{2}+r-1\right)+1$.
Then, $e_{f}(1)-e_{f}(2)=m r+\frac{n^{2}}{2}-n r+\frac{3 n}{2}+r^{2}-3 r+1=(r-n)^{2}\left(\frac{1}{2}\right)+\frac{r^{2}}{2}+\frac{3 n}{2}+2+r(m-3)-1$.
Now, $n>r$. So, $e_{f}(1)-e_{f}(2)>1$.
Case 2: Some of the vertices with label 2 are not in sequence in $\boldsymbol{C}_{(1, m-1)}$
Suppose that we have r number of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n}{2}-r\right)_{\text {vertices with label } 1 \text { in }}$ $\mathrm{C}_{(1, m-1)}$. Hence, we have $(n-r)$ vertices with label 2 in K_{n} and $m-\left(\frac{m+n}{2}-r\right)=\left(\frac{m-n}{2}+r\right)$ vertices with label 2 in $C_{(1, m-1)}$. Suppose that there exist j
number of vertices from $\left(\frac{m-n}{2}+r\right)$ with label 2 are not in sequence in $C_{(1, m-1)}$. Then we have, $e_{f}(1)=\frac{r(r-1)}{2}+r(n-r)+r m+(n-r)\left(\frac{m+n}{2}-r\right)+\left(\frac{m+n}{2}-r+j+1\right)$ and
$e_{f}(2)=\frac{(n-r)(n-r-1)}{2}+(n-r)\left(\frac{m-n}{2}+r\right)+\left(\frac{m-n}{2}+r-j\right)$. Now, $e_{f}(2)$ in case $2 \leq e_{f}(2)$ in case 1 and $e_{f}(1)$ in case $2 \geq e_{f}(1)$ in case 1 . So, $e_{f}(1)-e_{f}(2)$ in this case $\geq e_{f}(1)-e_{f}(2)$ in case 1 . Now, we have already proved in case 1 that $e_{f}(1)-e_{f}(2)>1$.

Case 3: $m<n$

Subcase 3.1: All the vertices in $C_{(1, m-1)}$ are with label 1

Suppose that we have r number of vertices with label 1 in K_{n}. So, we have $(n-r)$ vertices with label 2 in K_{n}. Then we have, $e_{f}(1)=\frac{r(r-1)}{2}+m n+m+r(n-r)+1$ and $^{e_{f}}(2)=\frac{(n-r)(n-r-1)}{2}$.
Then, $e_{f}(1)-e_{f}(2)=m n+m+2 n r+\frac{n}{2}-r^{2}-r-\frac{n^{2}}{2}$. We know that, ${ }^{r}=\frac{m+n}{2}$.
Then, $e_{f}(1)-e_{f}(2)=\frac{3 m n}{2}+\frac{m}{2}+\left(\frac{n^{2}}{4}-\frac{m^{2}}{4}\right)+1$. We know that $n>m$. So, $e_{f}(1)-e_{f}(2)>1$.

Subcase 3.2: All the vertices in $\boldsymbol{C}_{(1, m-1)}$ are with label 2

Suppose that we have r number of vertices with label 1 in K_{n}. So, we have ($n-r$) vertices with label 2 in K_{n}. Then we have, $e_{f}(1)=\frac{r(r-1)}{2}+r m+r(n-r)$ and $e_{f}(2)=\frac{(n-r)(n-r-1)}{2}+m(n-r)+m+1$.

Then, $e_{f}(1)-e_{f}(2)=m(n-r)+m r-m-\frac{n^{2}}{2}+2 n r+\frac{n}{2}-r^{2}-r-1$. We know that, $r=\frac{m+n}{2}$. Then, $e_{f}(1)-e_{f}(2)=\frac{m n}{2}+\frac{3 m^{2}}{4}+\frac{n^{2}}{4}-\frac{3 m}{2}-1$ as $m \geq 2$. So, $e_{f}(1)-e_{f}(2)>1$.

Case 4: $\boldsymbol{m}>\boldsymbol{n}$

Subcase 4.1: All the vertices in K_{n} are with label 1
Suppose that we have r number of vertices with label 1 in $C_{(1, m-1)}$. So, we have ($m-r$) vertices with label 2 in $C_{(1, m-1)}$.
Subsubcase 4.1.1: All the vertices with label 2 are in sequence in $\boldsymbol{C}_{(1, m-1)}$
Then we have, $e_{f}(1)=\frac{n(n-1)}{2}+(r+1)+n m$ and $e_{f}(2)=m-r$. Then, $e_{f}(1)-e_{f}(2)=$ $\frac{n(n-1)}{2}+(r+1)+n m-m+r$. We know that, $n m>m$. So, $e_{f}(1)-e_{f}(2)>1$.
Subsubcase 4.1.2: Some of the vertices with label 2 are not in sequence in $\boldsymbol{C}_{(1, m-1)}$
Suppose that we have j number of vertices with label 2 are not in sequence in $C_{(1, m-1)}$. Suppose that j number of vertices are not j sequence. Then we have, $e_{f}(1)=\frac{n(n-1)}{2}+n m+r+j$ and $e_{f}(2)=m-r-j+1$. Now, $e_{f}(2)$ in subsubcase 4.1.2 $\leq e_{f}(2)$ in subsubcase 4.1.1 and $e_{f}(1)$ in subsubcase 4.1.2 $\geq e_{f}(1)$ in subsubcase 4.1.1. So, $e_{f}(1)-e_{f}(2)$ in this case $\geq e_{f}(1)-e_{f}(2)$ in subsubcase 4.1.1. Now, we have already proved in subsubcase 4.1.1 that $e_{f}(1)-e_{f}(2)>1$.

