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Abstract: The challenge of recognizing handwriting in mortgage records is covered in this article. Businesses trying 
to digitize huge numbers of hand-marked scanned documents or reports have a significant challenge: offline 
handwritten text recognition from images. In order to translate a picture into a series of characters that match to the 
text that is contained in the image, this research suggests an innovative language model in combination with a deep 
convolutional network and a recurrent encoder-decoder network. Using the principles of Deep Learning and Word 
Beam Search, the complete model is trained as an end-to-end replacement for conventional handwriting recognition 
techniques. When the Connectionist Temporal Classification (CTC) loss function is trained on the digital form, an RNN 
is the result. Character probabilities are contained in this matrix for each discrete time step. By translating the character 
probabilities, a CTC decoding algorithm maps the final text. The token passing mechanism is used to create the 
recognized text from a list of dictionary words. We offer a novel and highly efficient method for developing restrictive 
models for classification which might associate entity names in accordance with the data contained in the article on 
entity types. A benchmark dataset predicated on the Mortgage domain is included. This Mortgage domain is evaluated 
in the presented model. We tested the model provided below using a set of benchmark mortgage datasets, which are 
published. The experimental outcomes were compared to the IAM and RIMES datasets, two openly accessible 
datasets. On the evaluation set of both datasets, word level precision at the cutting edge by 2.5% & 1.3%, respectively. 
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1. INTRODUCTION  

This paper is an extension and combined  work about the original paper presented Turkish Journal of Computer and 

Mathematics Education, Handwritten Text Recognition using Deep Learning and Word Beam Search and the paper 

Building an Industry Standard Novel Language Model Using Named Entities.  The 

The process of converting handwritten characters or sentences into a language that a computer can understand is 

called handwriting text recognition (HTR). Since technological advancements in this area have made it possible to 

automate certain types of handwriting, a network of educational scholars has been actively investigating it. This paper 

explains how the AI tools are being employed in cloud computing environments. This artificial intelligence - driven 

businesses using cloud computing may grow efficient, planned, and knowledge-driven. AI in cloud computing can 

speed up enterprise digital transformation while also enhancing cloud performance and efficiency. To increase the 

performance, strategic, and knowledge-driven character of corporate operations while also supplying greater 

versatility, responsiveness, and financial savings, AI capabilities in the cloud computing environment are essential. 

Given the potential benefit that may be obtained from removing the data from handwritten documents and combining 

it with modern AI technologies, Handwritten Text Recognition (HTR) has long been an important research topic [7] 

[28]. HTR is frequently divided into two types: offline recognition and online recognition. In this paper, we focus on 

the offline recognition problem, which is substantially more challenging than the online mode.  This is unlike the online 
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mode, which additionally uses the text picture and properties such as stroke information and trajectory, the offline 

mode only has the image available for feature extraction. 

HTR has traditionally been thought of as a pattern comparison issue where a sequence of features from the input 

data are matched to an output sequence made up of letters from the text. This is done mostly using Hidden Markov 

Models (HMM). The context information in a text sequence cannot be used by HMMs due to the Markovian 

assumption that every single observation depends only on the current state. Recurrent Neural Networks (RNN), which 

encode the context information in the hidden states, were used to overcome this restriction. However, because the 

RNN goal functions necessitate a distinct training signal at each time step, its utility was restricted to instances 

where each of the characters in a sequence could be segmented. 

Innovations had been carried out in the manner of models with hybrid architectures that combined RNN and HMM [6] 

[4], but a significant advance was made when [12] suggested using Connectionist Temporal Classification (CTC) [11] 

in conjunction with RNN. CTC eliminates the requirement for segmented input by allowing the system to associate 

the input information sequence directly to a collection of output labels.. As the RNN-CTC model built its input sequence 

for the RNN using manually created features from the image, its performance was still constrained. The end-to-end 

model for HTR, Multi-Dimensional RNN (MDRNN) [10] was suggested. In order to learn long-term dependencies in 

both directions, it employs an ordered set of multi-dimensional RNN layers that process the input text picture along 

both axes. The objective is to capture both the spatial organization of the characters across the vertical axis and the 

sequence information throughout the horizontal axis. As shown in [24], which suggested a composite architecture 

that combines a deep one-dimensional RNN-CTC model and a convolutional neural network (CNN), and which 

maintains the state-of-the-art performance on common HTR benchmarks. Compared to conventional convolution 

processes that retrieve identical visual characteristics, this formulation requires more computing power. 

