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Abstract: The homogeneous higher order complex linear differential equations (n-thCLDEs) with entire functions is 
considered in this paper. We investigated some conditions that can be put on the coefficients which guarantee that any 
nonzero solution of such equations has infinite order. The conditions we stated are the completely regular growth (CRG), 
the characteristic function of some coefficients is approximately equals to the logarithm of its maximum modulus and the 
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1. INTRODUCTION AND PRELIMINARIES  

The Nevanlinna theory related to meromorphic functions is a powerful tool in studying the differential equations in 

the complex plane. The Nevanlinna's theory was first applicable on the complex differential equations (CDE) as it 

appears in Yoseida’s work in 1932, and from that time (CDE) have been became an active field of study by authors. 

For more details related to the theory of differential equations in ℂ, see, for example [1]. Study the order of growth of 

solutions of this equation is one of the main purpose. The reader must be familiar with the fundamental definitions 

and the results related the Nevanlinna value distribution theory of meromorphic functions such as, M(r, f), T(r, f) and 

N(r, f) etc., see [15, 29].  

In this paper we shall consider the following (n-thCLDE): 

f (n) + An−1(z)f (n−1) + ⋯ + A2(z)f′′ + A1(z)f ′ + A0(z)f = 0                                                                                                                  (1) 

where f is unknown, Aj(z), 0 ≤ j ≤ n − 1 entire functions (EFs).  

 

In order to state and prove our main results in this paper, we need some definitions and concepts. These concepts 

can be given as follows: 

 

The concepts of the order of growth and lower order of growth of a meromorphic function f are given as follows [5, 6]: 

𝜌(𝑓) = lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔+𝑇(𝑟, 𝑓)

𝑙𝑜𝑔 𝑟
 , (order of growth) 

𝜇(𝑓) = lim
𝑟→∞

𝑖𝑛𝑓
𝑙𝑜𝑔+𝑇(𝑟, 𝑓)

𝑙𝑜𝑔 𝑟
 , (lower order of growth) 

If f is EF, then T(r, f) = log+M(r, f), where M(r, f) = max
|z|=r

|f(z)| (maximum modulus). 

 

Let E ⊆ [0, ∞), then the concept of linear measure to E is given [14]:  

m(E)  = ∫ dt

E

 

while the logarithmic measure of a set E ⊆ [1, ∞) is given by [3, 4]: 
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ml(E) = ∫
dt

t
E

 

whiles (lower) resp. (upper) logarithmic densities of E ⊆ [1, ∞) are given as [17]: 

logdensE = lim
r→∞

inf 
ml(E⋂[1, r])

 logr
 

and 

logdens̅̅ ̅̅ ̅̅ ̅̅ ̅̅ E = lim
r→∞

sup 
ml(E⋂[1, r])

 logr
 

if  

logdensE = logdens̅̅ ̅̅ ̅̅ ̅̅ ̅̅ E 

then E is said to has logarithmic density 

 

In order to prove our results, we need the following important concepts [9]: 

 

if ρ(r) > 0, is differentiable with  lim
r→∞

ρ(r)  = ρ (0 < ρ < ∞), lim
r→∞

ρ′(r) rlogr = 0, then ρ(r) is said a proximate order. Let 

g(z) be an EF of order ρ, then the indicator h(θ) of g with respect to ρ(r) is defined by 

h(θ) = lim
r→∞

sup
log|g(reiθ) |

rρ(r)
 

where lim
r→∞

(ρ(r) → ρ), then g(z) is said to be (in the sense of Puger and Levin) completely regular growth (CRG) if the 

disks D(ak, sk) exists that satisfy 

∑ sk

|ak|≤r

= o(r) 

such that 

log|g(reiθ) | = h(θ)rρ(r) + o(rρ(r)), reiθ ∉∪k D(ak, sk)                                                                                                                   (2) 

as r → ∞, uniformly in θ. The ⋃ D(ak, sk)k  satisfying (2) is called a C0 set, see [10] for more details of CRG. A results 

related to the coefficient of CDE with dynamical property can be found in [12].  

 

Definition 1 [2] Let g(z) be an EF satisfying the following: 

 

1. Let arg z =  θj, j =  1, 2, … , m be the accumulated lines  zeros of g(z) and θ1 < θ2 < ⋯ < θm < θm+1 = θ1 + 2π; 

2. h(θ) is an indicator of g(z) in S(θj, θj+1) = {z = reiθ: r > 0, θj < θ < θj+1}, j = 1, 2, … , m and ρ(r)(→ ρ) is a proximate 

order to g(z); 

3. ϵ(r) =
1

 logNr
 where N ∈ ℕ and logNdenotes the logarithm of N − th iterate; 

4. log |g(reiθ)|  =  h(θ)rρ + O (rρ(r)ϵ(r)) for |θ − θj| >  ϵ(r), j =  1; ,2; … , m. 

then g(z) is said to has the property of special completely regular growth (SCRG). 