Subcase 4.2: All the vertices in K_{n} are with label 2

Suppose that we have r number of vertices with label 1 in $C_{(1, m-1)}$. So, we have $(m-r)$ vertices with label 2 in $C_{(1, m-1)}$.
Subsubcase 4.2.1: All the vertices with label 2 are in sequence in $\boldsymbol{C}_{(1, m-1)}$
Then we have, $e_{f}(1)=(r+1)+n r+1$ and $^{e_{f}}(2)=\frac{n(n-1)}{2}+(m-r-1)+n(m-r)$. Then,
$e_{f}(1)-e_{f}(2)=(r+1)+r n+1-\frac{n(n-1)}{2}-m+r+1-m n+r n$. We know that, $r=\frac{m+n}{2}$.
Then, $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+\frac{3 n}{2}+3>1$.
Subsubcase 4.2.2: Suppose that some of the vertices with label 2 are not in sequence in $\boldsymbol{C}_{(1, m-1)}$
Then we have, $e_{f}(1)=m+r n$ and $e_{f}(2)=\frac{n(n-1)}{2}+(m-r) n+1$. Now, $e_{f}(2)$ in subsubcase
4.2.2 $\leq e_{f}(2)$ in subsubcase 4.2.1 and $e_{f}(1)$ in subsubcase 4.2.2 $\geq e_{f}(1)$ in subsubcase 4.2.1. So, $e_{f}(1)-e_{f}(2)$ in this case is $\geq e_{f}(1)-e_{f}(2)$ in subsubcase 4.2.1. Now, we have already proved in subsubcase 4.2.1 that $e_{f}(2)-$ $e_{f}(2)>1$. Hence, $e_{f}(2)-e_{f}(2)>1$ in this case.
Hence, $K_{n} \vee C_{\left(1, m^{-1}\right)}$ is not HMC, where $m+n$ is even and $m, n \geq 2$.

Proposition 2.3.

$K_{n} \vee C_{(1, m-1)}$ is not HMC, where $m+n$ is odd and $m, n \geq 2$.

Proof:

Note that, $\mid V\left(K_{n} \vee C_{(1, m-1) \mid} \mid=m+n\right.$. Suppose that $K_{n} \vee C_{(1, m-1)}$ is HMC.
Case 1: All the vertices with label 1 and label 2 in C_{m} are in sequence in $\boldsymbol{C}_{(1, m-1)}$
In this case we have two possibilities (i) $v_{f}(1)=\frac{m+n+1}{2}$ and $v_{f}(2)=\frac{m+n-1}{2}$ (ii) $v_{f}(1)=\frac{m+n-1}{2}$ and $v_{f}(2)=\frac{m+n+1}{2}$. So, we consider the following cases.
Subcase 1.1: $v_{f}(1)=\frac{m+n+1}{2}$ and $v_{f}(2)=\frac{m+n-1}{2}$
Suppose that we have r number of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n+1}{2}-r\right)$ vertices of label 1 in $C_{(1, m-1)}$. Hence, we have $(n-r)$ vertices with label 2 in K_{n} and $m-\left(\frac{m+n+1}{2}-r\right)=\left(\frac{m-n-1}{2}+r\right)_{\text {vertices with }}$ label 2 in $\mathcal{C}_{(1, m-1)}$. Then we have, $e_{f}(1)=\frac{r(r-1)}{2}+r n+r(n-r)+\frac{m+n+1}{2}-r+1+\left(n-r\left(\frac{m+n+1}{2}-r\right)+1\right.$ and $e^{e}(2)=\frac{(n-r)(n-r-1)}{2}+(n-r)\left(\frac{m-n-1}{2}+r\right)+\frac{m-n-1}{2}+r-1$. Then, $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+\frac{5 n}{2}+r^{2}-4 r+4>1$ as $n>r$.
Subcase 1.2: $v_{f}(1)=\frac{m+n-1}{2}$ and $^{v} v_{f}(2)=\frac{m+n+1}{2}$
Suppose that we have r number of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n-1}{2}-r\right)$ vertices of label 1 in $C_{(1, m-1)}$. Hence, we have ($n-r$) vertices with label 2 in K_{n} and $m-\left(\frac{m+n-1}{2}-r\right)=\left(\frac{m-n+1}{2}+r\right)$ vertices with label
$\underline{m+n-1}$$\quad$ in $\quad C_{(1, m-1)}$. \quad Then \quad we $\underset{(n-r)(n-r-1)}{\text { have, }} \quad e_{f}(1)=\frac{r(r-1)}{2}+r m+r(n-r)+$ $\frac{m+n-1}{2}-r+1+(n-r)\left(\frac{m+n-1}{2}-r\right)$ and $e_{f}(2)=\frac{(n-r)(n-r-1)}{2}+(n-r)\left(\frac{m-n+1}{2}+r\right)+\frac{m-n+1}{2}+r$.
Then, $e_{f}(1)-e_{f}(2)=r^{2}+\frac{n^{2}}{2}+\frac{n}{2}+m r-2 r-n r>1$ as $n \geq 2$.