In this article, we provide a different strategy that combines two recurrent networks for sequence matching on top of 

a convolutional network that acts as a feature extractor. The RNN-based Encoder-Decoder network [8] [27], which is 

frequently used for Neural Machine Translation (NMT) is used. This essentially accomplishes the task of creating the 

desired sequence from a source sequence. The architecture, training, and inference processes of our model have 

been improved with the addition of features like Batch & Layer Normalisation, Focal Loss, and Beam Search, to 

mention a few. The random distortions are included in the training to regularise the inputs. We particularly contribute 

significantly in the following areas: 

a. A neural network design that can extract offline HTR from images and consists of convolutional and recurrent 

networks is shown. 

 

Figure 1a : Illustrates the model overview and how the convolutional feature maps are used to create the 

feature sequence. 

An Encoder-Decoder network with Multi Head Attention which can provide significant boost in accuracy as compared 

to the standard RNN-CTC formulation for HTR is demonstrated. 
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Figure 1b: Explains how to convert a string of output characters into a visual feature sequence. 

We demonstrate that by sampling reduction of the images that are input to nearly one quarter of their 

original size, it is possible to reduce calculations by 62% and the use of memory by 16% without affecting the model's 

overall accuracy. 

2. PROPOSED METHOD 

Our proposed model comprises of the following: (a) Image Acquisition  Module which receives scanned image along 

with hand written text image and (b) Pre Processing Module performs normalization, noise removal and deslanting 

process and (c) Feature extraction  and Sequence Learning module where each of the scaled sub-image is 

transformed into one or more feature maps by applying the CNN wherein the one or more feature contains visual 

features of a corresponding sub-image and (d) Post Processing module which maps the extracted value with a novel 

language module.  Figure 1 presents the model's overall layout. Its distinct cognitive modules have an open interface, 

enabling quick and effective end-to-end training.. 

2.1 Image Acquisition Module 

This system consists of an imaging system. The Imaging system is set up to capture a few text images such as 

information out of the document.. 

 

Figure 2: Sample Image  of Handwritten Text 

The Figure 2 explains the sample data. Document  could be any form of document that contains various types of 

information, along with pictures, printed text, or handwritten (off-line) text. The capturing device  may be set up to 

transmit the few captured images to the system 

2.2 Pre Processing Module 

By applying machine learning as a collection of non-linear transformations needed for a specific task. Convolutional 

Networks have shown to be highly good at extracting rich visual features from images. Our goal was to create a series 

of features that would preserve the spatial arrangement of the image's items while encoding local information in the 

image. To accomplish this, we convert the input image into a deep layer of feature maps using a regular CNN 

(excluding the fully-connected layers). By depth-wise detaching columns from the CNN, a layer called Sequence-to-

Sequence [26] is applied on top to transform the feature maps into a series of feature vectors. This pre-processing 

module also scales the samples by maintaining the screen resolution. Almost every scaled sub-image has a 

predetermined height. The addition of extra pixels keeps the dimension constant throughout the sub-image. In other 

words, all of the feature maps' i-th columns are concatenated to create the i-th feature vector. Because convolution 

processes are translationally invariant, each column in Figure 2 depicts a vertical strip in the image (known as the 

Receptive field), moving from left to right. 

Before being sent to the network, each image is scaled to a fixed height, with the aspect ratio of the image being 

preserved. This overcomes any length limits on the series and guarantees that each vector throughout the list of 

features conforms to the identical dimensionality. 
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2.3 Feature Extraction and Sequence Learning 

The Feature extraction module is a CNN accustomed to transforming every one of a few scaled sub-images into a 

few characteristic maps, where the few distinctive maps contain visual characters among the appropriate sub-image. 

The CNN derives rich visual information from each single scaled sub-image and in the pattern of less characteristic 

maps by acquiring a set of rules instantly significant non-linear transformations. Local properties in the suitable sub-

image can be encoded using the retrieved rich visual qualities, while the spatial relationships between objects in the 

corresponding sub-image are kept. The proposed structure consists of three primary components in a unified platform: 

the encoder, decoder, and multi-head attention mechanism. The input handwritten (off-line) image is inverted into a 

sub-image, making more use of pre-processing image module. 

The Seq2Seq module is equipped to change the situation few additional characteristic maps using a listing of the 

proposal's realization invention of distinct vectors, which is made possible by separating depth-wise columns from a 

few typical maps and concatenating relevant columns from few characteristic maps of the related sub-image. 

