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Abstracts: This research centers on the design and implementation of a control system for an electric wheelchair 
equipped with Mecanum wheels. The study details a comprehensive research methodology starting with the creation of a 
block diagram to guide system design, hardware selection, and overall implementation. The electric wheelchair system 
incorporates power resources, input devices, and energy output mechanisms, utilizing a 24 VDC battery and a joystick 
with a 10K ohm potentiometer connected to an Arduino Due microcontroller. The operational workflow of the system is 
defined, enabling the wheelchair to respond to joystick commands for forward, left turn, right turn, and other movements. 
A PID control system is employed to regulate motor movement, enhancing control precision. The Cohen-Coon tuning 
method is used to determine the PID controller's gain, ensuring efficient closed-loop control. Results from PID controller 
experiments under P control and PD control are presented, demonstrating the system's responses for different gain 
values. Optimal performance is observed with a Kp value of 80 and Kd value of 1.2, showcasing improved response 
speed, reduced rise time, enhanced setting time, and lower percent overshoot. In conclusion, the combined proportional 
and derivative control system, specifically with Kp = 80 and Kd = 1.2, proves to be effective in enhancing the Mecanum 
wheelchair's performance. This study provides valuable insights into precise parameter adjustments for optimal control in 
Mecanum wheelchair applications.   
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1. INTRODUCTION  

The prevalence of conditions like paraplegia, myasthenia gravis, and the growing aging population highlights the 

increasing demand for assistive devices. Wheelchairs, a common sight in hospitals, come in various types. Hand-

powered wheelchairs, though cost-effective, pose challenges, requiring significant user effort and occasional 

assistance. Electric wheelchairs, propelled by electric motors, offer enhanced mobility but encounter limitations in 

navigating tight spaces or overcoming obstacles. Research has extensively explored wheelchair user behavior, 

body proportions, and ergonomic workspace design [1], wheelchair use skills training, safety, fatigue, and repair 

frequency [2]-[5], with a focus on coaching services, public transport use, and improving wheelchair usability [6]-

[10]. 

Despite advancements, developing a prototype electric wheelchair faces cost challenges in mechanics and 

electrical control system design. The Arduino training kit emerges as an alternative for prototyping. Related studies 

cover motor control systems [11]-[13], autonomous electric vehicles utilizing ultrasonic sensors and GPS [14], car 

parking distance controllers [15], and small-scale robots with servo motor systems [16]. Additional applications 

include a balance robot [17], line-following robot with a camera sensor [18], and a temperature monitoring system 

for a baby incubator [19]. Wheelchair design for individuals with disabilities has evolved, featuring autonomous stair-

climbing wheelchairs [20], electric wheelchairs with balance systems [21], and mechanisms detecting sitting posture 

[22]. Simulation systems aid electric wheelchair practice [23]-[26], and innovative designs incorporate mechanical 

arms for assistance [27]. Control system development explores image processing aids [28], LIDAR for autonomous 

wheelchairs [29], navigation control for indoor travel [30], map applications [31], decision-making programs [32], and 

speed profile studies [33]. Novel approaches use facial expression, hand gesture, and eye detection for movement 

control [34]-[37]. Physiological signals like EOG [38],[39], EEG [41], [42], and haptic feedback [43] have been 

employed. Mecanum wheels offer a solution to mobility challenges, investigated in wheelchair designs [44],[45] and 

dynamic modeling [46]-[48]. Studies apply kinematic equations [49] and Lagrange equations [50] for design and 

control [53], [54]. Omnidirectional wheels [55]-[63], another option, find applications in robot locomotion testing [55] 

and pressure data studies [56]. Layout variations include a triangular arrangement [58]-[60] and a cross-shaped 

layout [61][62]. 
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This study presents an electric wheelchair featuring mecanum wheels [64], enabling seamless omnidirectional 

movement. The design prioritizes the use of readily available materials, with a focus on convenient disassembly. 

Employing algorithms for joystick-controlled movement, the construction offers a cost-effective solution. Extensive 

testing has been conducted to validate the system's functionality. Additionally, a PID Controller system [65]-[80] has 

been meticulously designed, incorporating the Cohen-Coon tuning method for gain adjustment. The optimal 

configuration, determined through rigorous testing, reveals the superiority of the PD Controller system. 