Case 2: Some of the vertices with label $\mathbf{2}$ are not in sequence in $\boldsymbol{C}_{(1, m-1)}$

Subcase 2.1: Suppose that $v_{f}(1)=\frac{m+n+1}{2}$ and $v_{f}(2)=\frac{m+n-1}{2}$
Suppose that we have r number of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n+1}{2}-r\right)$ vertices of label 1 in $C_{(1, m-1)}$. Hence, we have $(n-r)$ vertices with label 2 in K_{n} and $m-\left(\frac{m+n+1}{2}-r\right)=\left(\frac{m-n-1}{2}+r\right)$ vertices with label 2 in $\boldsymbol{C}_{(1, m-1)}$. Suppose that there exist j number of vertices from $\left.{ }^{\left(\frac{m-n-1}{2}\right.}+r\right)$ with label 2 are not in sequence in $C_{(1, m-1)}$. Then we have, $e_{f}(1)=\frac{r(r-1)}{2}+r m+$
$r(n-r)+\left(\frac{m+n+1}{2}-r+j+1\right)+(n-r)\left(\frac{m+n+1}{2}-r\right)$ and $e_{f}(2)=\left(\frac{m-n-r}{2}-r-j-1\right)+$ $\frac{(n-r)(n-r-1)}{2}+(n-r)\left(\frac{m-n-1}{2}+r\right)$. Now, $e_{f}(2)$ in subcase $2.1 \leq e_{f}(2)$ in subcase 1.1 and $e_{f}(1)$
subcase $2.1 \geq e_{f}(1)$ in subcase 1.1. So, $e_{f}(1)-e_{f}(2)$ in this case $\geq e_{f}(1)-e_{f}(2)$ in subcase 1.1. Now, we have already proved in subcase 1.1 that $e_{f}(1)-e_{f}(2)>1$.
Subcase 2.2: $v_{f}(1)=\frac{m+n-1}{2}$ and $v_{f}(2)=\frac{m+n+1}{2}$
Suppose that we have r number of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n-1}{2}-r\right)$ vertices of label 1 in $\mathrm{C}_{(1, m-1)}$. Hence, we have ($n-r$) vertices with label 2 in K_{n} and $m-\left(\frac{m+n-1}{2}-r\right)=\left(\frac{m-n+1}{2}+r\right)$ vertices with label 2 in $C_{(1, m-1)}$. Suppose that there exist j number of vertices from $\left(\frac{m-n+1}{2}+r\right)$ with label 2 are not in sequence $\operatorname{in~}_{\text {in }} \quad \mathrm{C}_{(1, m-1)}$. \quad Then we \quad have, $\quad e_{f}(1)=\frac{r(r-1)}{2}+r m+$ $r(n-r)+\left(\frac{m+n-1}{2}-r+j+1\right)+(n-r)\left(\frac{m+n-1}{2}-r\right)$ and $e_{f}(2)=\left(\frac{m-n+1}{2}+r-j-1\right)+$ $\frac{(n-r)(n-r-1)}{2}+(n-r)\left(\frac{m-n+1}{2}+r\right)$. Now, $e_{f}(2)$ in subcase $2.2 \leq e_{f}(2)$ in subcase 1.2. and $e_{f}(1)$ subcase $2.2 \geq e_{f}(1)$ in subcase 1.2. So, $e_{f}(1)-e_{f}(2)$ in this case $\geq e_{f}(1)-e_{f}(2)$ in subcase 2.1. Now, we have already proved in subcase 2.1 that $e_{f}(1)-e_{f}(2)>1$.

Case 3: $m<n$

Subcase 3.1: All the vertices in $\boldsymbol{C}_{(1, m-1)}$ are with label 1 and some vertices with label 1 are in K_{n}
Suppose that there exist r number of vertices with label 1 in K_{n}. So, there exists ($n-r$) vertices with label 2 in K_{n}. Suppose that we have m number of vertices with label 1 in $C_{(1, m-1)}$. Then we have, $e_{f}(1)=\frac{r(r-1)}{2}+r(n-r)+m n+m+1$ and $e_{f}(2)=\frac{(n-r)(n-r-1)}{2}$. Then, $e_{f}(1)-e_{f}(2)=$ $m n+m+2 n r+1+\frac{n}{2}-r-r^{2}-\frac{n^{2}}{2}$.
In this case we have two possibilities
(i) $m+r=\frac{m+n+1}{2}$
(ii) $m+r=\frac{m+n-1}{2}$

So, we consider the following cases.
Subsubcase 3.1.1: $m+r=\frac{m+n+1}{2}$
Therefore, $r=\frac{n-m+1}{2}$. Then, $e_{f}(1)-e_{f}(2)=\frac{m n}{2}+\left(2 m-\frac{3}{4}\right)+\left(\frac{n^{2}}{4}-\frac{m^{2}}{4}\right)+\frac{n}{2}>1$ as $m<n$ and $2 m>\frac{3}{4}$ as $m \geq 2$.
Subsubcase 3.1.2: $m+r=\frac{m+n-1}{2}$
Thenrefore, $r=\frac{n-m-1}{2}$. Then, $e_{f}(1)-e_{f}(2)=\left(\frac{m n}{2}-\frac{n}{2}\right)+m+\left(\frac{n^{2}}{4}-\frac{m^{2}}{4}\right)+\frac{1}{4}>1$ as $n>m$.
Subcase 3.2: All the vertices in $\boldsymbol{C}_{(1, m-1)}$ are with label 2 and some vertices with label 2 are in $\boldsymbol{K}_{\boldsymbol{n}}$
Suppose that there exist r numbers of vertices with label 1 in K_{n}. So, there exists ($n-r$) vertices with label 2 in K_{n}. Suppose that we have m number of vertices with label 2 in $C_{(1, m-1)}$. Then we have, $e_{f}(1)=\frac{r(r-1)}{2}+r(n-r)+r m$ and $e_{f}(2)=\frac{(n-r)(n-r-1)}{2}+m(n-r)+m$. Then, $e_{f}(1)-e_{f}(2)=2 m r-m n-\frac{n^{2}}{2}+2 n r+\frac{n}{2}-r^{2}-r-m$.
Subsubcase 3.2.1: $r=\frac{m+n+1}{2}$
Then, $e_{f}(1)-e_{f}(2)=\frac{3 m^{2}}{4}+\left(\frac{m n}{2}-m\right)+\left(\frac{n^{2}}{4}-\frac{3}{4}\right)+\frac{n}{2}>1$ as $m, n \geq 2$.
Subsubcase 3.2.2: $r=\frac{m+n-1}{2}$
Then, $e_{f}(1)-e_{f}(2)=\frac{3 m^{2}}{4}+\frac{m n}{2}-2 m+\frac{n^{2}}{4}+\frac{1}{4}-\frac{n}{2}=\left(\frac{n^{2}}{4}-\frac{n}{2}\right)+m\left(\frac{3 m}{4}+\frac{n}{2}-2\right)+\frac{1}{4}>1$ as m, n ≥ 2.
Case 4: $\boldsymbol{m} \boldsymbol{>} \boldsymbol{n}$ and all the vertices with label 2 are in sequence in $\boldsymbol{C}_{(1, m-1)}$
Subcase 4.1: All the vertices in K_{n} are with label 1 and some vertices with label 1 are in $\boldsymbol{C}_{(1, m-1)}$ 2452