Concatenating the columns of a few specific maps, for example, produces a collection of distinct vectors. A context 

vector c that serves as a representation of the complete sequence can be created, for instance, by concatenating the 

ith columns of a few typical maps. This is done by employing an RNN with the hidden state ht = g(xt, ht1) at each time 

step t and the final state c = s (h1,..., hTs), where g and s are some non-linear functions. 

 

Figure 3: Encoder - Decoder System using Multi Head Attention layer with a Softmax Layer on top. 

Such a formulation using a simple RNN cell turns out to be worthless for learning even reasonably long sequences 

due to the vanishing gradient phenomenon [14][5] caused by repeated multiplications of gradients in an unfolded 

RNN. Instead, because of their superior capacity to model and learn long-term dependencies, we use the Long Short 

Term Memory (LSTM) [13] cells considering.the presence of a memory cell c ∈ Rn. 

2.4 Post Processing Module 

Post-processing module consists of an encoder-decoder system which is built using  Modern RNN based encoder-

decoder system unit is set up to generate a few sets of characters by mapping the characteristics related with each 

series of characteristic vectors.  The encoder system begins with a deep CNN, which is beneficial at obtaining the 

attributes. Thus it creates a succession of distinct visual vectors from segmented images. It connects three interlaced 

sampling regions with fully connected layers that reduce the image's spatial dimensions while boosting the 

representative depth of the characteristic vectors simultaneously. 

A deep RNN examines a succession of convolutional properties and encodes temporal context in a few images. The 

BLM layers merge two LSTM layers that execute the series differently to encode both the forward and backward 

intrinsic relationship of written text. Three BLSTM layers make up the encoder RNN. The encoder-CNN converts an 

input picture I into an intermediate-level characteristic map X. This is a unique one where a group of column vectors 

X = (X1,..., XM), in which  M represents the duration of the input stream that has also been subsampled. The BLM 

layers then analyze the order and generate the total of upstream and downstream suppressed states as the combined 

feature pattern. The final encoded characteristic map H = (H1,.., HM), which models the images information by feeding 
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into it. The temporal context of the group is created by superimposing a 2D fully connected layer on top of the third 

BLSTM layer's state sequence. The sub-image generated at step  is analyzed with the series of characteristic vectors. 

The encoder module generates a stable output of the context vector. The decoder unit triggers a collection of encoded 

symbols or machine-readable text for the matching sub-image by applying to a response given the values similar to 

accurate identification. The decoder-RNN consists of a unidirectional LSTM layer system in one instance to generate 

the intended data block. Everything and every consequent is represented by p (yt | y1,..., yt-1, ct ) = softmax( f ( yt-1, 

St-2, ct ) ), where f is the LSTM and st-1 is the preceding concealed state. The decoder, in particular, must collect 

facts regarding the output sequence's history and save it in its internal state of remembrance. Instead of the encoder 

BLSTM's end state, the decoder LSTM is initialized with a zero state. The decoder is adjusted at each decoding time 

interval and uses an attention mechanism to concentrate mostly on a significant portion of the encoded characteristic 

representation. 

Attention mechanisms in one embodiment dynamically adjust depending on the vector representation for each stage 

decoder using the key, value, and query parameters to the encoder. In most cases, a linear combination of the 

succession of encoded order or sequence is used. ct   =  ∑𝑀𝑗=1  αt,jhj  yields the context vector ct at decoding time 

step t. The attention weights t,j are normalized attention scores affected by the activity of the multi-head attention 

function that is being employed.αt,j  =  Att (st, hj , αt-1). 

In one form, residual connections are used to configure the RNN-based encoder-decoder units to allow gradient 

passage to a following recurrent layer via recurrent units. A dropout mechanism is used with a depth-wise link to 

capture long-term dependency.   Hence the recurrent connection in the decoder unit is not modified. An MHAM is 

accustomed to aligning the decoder unit's secret states with the encoder unit's hidden conditions. 

In one form, normalizing is implemented in the layers for recurrent activations in the RNN based encoder-decoder 

units to moderate hidden state dynamics and enhance convergence during system 100 training. A linear 

transformation to generate logits, W256×N, is applied to the decoder unit, whereas N is considered as the output 

vocabulary size. Logits is used at each time step of the Softmax operation. This helps to establish a probabilistic 

model across the generated vocabulary. 

The Back Propagation Through Time (BPTT) is accustomed to performing gradient descent across the RNN-based 

encoder-decoder units. The network weights and biases are then updated using the Back Propagation Through Time 

into the CNN. 