 

Definition 2 [21] Let g(z) be EF with 0 <  μ(g)  <  1. A ray 0 ≤ arg z > 2π of origin beginning is called a Borel direction 

of order greater than or equal to μ(g) of g, if for each ϵ > 0 and for any a ∈ ℂ ∪ {∞}, possibly with two exceptions, the 

following holds 

lim
r→∞

sup
log n(S(θ − ϵ, θ + ϵ, r), α, g))

logr
≥ μ(g ) 

where n(S(θ − ϵ, θ + ϵ, r), α, g)) denotes the number of zeros, counting the multiplicities, of g −  a in S(θ − ϵ, θ + ϵ, r) =

{z: θ − ϵ < argz < θ + ϵ, |z| < r}. 

The Borel direction concept with order ρ(g ) is obtain when (≥ μ(g )) is replaced with =  ρ(g ). 
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In what follows, the concepts of EFs that are extremal for DC will be given. 

 

In 1907, Denjoy [24] appeared a conjecture which is: if g(z) be ED with ρ(g) < ∞ and g(z) has k asymptotic values 

that are distinct and finite, then k ≤ ρ(g). Ahlfors was verified this concept in 1930 [23]. If k = ρ(g) then g(z) is called 

extremal for DC. This type of functions is well investigated, for instance see ([23], [21]). 

 

The authors of [22] studied the solutions growth of CDE that has coefficients with extremal for DC. 

 

In the below, we shall give a brief introduction related to complex dynamics, see [19].  

 

    Let f be a transcendental EF. The Fatou set ℱ(f) ⊆ ℂ of f where f n of f represents a normal family. The Julia set 

ℑ(f) of f is ℱ(f)c in ℂ. ℱ(f) has completely invariant property under f, in other words z ∈  ℱ(f) ⟺ f(z) ∈  ℱ(f). Hence, 

if U is a member of ℱ(f) (Fatou member), ,then there is a Fatou component Un for some n =  0,1,2, …, such that 

f n(U)  ⊆  Un. If Up  =  U0  =  U for some p ≥ 1, then U is called a periodic member with period p, supposing that p 

minimal. If Un is not eventually periodic, then U is a domain of f that wandering. Although the some EFs that have 

simply connected Fatou member only, such as the class of (Eremenko – Lyubich) function [20], a many types of EF 

that have multiply connected Fatou members are exists. The first such function of this type is constructed in [15], who 

proved in [18] that this type of function is with a multiply connected Fatou member property which is a wandering 

domain. The author of [17] proved this property isn’t special case of the example; for if U is any multiply connected 

Fatou member to f, then U is the wandering domain, it’s called (Baker wandering domain), which has properties says: 

1) every Un is multiply connected and bounded; ;2) ∃N ∈ ℕ s. t. Un and 0 belong to a complementary bounded member 

of Un+1, n ≥  N; 3) lim
n→∞

dis(Un, 0) → 0. Thus, if f has a connected multiply Fatou member, then ℑ(f) with bounded 

component only.  

 

Our main purpose in this paper is to answer the following question: what conditions should give on the coefficients 

which guarantee that any nontrivial solution of Eq. (  ) has infinite order ? 

There are many authors answer this question but on 2nd order linear CDE:  

f ′′ + A(z)f ′ + B(z)f = 0                                                                                                                                                                                    (3) 

 

These results can be summarized as follows [28]: 

  

Theorem 1 Let A(z) be CRG entire function and the set E = {θ ∈ [0,2π): h(θ) = 0} has m(E) = 0, B(z) be a 

transcendental EF with a multiply connected Fatou component s. t. ρ(A) ≠ ρ(B). Then any nonzero solution of (3) has 

infinite order. 

 

Theorem 2 Let A(z) be CRG entire function and the set E = {θ ∈ [0,2π): h(θ) = 0} has m(E) = 0, B(z) be a 

transcendental EF with T(r, B)~log M(r, B) as r → ∞ outside a set which has a finite Lebesgue measure s. t. ρ(A), ρ(B) 

aren’t equal. Then any solution f ≠ 0 of (3) has infinite order. 