Suppose that there exist r number of vertices with label 1 in $C_{(1, m-1)}$. So, there exists $(m-r)$ vertices with label 2 in $C_{(1, m-1)}$. Suppose that we have n number of vertices with label 1 in K_{n}.
Then we have, $e_{f}(1)=m n+(r+1)+n \frac{(n-1)}{2}$ and $e_{f}(2)=m-r$. Then, $e_{f}(1)-e_{f}(2)=$ $(m n-m)+2 r+\left(\frac{n^{2}}{2}-\frac{n}{2}\right)+1>1$ as $m n>m$ and $\frac{n^{2}}{2}>\frac{n}{2}$, where, $m, n \geq 2$.
Subcase 4.2: All the vertices in K_{n} are with label 2 and some vertices with label 2 are in $\boldsymbol{C}_{(1, m-1)}$
Suppose that there exist r number of vertices with label 1 in $C_{(1, m-1)}$. So, there exists $(m-r)$ vertices with label 2 in $C_{(1, m-1)}$. Suppose that we have n number of vertices with label 2 in K_{n}.
Then we have, $e_{f}(1)=r n+(r+1)+1$ and $e_{f}(2)=\frac{n(n-1)}{2}+n(m-r)+(m-r-1)$. Then,
$e_{f}(1)-e_{f}(2)=2 r+2 n r-\frac{n^{2}}{2}+\frac{n}{2}-m n-m+3$.
Subsubcase 4.2.1: $r=\frac{m+n+1}{2}$
Then, $e_{f}(1)-e_{f}(2)=\frac{5 n}{2}+\frac{n^{2}}{2}+4>1$.
Subsubcase 4.2.2: $r=\frac{m+n-1}{2}$
Then, $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+\frac{n}{2}+2>1$.
Case 5: $\boldsymbol{m}>\boldsymbol{n}$ and some of the vertices with label 2 are not in sequence in $\boldsymbol{C}_{(1, m-1)}$
Subcase 5.1:All the vertices in K_{n} are with label 1 and some vertices with label 1 are in $C_{(1, m-1)}$
Suppose that there exist r number of vertices with label 1 in $C_{(1, m-1)}$. So, there exists ($m-r$) vertices with label 2 in $C_{(1, m-1)}$. Suppose that we have n number of vertices with label 1 in K_{n}. Suppose that we have j number of vertices with label 2 are not in sequence in $C_{(1, m-1)}$. Then, $e_{f}(1)=\frac{n(n-1)}{2}+m n+(r+j+1)$ and $e_{f}(2)=m$ $-r-j$. Now, $e_{f}(2)$ in subcase $5.1 \leq e_{f}(2)$ in
subcase 4.1 and $e_{f}(1)$ in subsubcase $5.1 \geq e_{f}(1)$ in subsubcase 4.1 . So, $e_{f}(1)-e_{f}(2)$ in this case is $\geq e_{f}(1)-e_{f}(2)$ in subcase 4.1. Now, we have already proved in subcase 4.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this case.

Subcase 5.2: All the vertices in K_{n} are with label 2 and some vertices with label 2 are in $C_{(1, m-1)}$

Suppose that there exist r number of vertices with label 1 in $C_{(1, m-1)}$. So, there exists $(m-r)$ vertices with label 2 in $C_{(1, m-1)}$. Suppose that we have n number of vertices with label 2 in K_{n}. Suppose that we have j number of vertices with label 2 are not in sequence in $C_{(1, m-1)}$. Then $e_{f}(1)=n r+(r+j+1)$ and $e_{f}(2)=\frac{n(n-1)}{2}+m n+m-n r-r-j$. Now, $e_{f}(2)$ in subcase 5.2
$\leq e_{f}(2)$ in subcase 4.2 and $e_{f}(1)$ in subsubcase $5.2 \geq e_{f}(1)$ in subsubcase 4.2 . So, $e_{f}(1)-e_{f}(2)$ in this case is \geq $e_{f}(1)-e_{f}(2)$ in subcase 4.2. Now, we have alredy proved in subcase 4.2 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-$ $e_{f}(2)>1$ in this case.
Hence, $K_{n} \vee C_{(1, m-1)}$ is not HMC, where $m+n$ is odd and $m, n \geq 2$.
Theorem 2.1. $K_{n} \vee C_{\left(1, m^{-1)}\right.}$ is not HMC , where $m, n \geq 2, m, n \in \mathbb{N}$.

Proof:

Proof follows from Propositions 2.1, 2.2 and 2.3.

Proposition 2.4.

$\boldsymbol{C}_{(1, m-1)} \vee \boldsymbol{C}_{(1, n-1)}$ is not HMC, where $m=n$ and $m \geq 2$.