In one example, the Beam Search Decoding Algorithm is employed to determine by maximizing a joint distribution, 

and we can find the best sequence across a beam of hypotheses. In an example, the image post-processing module 

is utilized to create the output file by assembling the group of characters to generate both digital and handwritten text 

recognized for each sub-image through making use of the  Modern RNN based encoder-decoder unit along with Multi-

Head attention  mechanisms. 

Based on the words already observed in the sequence, a novel Language Model can estimate the likelihood of the 

next word in the line. This language model was proposed from textual data from the mortgage industry. The (k + 1) 

grams are collected from flowing text to train a k-order language model, and the (k + 1) word is handled as the 

supervision signal. As a result, a vast amount of training data is produced from many data sources. Rather than only 

predicting the token with the highest score, a record of k hypotheses is kept (for example, k=5 is the beam size). Then 

we will have V potential tokens representing the hypotheses at each new time step. This results in a total of 5V new 

predicted tickets.  Then we keep the top five, and so on. Define Ht as the collection of hypotheses decoded at time 

step t in formal terms. 

Ht:={(w11,…,w1t),…,(wk1,…,wkt)} 

For example, if k=2, one possible H2 is H2: = (identified word1) and (identified word2) 

When all hypotheses have reached the eos> token, the theory with the highest score is returned. All conceivable H t 

is mapped to the respective Language Model (LM) to generate the proper term. 

The solution has been proposed in the unstructured document data extraction consisting of digital and handwritten 

complete systems for Industry built using Modern neural networks and a novel Language Model. Per the present 
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situation, this disclosure is explained utilizing the input handwritten text recognition for single or multiple unstructured 

scanned documents consisting of digital and handwritten text. The proposed innovation and methods, on the contrary, 

have the ability to recognize handwritten text from numerous scanned unstructured documents composed of digital 

and handwritten data by mapping the Softmax output towards a novel Language Model which identifies the 

appropriate handwritten word. 

3. IMPLEMENTATION DETAILS 

3.1 Image Preprocessing 

This framework receives images containing a single phrase of text written by hand, which could or could not represent 

a full sentence. A single channel with 256 levels of intensity makes up each image. We flip the images before training, 

which makes it a little bit simpler to perform the CNN triggers to learn because the primary focus is made up of higher 

intensity on a dark background. The input images have been compressed by a typical height of 128 pixels to 32 pixels, 

as indicated in Table 1, while keeping the aspect ratio of the original image. The images are buffered with pixels from 

the background equivalent to the width of the batch's widest image on the left and right side. The consistency in the 

batch's size is retained when utilizing small batch training. Early tests showed that our model tended to over predict 

from the initial set of data. As an additional regularization step to avoid this, we added random distortions [24] to the 

training photos, such that the framework will, ideally, transform a group of inputs that had not been seen before in 

each iteration. 

Table 1: Image down sampling's impact on a model's training performance 

Size 
Computations Memory 

Tflops (GB 

128 ×W 1.5 × 104 9.5 

32 ×W, 5.9 × 103 7.9 

Translation, rotation, shear, and scaling are the four procedures that each training batch is put through. Each 

operation's parameters are independently sampled from a Gaussian distribution. At the start of the experiments, the 

procedures and the underlying distribution were selected by viewing a few cases and were then fixed. 

Table 2: Impact of Image Downsizing on Training Model Performance 

 

3.2 Convolutional Layer 

Seven convolutional layers are stacked serially in the implemented model, and Leaky ReLU [20] activations are used. 

The top layer has a kernel size of 2x2 pixels without input padding. The bottom six  we used a kernel size of 3x3 

pixels along with input padding which is 1 pixel wide. Kernel strides in both the vertical and horizontal axes are 1 pixel. 

To avoid internal covariate shift and accelerate training, triggers of the convolutional layers are batch normalised [15] 

before propagating to the subsequent layer. To make the input less dimensional, pooling techniques are used to some 

convolutional layers' activations. Four max-pooling layers make up our model, including two which have a 2x1 kernel 

size to preserve a horizontal spatial distribution of text and the other two utilising traditional 2x2 non-overlapping 

kernels.  
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Table 3 Depicts the details of the convolution layer used for the network configuration 

 

3.3 RNN Encoder-Decoder 

Utilizing the LSTM cells consisting of 256 hidden units, and the encoder and decoder. To increase both networks' 

ability for learning, we let them both extend to a depth of two layers. To enable gradient transfer over the recurrent 

units to the layers below, residual connections [16] are made. 