2. RESEARCH METHODOLOGY 

2.1. Design of Electric Cart Control System with Mecanum Wheels 

     The research focuses on designing the control system and joystick for operating an electric cart with mecanum 

wheels[64], utilizing four motors corresponding to each wheel. Figure 1 illustrates the schematic diagram of the 

control system. The design process initiates with creating a block diagram to outline stages such as system design, 

hardware selection and design, and overall system implementation. The electric wheelchair system comprises three 

key components: power resources, input, and output. For power, a 24 VDC battery is employed, connected to a 3-

way switch facilitating wheelchair enablement, disablement, and charging mode selection. Input signals controlling 

the wheelchair's movement come from a joystick featuring a 10K ohm potentiometer (VR) and a 2-axis controller. 

These input devices connect to an Arduino Due microcontroller. The speed of the DC motors is regulated by these 

input signals, along with four H-bridge DC motor driver boards and control boxes linked to the Arduino Due. 

Additionally, an emergency button, connected to the Arduino Due, triggers a horn sound (piezo buzzer) in case of 

an emergency. Figure 1 depicts the entire electric wheelchair system, providing a comprehensive overview of its 

components and their connections. 

 

Figure 1. Schematic diagram of the electric cart control system 

     Figure 2 illustrates the configuration of the electric cart, which is steered by Mecanum wheels. The chosen motor 

for the electric cart is the LX44WG2490, featuring a torque of 60 Kg.cm at a speed of 71 RPM, an average torque of 

173 Kg.cm under load, and a maximum torque of 55 Nm. Operating at 24 V, the motor weighs 0.95 kg and is 

specifically designed for propelling the cart's wheels, as depicted in Figure 3. To create a versatile electric 

wheelchair capable of moving in all directions, computer program simulation modeling software was utilized to 
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design and analyze its movement. The design adheres to the ISO 2570-2555 standard and considers size 

requirements outlined in Table 1, employing stainless steel (SUS304L) as the material. The completed design, 

showcased in Figure 2, meets all pertinent criteria for electric wheelchairs with mecanum wheels, featuring 

dimensions of 1100 mm in length, 560 mm in width, and 890 mm in height. 

  

  

Figure 2. Electric cart controlled by mecanum wheels 
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Figure 3. Mecanum wheel electric cart 

Table 1. Comparison of electric wheelchair design dimensions with iso 2570-2555 requirements 
Dimensions ISO 2570-2555 requirements(mm) Designed cart size (mm) 

Overall length 1,200 1,100 

Overall width 700 560 

Overall height 1,090 890 

2.2. The Workflow of System Operation 

The system operation workflow defines the operation schedule of the cart system using mecanum wheels, 

allowing it to move in response to commands received from joystick. The control is approximately determined based 

on the joystick's movement and the generated angles to facilitate forward, left turn, right turn, or other movements. 

The control program resides in the motor control box. After selecting the direction, the system employs a PID 

system to control the movement. The program estimates the control input of the system to drive the motors. The 

system measures signals from the encoder, providing feedback to the control system, thus completing the program 

operation, as depicted in Figure 4. 

 

Figure 4. The workflow of system operation 

2.3. Designing a PID Control System for the Mecanum Wheelchair    

     PID control system [81]-[92] is employed in closed-loop control systems, also known as feedback control 

systems. Ongoing advancements in modern automation continually refine techniques to enhance the efficiency of 

continuous control systems. The PID controller, shown in Figure 5, remains widely accepted in industrial 

applications due to its straightforward structure, simple design, and versatility across various control tasks. The PID 

control mechanism comprises three sub-controllers: 1) The Proportional term or P-controller, 2) The Integral term or 

I-controller, and 3) The Derivative term or D-controller. In the realm of PID control theory, the framework is 
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presented as a Continuous-Time PID controller. However, when implemented in a Microcontroller Unit (MCU), 

adaptation to a Discrete-Time PID controller is necessary. The latter can be derived from the continuous-time PID 

controller theory, as expressed in Equation (1). 
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Figure 5. Block diagram of the PID control system. 

     For determining the Gain value of the PID controller, a Close Loop Control system is employed by setting Kp to 1 and Ki, Kd to 

0. The system's response is then measured, as illustrated in Figure 6. The Cohen-Coon tuning method's table is utilized to find 

the system's gain, with conditions for approximating values during the selection of gain, as depicted in Table 2. The Cohen-Coon 

tuning method, employed in the process, builds upon The Ziegler-Nichols method, incorporating more data from the system. This 

method relies on three variables - the steady state gain (a), the time delay (L), and the time constant (T) - to define the process. 

As this method utilizes more process data, it significantly improves control performance. 

 

Figure 6. Block diagram of the PID control system. 