Proof:

Suppose that $C_{(1, m-1)} \vee C_{(1, n-1)}$ is HMC for $m=n$. Note that, $\left|V\left(C_{(1, m-1)} \vee C_{(1, n-1)}\right)\right|=2 n$ and $\left|E\left(C_{(1, m-1)} \vee C_{(1, n-1)}\right)\right|$ $=n+m+n m+2=2+2 n+n^{2}$ as $n=m$. Since, $\left|V\left(C_{(1, m-1)} \vee C_{(1, m-1)}\right)\right|=m+n=2 n$ as $n=m$. We have assume that $C_{(1, m-1)} \vee C_{(1, n-1)}$ is HMC for $n=m$. We have $v_{f}(1)=v_{f}(2)=n$.
Case 1: All the vertices of label 1 are in sequence in $C_{(1, m-1)}$ and $C_{(1, n-1)}$
Then, it is clear that all the vertices of label 2 are in sequence in $C_{(1, m-1)}$ and $C_{(1, n-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1, m-1)}$. So, we have $(n-r)$ vertices of of label 1 in $C_{(1, n-1)}$. Hence, we have $(m-r)$ vertices of label 2 in $C_{(1, m-1)}$ and r vertices of label 2 in $C_{(1, n-1)}$. Note that, $e_{f}(1)=(r+1)+(n-r+1)+r n$ $+(n-r) n+1$ and $e_{f}(2)=(n-r-1)+(r-1)+r(n-r)+1$. Then, $e_{f}(1)-e_{f}(2)=2 n+2+r n+n^{2}-r^{2}$. We know that, $n>r$. So, $e_{f}(1)-e_{f}(2)>1$.
Case 2: Some of the vertices of label 2 are not in sequence in $\boldsymbol{C}_{(1, m-1)}$ and $\boldsymbol{C}_{(1, n-1)}$
Suppose that we have r number of vertices with label 1 in $C_{(1, m-1)}$. So, we have $(n-r)$ vertices of label 1 in $C_{(1, n-1)}$. Hence, we have $(m-r)$ vertices of label 2 in $C_{(1, m-1)}$ and r vertices of label 2 in $C_{(1, n-1)}$. Suppose that there exist i number of vertices with label 2 are not in sequence in $C_{(1, m-1)}$ and j number of vertices with label 2 are not in sequence in $C_{(1, n-1)}$. Note that, $e_{f}(1)=(r+i+1)+(n-r+j+1)+r n+(n-r) m+1$ and $e_{f}(2)=$ $(n-r-i-1)+(r-j-1)+r(n-r)+1$. Now, $e_{f}(2)$ in case $2 \leq e_{f}(2)$ in case 1 and $e_{f}(1)$ in case $2 \geq e_{f}(1)$ in case 1 . So, $e_{f}(1)$
$-e_{f}(2)$ in this case is $\geq e_{f}(1)-e_{f}(2)$ We have already proved in case 1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)$ >1 in this case.
Case 3: We have m number of vertices with label 1 in $C_{(1, m-1)}$ and n number of vertices with label 2 in $\boldsymbol{C}_{(1, n-1)}$
Note that, $e_{f}(1)=m n+m+1$ and $e_{f}(2)=n+1$. Then, $e_{f}(1)-e_{f}(2)=m n+m+1-1-n=m n>1$ as $n=m$.
Case 4: We have \boldsymbol{m} number of vertices with label 2 in $C_{(1, m-1)}$ and \boldsymbol{n} number of vertices with label 1 in $C_{(1, n-1)}$
Note that, $e_{f}(1)=m n+n+1$ and $e_{f}(2)=m+1$. Then, $e_{f}(1)-e_{f}(2)=m n+n+1-m-1=m n>1$ as $n=m$. Hence, $C_{(1, m-1)}$ $\vee C_{(1, n-1)}$ is not HMC, where $m=n$ and $m \geq 2$.

Proposition 2.5.

$C_{(1, m-1)} \vee C_{(1, n-1)}$ is not HMC, where $m+n$ is even and $m, n \geq 2$.

Proof:

Note that, $\left|V\left(C_{(1, m-1)} \vee C_{(1, n-1)}\right)\right|=n+m$. Suppose that $C_{(1, m-1)} \vee C_{(1, n-1)}$ is HMC. Since we have $\left|v_{f}(1)\right|=\frac{n+m}{2}=\left|v_{f}(2)\right|$.
Case 1: All the vertices of label 1 and 2 are in sequence in $\boldsymbol{C}_{(1, n-1)}$ and $\boldsymbol{C}_{(1, m-1)}$
Suppose that we have r number of vertices with label 1 in $C_{(1, n-1)}$. So, we have $(n-r)$ vertices of of label 2 in $C_{(1, n-1)}$. Hence, we have $\frac{n+m}{2}-r_{\text {vertices of label } 1} \mathrm{in}_{(1, m-1)}$ and $m-\frac{n+m}{2}+r$
vertices of label 2 in $C_{(1, m-1)}$. Note that, $e_{f}(1)=(r+1)+\left(\frac{n+m}{2}-r+1\right)+r m+\left(\frac{n+m}{2}-r\right)(n-r)+1$
and $e_{f}(2)=(n-r-1)+\left(m-\frac{n+m}{2}+r-1\right)+(n-r)\left(m-\frac{n+m}{2}+r\right)+1$. Then, $e_{f}(1)-e_{f}(2)=m r+4+$ $n^{2}-3 n r+2 r^{2}$. We know that $r=\frac{m+n}{2}$, So, we have $e_{f}(1)-e_{f}(2)>1$.
Case 2: Some of the vertices of label 2 are not in sequence in $\boldsymbol{C}_{(1, n-1)}$ and $\boldsymbol{C}_{(1, n-1)}$
Suppose that we have r number of vertices with label 1 in $C_{(1, n-1)}$. So, we have $\frac{n+m}{2}-r_{\text {vertices of label } 1 \text { in }}$ $C_{(1, m-1)}$. Hence, we have $(n-r)$ vertices of label 2 in $C_{(1, n-1)}$ and $\left(m-\frac{n+m}{2}+r\right)$
vertices of label 2 in $C_{(1, m-1)}$. Suppose that there exist i number of vertices with label 2 are not in sequence in $C_{(1, n-1)}$ and j number of vertices with label 2 are not in sequence in $C_{(1, m-1)}$. Note that, $e_{f}(1)=(r+i+1)+\left(\frac{n+m}{2}-r+j+1\right)+r m+(n-r)\left(\frac{n+m}{2}-r\right)+2$ and $e_{f}(2)=$
$(n-r-i-1)+\left(m-\frac{n+m}{2}+r-j-1\right)+(n-r)\left(m-\frac{n+m}{2}+r\right)$. Now, $e_{f}(2)$ in case $2 \leq e_{f}(2)$
in case 1 and $e_{f}(1)$ in case $2 \geq e_{f}(1)$ in case 1 . So, $e_{f}(1)-e_{f}(2)$ in this case is $\geq e_{f}(1)-e_{f}(2)$ in case 1 . Now, we have already proved in case 1 that $e_{f}(1)-e_{f}(2)>1$. Hence, in this case $e_{f}(1)-e_{f}(2)>1$.