 

Figure 4: End to End Implementation Model 

Additionally, we regularise the network using dropout [23] along depth links without changing the recurrent 

connections, maintaining the network's ability to record long-term dependencies in the process. The activity of 

individual neurons are Layer Normalised [2] to avoid covariate shift owing to mini batch training, which has proven to 

be extremely efficient in stabilizing the network's hidden state dynamics. We use a linear transformation for the final 

forecast W ∈ R256xN on the RNN predictions, where N is used to create the logits, or output vocabulary size. To 

establish a distribution of probability over the outcome vocabulary at each timestep, the softmax operation is applied 

to the logits. 

4. THE TRAINING & INFERENCE 

In our tests, the batch size is set at 12 during training. With a learning rate of 0.001, we optimize using the Adam [17] 

algorithm. To get the highest validation accuracy, the model underwent training for 25 intervals. We employ a beam 

size for the inference that is proportional to the total amount of categories in the output. 
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5. DATASET 

We test our strategy using the following publicly accessible dataset. The IAM Handwriting Database v3.0 (English) 

[22] has 1538 pages of text. These are broken up into writer-independent training, validation, and test sets, 

respectively. These sets each contain 6161, 940, and 1861 segmented lines. The repository contains handwriting 

samples from 657 distinct authors. The average height and width of the line images are 124 pixels and 1751 pixels, 

respectively. The database has 79 distinct characters total, not counting whitespace. 

6. EXPERIMENTS 

The mean Character Error Rate (CER) and mean Word Error Rate (WER), which become performance metrics 

determined as the mean over all text lines, serve as indicators to examine our model on the evaluation partition of 

both datasets. They are defined as, 

CER = No of char s(c) in a sentence wrongly classified 

                                                    Total chars in a sentence 

WER = No. of words(w) in a sentence spelled incorrectly 

                                                  Total words (w) in a sentence 

We used AWS Cloud computing for the tests we conducted.  The model's time for inference is 2.5 seconds 

7. RESULTS 

Table 3 displays the effect of Beam Search, Focal Loss, and Layer Normalisation (LN) on the basic model. The 

effectiveness of the base model was enhanced by LN by roughly three percent. The most significant benefit was 

achieved by transitioning from greedy decoding to beam search, that enhanced the model's precision by 4-5%. Focal 

loss was also utilised, which increased accuracy by 1-3%. 

Table 4: Impact of The model Efficiency on Focal Loss, Beam Search, and Layer Normalisation 

 

 

Figure 5: Graphical representation of Model Performance on Layer Normalisation, Focal Loss, and Beam 

Search Effect 

8. COMPARISON TO THE MOST RECENT TECHNOLOGY 

We compare our method's effectiveness to the cutting-edge in Tables 4 and 5 according to the maximum GPU 

memory usage and the total amount of trainable parameters. We contrast the precision of our approach with that of 

previously published methods. 
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Table 5: Comparison of accuracy with earlier techniques 

 

 

Figure 6: Graphical representation of comparison accuracy 

Table 6: Efficiency Comparison in relation to state-of-art 

 

 

Figure 7: Representation of efficiency in relation to state-of-art 

Our character level accuracy is just slightly better than the state-of-the-art [24], despite the fact that we exceeded it 

at the word level. It suggests that while our model makes less errors overall when looking at words as a whole, it 

likelihood to make further errors in terms that already contain mislabeled letters. This results from our model's 

inference behavior, which draws on earlier predictions to produce the present output. The outcome is, a past error 

may set off a chain of subsequent errors. However, better word accuracy demonstrates that our model typically 

correctly guesses each word in a line. In essence, this prototype recognizes words reasonably accurately, however, 

if an error occurs, the word level prediction is off by an increased amount of letters. 

9. CONCLUSION 

We suggest a novel language model for accurately recognizing handwritten text that combining the entity model and 

boosting the word beam search. Using a open source, our model performs much better than all the prior techniques, 

and on a private dataset, it outperforms them by a respectable margin. Despite the model's satisfactory performance 

on benchmark sampling data, we plan to do additional analyses to see how it performs in entirely unrestricted 

scenarios with a increased categories in Language Model. 

A training technique that optimizes loss of character according to the correctness of the entire sequence instead of 

the total loss for specific characters would be developed with the goal to improve the current method. The model 
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would act similarly during training and inference as a result. So as to improve the effectiveness of the representation 

and correct errors, particularly for unusual phrases or sequences, the specific domain language model can be added 

to the training plan. 
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