Table 3. The mecanum wheelchair's system response utilizing P control 
Cohen Coon Kc Ti Td 

P Controller (1/)(1+((0.35)/(1-)))   

PI Controller (0.9/)(1+((0.92)/(1-))) ((3.3-3.0)/(1+1.2))L  

PD Controller (1.24/)(1+((0.13)/(1-)))  ((0.27-0.36)/(1-0.87))L 

PID Controller (1.35/)(1+((0.18)/(1-))) ((2.5-2.0)/(1-0.39))L ((0.37-0.37)/(1-0.81))L 

 
(2) 

 

(3) 
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3. RESULTS 

      In the motor system's PID control testing, experiments were conducted by changing the speed from 0 RPS to 

0.75 RPS using a Step input signal. The tested control systems included P Controller and PD Controller, with tuning 

performed using The Cohen-Coon tuning method and manual adjustments. In this design, the Integral term (I) was 

omitted in the PID control system for the Mecanum Wheelchair, as introducing values in the I term could 

compromise the stability of the motor system used in the wheelchair. 

     For the P Controller experiment, different Kp values (70, 80, 100) were designed for the electric wheelchair, 

observing the system response for each wheel (left-front, left-rear, right-front, right-rear) as depicted in Figure 7. The 

system responses under P control are summarized in Table 3. Notably, with a Kp value of 100, there was a high 

percentage overshoot (%Os) and a considerably higher setting time compared to the setpoint. In contrast, the Kp 

value of 70 showed a significantly lower setting time than the setpoint, lower than that of Kp = 80. However, the 

system did not experience %Os. The optimal performance was recorded at Kp = 80 under P control, with the lowest 

rise time and relatively low percent overshoot. 

  

  

Figure 7. System response of a Mecanum Wheelchair employing P control 

  

  

Figure 8. System response of a Mecanum Wheelchair employing PD control 
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     Moving on to the PD Controller experiment with designed Kp at 80 and Kd at 0.8, 1.2, and 2, respectively, for the 

electric wheelchair, the system response for each wheel (left-front, left-rear, right-front, right-rear) was observed, as 

shown in Figure 8. The system responses under PD control are summarized in Table 4. With Kp = 80 and Kd = 2, 

there was a high %Os and a considerably higher setting time compared to the setpoint. On the other hand, Kp = 80 

with Kd = 1.2 and 0.8 resulted in significantly lower setting times, closely matching each other in response. In 

summary, the combined proportional and derivative control under Kp = 80 and Kd = 1.2 demonstrated the best 

overall performance, improving system response speed, reducing rise time, improving setting time, and lowering 

percent overshoot. 

     These results highlight the effectiveness of combining proportional and derivative control in enhancing the 

performance of the Mecanum Wheelchair. The specific parameter values provide optimal response characteristics. 

The gain adjustments enable precise control, meeting the desired performance criteria for the Mecanum 

Wheelchair. 

Table 3. The mecanum wheelchair's system response utilizing P control 
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Kp(70) - 3.2 -32.86 - 3.2 -37.14 - 3.4 -30 - 3.4 -32.86 

Kp(80) - 3.8 -5.71 - 3.6 -8.57 - 3.8 -15.71 - 3.4 -11.43 

Kp(100) 1.2 4.6 84.29 1.2 4.8 74.29 1.2 4.6 78.57 1.2 4.6 70 

Table 4. The mecanum wheelchair's system response utilizing PD control 
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Kp(80), 
Kd(0.8) 

- 1.6 -14.29 - 2 -15.71 - 2 -11.43 - 1.8 -12.86 

Kp(80), 
Kd(1.2) 

- 1.8 -5.71 - 2 -5.71 - 2.2 -10 - 2 -12.86 

Kp(80), 
Kd(2) 

0.4 2.6 31.43 0.4 2.8 30 0.4 4 42.86 0.4 4 31.43 

CONCLUSIONS 

In conclusion, this research investigated the application of PID control in the motor system of a Mecanum 

Wheelchair, employing P Controller and PD Controller configurations. The experiments involved tuning parameters 

using The Cohen-Coon method and manual adjustments, focusing on achieving optimal performance. For the P 

Controller, varying Kp values were tested, revealing that Kp = 80 yielded the most favorable outcomes, 

demonstrating the lowest rise time and relatively low percent overshoot. The PD Controller experiments with Kp = 80 

and different Kd values indicated that Kd = 1.2 resulted in the best overall performance, exhibiting improved 

response speed, reduced rise time, enhanced setting time, and lower percent overshoot. The combination of 

proportional and derivative control, specifically with Kp = 80 and Kd = 1.2, proved to be the most effective in 

enhancing the Mecanum Wheelchair's performance. This study provides valuable insights into the precise 

parameter adjustments necessary for achieving optimal control and meeting the desired performance criteria for 

Mecanum Wheelchair applications. 
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