Case 3: m > n

Subcase 3.1: All the vertices in $C_{(1, n-1)}$ are with label 1

So, we have n number of vertices with label 1 in $C_{(1, n-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1, m-1)}$. So, there exist $m-r$ number of vertices with label 2 in $C_{(1, m-1)}$.

Subsubcase 3.1.1:All the vertices in $C_{(1, m-1)}$ are in sequence

Then, $e_{f}(1)=(n+1)+(r+1)+m n$ and $e_{f}(2)=m-r$. Then, $e_{f}(1)-e_{f}(2)=m n-m+n+2>1$ as $m n>m, n$.

Subsubcase 3.1.2: All the vertices with label 2 are not in sequence in $\boldsymbol{C}_{(1, m-1)}$

Suppose that we have i number of vertices from $(m-r)$ number of vertices are not in sequence in $C_{(1, m-1)}$. Then, $e_{f}(1)=n+(r+i+1)+m n+2$ and $e_{f}(2)=m-r-i-1$. Now, $e_{f}(2)$ in subsubcase $3.1 .2 \leq e_{f}(2)$ in subsubcase 3.1.1 and $e_{f}(1)$ in subsubcase 3.1.2 $\geq e_{f}(1)$ in subsubcase 3.1.1. So, $e_{f}(1)-e_{f}(2)$ in this case \geq $e_{f}(1)-e_{f}(2)$ in subsubcase 3.1.1. Now, we have already proved in subsubcase 3.1.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this case.

Subcase 3.2: All the vertices in $C_{(1, n-1)}$ are with label 2

So, we have n number of vertices with label 2 in $C_{(1, n-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1, m-1)}$. So, there exist $m-r$ number of vertices with label 2 in $C_{(1, m-1)}$.

Subsubcase 3.2.1: All the vertices in $C_{(1, n-1)}$ are in sequence

Then, $e_{f}(1)=r+2+r n$ and $e_{f}(2)=n+m-r$. Then, $e_{f}(1)-e_{f}(2)=r n+2 r+2-n-m$.
We know that $r=\frac{n+m}{2}$. So, $e_{f}(1)-e_{f}(2)>1$.

Subsubcase 3.2.2: All the vertices in $C_{(1, n-1)}$ are not in sequence

Suppose that we have i number of vertices from $(n-r)$ number of vertices are not in sequence in $C_{(1, m-1)}$. Then, $e_{f}(1)=r+i+1+r n+2$ and $e_{f}(2)=m-r-i-2+n+n(m-r)$. Now, $e_{f}(2)$ in subsubcase $3.2 .2 \leq e_{f}(2)$ in subsubcase 3.2.1 and $e_{f}(1)$ in subsubcase 3.2.2 $\geq e_{f}(1)$ in subsubcase 3.2.1. so, $e_{f}(1)-e_{f}(2)$ in this case \geq $e_{f}(1)-e_{f}(2)$ in subsubcase 3.2.1. Now, we have already proved in subsubcase 3.2.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this case.
Hence, $C_{(1, m-1)} \vee C_{(1, n-1)}$ is not HMC, where $n+m$ is even and $m, n \geq 2$.

Proposition 2.6.

$C_{(1, m-1)} \vee C_{(1, n-1)}$ is not HMC, where $m+n$ is odd and $m, n \geq 2$.

Proof:

Note that, $\left|V\left(C_{(1, m-1)} \vee C_{(1, n-1)}\right)\right|=n+m=2 k+1$ where $k \in N$. Suppose that $C_{(1, m-1)} \vee C_{(1, n-1)}$ is HMC. Without loss of generality, we may assume that $m>n$.
In this case we have two possibilities. $(i) v_{f}(1)=\frac{m+n+1}{2}$ and $v_{f}(2)=\frac{m+n-1}{2}(i i) v_{f}(1)=\frac{m+n-1}{2}$ and $v_{f}(2)=\frac{m+n+1}{2}$
So, we consider the following cases.
Case 1: $v_{f}(1)=\frac{n+m+1}{2}=k+1$ and $v_{f}(2)=\frac{n+m-1}{2}=k$
Subcase 1.1: All the vertices of label 1 are in sequence in $C_{(1, n-1)}$ and $C_{(1, m-1)}$
Then, it is clear that all the vertices of label 2 are in sequence in $C_{(1, n-1)}$ and $C_{(1, m-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1, n-1)}$. So, we have $(n-r)$ vertices of of label
2 in $C_{(1, n-1)}$. Hence, we have $(k+1-r)$ vertices of label 1 in $C_{(1, m-1)}$ and $(k-n+r)$ vertices of label 2 in $C_{(1, m-1)}$. Note that, $e_{f}(1)=(r+1)+(k+2-r)+r m+(k+1-r)(n-r)+1$ and $e_{f}(2)=(n-r-1)+(k-n+r-1)+(n-$ $r)(k-n+r)+1$. Then, $e_{f}(1)-e_{f}(2)=(n-r)^{2}+5+r m+(n-r)(1-r)=(n-r)(n+1-2 r)+r m+5$. Now, $e_{f}(1)-$ $e_{f}(2)>1$ if $n+1 \geq 2 r$. If $n+1<2 r$, then $\frac{(n+1)}{2}<r$. Now, $r+k=\frac{m+n+1}{2}>\frac{(n+r)}{2}+k$. Therefore, $m>k$.
Suppose that $r=\frac{(n+1)}{2}+l$. Then, $e_{f}(1)-e_{f}(2)=2 l^{2}+2 l+\frac{1}{2}+l m+5>1$.
Subcase 1.2: Some of the vertices of label 2 are not in sequence in $\boldsymbol{C}_{(1, n-1)}$ and $\boldsymbol{C}_{(1, m-1)}$
Suppose that we have r number of vertices with label 1 in $C_{(1, n-1)}$. So, we have $(n-r)$ vertices of label 2 in $C_{(1, n-1)}$. Hence, we have $(k-r)$ vertices of label 1 in $C_{(1, m-1)}$ and $(k+1-n+r)$ vertices of label 2 in $C_{(1, m-1)}$. Suppose that there exist / number of vertices with label 2 are not in sequence in $C_{(1, n-1)}$ and j number of vertices with label 2 are not in sequence in $C_{(1, m-1)}$. Note that, $e_{f}(1)=(r+l+1)+(k-r+j+2)+r m+(n-r)(k+1-r)$ +2 and $e_{f}(2)=(n-r-l-1)+(k-n+r-j-1)+(n-r)(k-n+r)$. Now, $e_{f}(2)$ in subcase $1.2 \leq e_{f}(2)$ in subcase 1.1 and $e_{f}(1)$ in subcase $1.2 \geq e_{f}(1)$ in subcase 1.1. So, $e_{f}(1)-e_{f}(2)$ in this case is $\geq e_{f}(1)-e_{f}(2)$ in subcase 1.1. Now, we have already proved in subcase 1.1 that $e_{f}(1)-e_{f}(2)>1$.
Hence, $e_{f}(1)-e_{f}(2)>1$ in this case .
Case 2: $v_{f}(1)=\frac{n+m-1}{2}=k_{\text {and }} v_{f}(2)=\frac{n+m+1}{2}=k+1$

Subcase 2.1: All the vertices of label 1 are in sequence in $C_{(1, n-1)}$ and $\boldsymbol{C}_{(1, m-1)}$

Then, it is clear that all the vertices of label 2 are in sequence in $C_{(1, n-1)}$ and $C_{(1, m-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1, n-1)}$. So, we have $(n-r)$ vertices of label
2 in $C_{(1, n-1)}$. Hence, we have $(k+1-r)$ vertices of label 1 in $C_{(1, m-1)}$ and $(k-n+r)$ vertices of label 2 in $C_{(1, m-1)}$. Note that, $e_{f}(1)=(r+1)+(k+1-r)+r m+(k-r)(n-r)+1$ and $e_{(}(2)=(n-r-1)+(k-n+r)+(n-r)(k-n$ $+r+1)+1$. Then, $e_{f}(1)-e_{f}(2)=(n-r)^{2}+3+r m+(r-n)(1+r)=(n-r)(n-1-2 r)+r m+3$. Now, $e_{f}(1)-e_{f}(2)$ >1
if $n \geq 1+2 r$. If $n<1+2 r$, then $\frac{(n-1)}{2}<r$. Now, $r+k=\frac{m+n-1}{2}>\frac{(n-r)}{2}+k$. Therefore, $m>k$. Suppose
 that $m \leq n+1$. Then since, $m \geq n$, we have $m=n+1$. So, we have
$e_{f}(1)-e_{f}(2)=\left(\frac{m n}{2}-\frac{m}{2}\right)+3+l(m-n-1)=\left(\frac{m n}{2}-\frac{m}{2}\right)+3>1$.
Subcase 2.2: Some of the vertices of label 2 are not in sequence in $\boldsymbol{C}_{(1, n-1)}$ and $\boldsymbol{C}_{(1, m-1)}$
Suppose that we have r number of vertices with label 1 in $C_{(1, n-1)}$. So, we have $(n-r)$ vertices of label 2 in $C_{(1, n-1)}$. Hence, we have $(k-r)$ vertices of label 1 in $C_{(1, m-1)}$ and $(k+1-n+r)$ vertices of label 2 in $C_{(1, m-1)}$. Suppose that there exist / number of vertices with label 2 are not in sequence in $C_{(1, n-1)}$ and j number of vertices with label 2 are not in sequence in $C_{(1, m-1)}$.
Note that, $e_{f}(1)=(r+l+1)+(k-r+j+1)+r m+(n-r)(k-r)+2$ and $e_{f}(2)=(n-r-l-1)+(k-n+r-j)+$ $(n-r)(k-n+r+1)$. Now, $e_{f}(2)$ in subcase $2.2 \leq e_{f}(2)$ in subcase 2.1 and $e_{f}(1)$ in subcase $2.2 \geq e_{f}(1)$ in subcase 2.1. So, $e_{f}(1)-e_{f}(2)$ in this case is $\geq e_{f}(1)-e_{f}(2)$ in subcase 2.1. Now, we have already proved in subcase 2.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this case.

Case 3: $\boldsymbol{m}>\boldsymbol{n}$

Subcase 3.1: All the vertices in $C_{(1, n-1)}$ are with label 1

So, we have n number of vertices with label 1 in $C_{(1, n-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1, m-1)}$. So, there exist $m-r$ number of vertices with label 2 in $C_{(1, m-1)}$.

Subsubcase 3.1.1: All the vertices in $\boldsymbol{C}_{(1, m-1)}$ are in sequence

Then, $e_{f}(1)=n+(r+1)+m n+r n+1$ and $e_{f}(2)=m-r$. Then, $e_{f}(1)-e_{f}(2)=(m n-m)+n+2 r+r n+2>1$ as $m n>m$.
Subsubcase 3.1.2: All the vertices with label 2 are not in sequence in $C_{(1, m-1)}$
Suppose that we have I number of vertices from ($m-r$) number of vertices are not in sequence in $C_{(1, m-1)}$. Then, $e_{f}(1)=n+(r+l+1)+m n+2$ and $e_{f}(2)=m-r-I-1$. Now, $e_{f}(2)$ in subsubcase 3.1.2 $\leq e_{f}(2)$ in
subsubcase 3.1.1 and $e_{f}(1)$ in subsubcase 3.1.2 $\geq e_{f}(1)$ in subsubcase 3.1.1. So, $e_{f}(1)-e_{f}(2)$ in this case is \geq $e_{f}(1)-e_{f}(2)$ in subsubcase 3.1.1. Now, we have already proved in subsubcase 3.1.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this case.

Subcase 3.2: All the vertices in $C_{(1, n-1)}$ are with label 2

So, we have n number of vertices with label 2 in $C_{(1, n-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1, m-1)}$. So, there exist $m-r$ number of vertices with label 2 in $C_{\left(1, m^{-1}\right)}$.

Subsubcase 3.2.1: All the vertices in $C_{(1, n-1)}$ are in sequence

Then, $e_{f}(1)=r+2+r n$ and $e_{f}(2)=n+m-r$. Then, $e_{f}(1)-e_{f}(2)=n r-n-m+2 r+2$.
In this case we have two possibilities.
(i) Suppose that $r=\frac{n+m+1}{2}$. So, $e_{f}(1)-e_{f}(2)=\frac{m n}{2}+\frac{n^{2}}{2}+\frac{n}{2}+3>1$
(ii) Suppose that $r=\frac{n+m-1}{2}$. So, $e_{f}(1)-e_{f}(2)=\frac{m n}{2}+\left(\frac{n^{2}}{2}-\frac{n}{2}\right)+3>1$.

Subsubcase 3.2.2: All the vertices in $C_{(1, n-1)}$ are not in sequence

Suppose that we have I number of vertices from $(n-r)$ number of vertices are not in sequence in $C_{(1, m-1)}$. Then, $e_{f}(1)=r+I+3+r n$ and $e_{f}(2)=m-r-I-1+n+n(m-r)$. Now, $e_{f}(2)$ in subsubcase $3.2 .2 \leq e_{f}(2)$ in subsubcase 3.2.1 and $e_{f}(1)$ in subsubcase 3.2.2 $\geq e_{f}(1)$ in subsubcase 3.2.1. So, $e_{f}(1)-e_{f}(2)$ in this case is $\geq e_{f}(1)-e_{f}(2)$ in subsubcase 3.2.1. Now, we have already proved in subsubcase 3.2.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-$ $e_{f}(2)>1$ in this case. Hence, $C_{(1, m-1)} \vee C_{(1, n-1)}$ is not HMC, where $n+m$ is odd and $m, n \geq 2$.

Theorem 2.2. $C_{(1, m-1)} \vee C_{(1, n-1)}$ is not HMC, where $n, m \in \mathbb{N}, m, n \geq 2$.

Proof:

Proof follows from propositions 2.4, 2.5 and 2.6.

3. CONCLUSION

In this article, we have discussed Harmonic mean cordial labeling of $K_{n} \vee C_{(1, m-1)}$ and $C_{(1, m-1)} \vee C_{(1, n-1)}$ for any $n, m \geq 2$ and $n, m \in \mathbb{N}$.

ACKNOWLEDGMENT:

We are very much thankful to the reviewers for their extensive, in-depth and thorough evaluation and for enhancing suggestions.

REFERENCES

1. R. Balakrishnan and K. Ranganathan (2012). A Textbok of Graph Theory, Springer-Verlag, Newyork.
2. J. Gowri and J. Jayapriya, Hmc Labeling of Certain Types of Graph, Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12(10), 3913-3915.
3. J Gowri, J Jayapriya, HMC Labeling of Some Snake Graphs. International Journal of Special Education, 2022; 37(3).
4. Jaydeep Parejiya, Premkumar Lalchandani, Daxa Jani, and Sneha Mundadiya. Some remarks on harmonic mean cordial labeling. AIP Conf. Proc. 14 November 2023; 2963 (1): 020019.
5. Jaydeep Parejiya, Daxa B. Jani and Yesha M. Hathi, Harmonic Mean Cordial labeling of some graphs, TWMS Journal of Applied And Engineering Mathematics, 14(1), 284-297.
6. Jaydeep Parejiya, Sneha Mundadiya, Harsh Gandhi, Ramesh Solanki and Mahesh Jariya, Root Cube Mean Cordial Labeling of $K_{1, n} \times P_{m}$, AIP Conf. Proc. 14 November 2023; 2963 (1): 020020.
7. D. B. West, Introduction to Graph Theory, Englewood Cliffs, NJ: Prentice-Hall, Second Edition, p. 225, 2000.

DOI: https://doi.org/10.15379/ijmst.v10i4.3540

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