 

Theorem 3 Let A(z) be EF that is CRG and the set E = {θ ∈ [0,2π): h(θ) = 0} has m(E) = 0, B(z) be a transcendental 

EF that extremal for DC s. t. ρ(A), ρ(B) aren’t equal. Then any solution f ≠ 0 of (5) has infinite order. 

There are some results about the coefficients of Eq. (3), such as [13, 11].  

 

We will give the answer the previous question, we will state the conditions on the coefficients that guarantee that all 

nontrivial solution of (1) is of infinite order. 

2. MATERIEL AND METHODS 
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In this section we will give some results which will be used to prove our main results. 

 

Lemma 1 [7, 8] Let f be transcendental meromorphic function with ρ(f) < ∞, ε > 0 and k > j ≥ 0. Then there is E ⊆

[1, ∞) with ml(E) < ∞, such that the following holds 

|
f (k)(z)

f (j)(z)
| ≤ c|z|(k−j)(ρ(f)−1+ε), |z| = r ∉ E2 ∪ [0, 1]                                                                                                                             (4) 

 

Lemma 2 [25] Let A(z), B(z)(≠ 0) be EFs, s. t. for α, β, θ1, θ2 ∈ ℝ, where α >  0; β >  0 and θ1  <  θ1, 

A(z) ≥ exp {(1 + o(1))α|z|β} 

and  

B(z) ≤ exp {o(1))|z|β} 

as, z → ∞ in S̅(θ1, θ2) = {z: θ1 ≤ argz ≤  θ2}. Let ϵ > 0 small enough, and let S̅(θ1 + ϵ, θ2 − ϵ) = {z: θ1 + ϵ ≤ argz ≤

 θ2 − ϵ}. If f ≠ 0 is a solution of Eq. 3 with ρ(f)  <  ∞, then the following hold: 

 

1. There is b(≠  0) s. t. lim
z →∞

f(z) exists in S̅(θ1 + ϵ, θ2 − ϵ). Further, 

f(z) −  b ≤ exp {−(1 + o(1))α|z|β} 

as, z → ∞ in S̅(θ1 + ϵ, θ2 − ϵ); 

 

2.  |f k(z)| ≤ exp{−(1 + o(1))α|z|β} , k ≥ 1 as z → ∞ in S̅(θ1 + ϵ, θ2 − ϵ). 

 

Lemma 3 [26] Let ϕ(r) is continuous, nondecreasing function on ℝ+. Assume  

lim
r→∞

sup 
log ϕ(r)

logr
> α > 0 

define G = {r ∈ ℝ+: ϕ(r) ≥ rα}. Then logdens̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (G)  >  0. 

 

Lemma 4 [21] Let g(z) is EF that extremal for DC. Then, for 0 ≤ θ < 2π, either arg z =  θ Borel direction with order 

ρ(g) of g(z) or ∃δ, 0 < δ <  
π

4
 , s. t. 

lim
r→∞

 
log log|g(z)|

logr
= ρ(g ) 

for all z ∈ S(θ − δ, θ + δ)\E, E ⊆ S(θ − δ, θ + δ), and the following satisfy 

lim m(S(θ − δ, θ + δ;  r, ∞) ∩ E) = 0 

where, S(θ − δ, θ + δ;  r, ∞) = {z: θ − δ ≤ argz ≤  θ + δ, 0 ≤ |r| < ∞}. 

 

Lemma 5 [16] Let f(z) is a function transcendental meromorphic having finite poles. If ℑ(f) has bounded components 

only, then to each a ∈ ℂ, ∃d, 0 <  d <  1 and 2 sequences {rn}, {Rn} rn > 0, Rn > 0 with rn → ∞ and 
Rn

rn
→ ∞ (n → ∞)  

s. t. 

Mc(r, a, f)d ≤ Lc(r, a, f),   r ∈ G =∪n=1
∞ {r: rn < r < Rn} 

 

Lemma 6 [27] Let g(z) be EF of order ρ(g) ∈  (0, ∞), and let S(φ1, φ2) = {z: φ1 < argz <  φ2} be a sector with φ2 −

φ1  <  
π

ρ(g)
 . If there exists a Borel direction of order ρ(g) of g(z) in S(φ1, φ2), then for at least one of the two rays Lj =

{z: argz = φj, j = 1,2}, say L2, we have 

lim
r→∞

sup
log log|g(reiφ2|

logr
= ρ(g )                                                                                                                                                                      (5) 

 



 

International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 1317-1324 

1321 

 

3. RESULTS AND DISCUSSIONS 

In this section we will generalize the previous results related to Eq. (3) to the (n-thCLDE) in which the conditions 

on the coefficients are modified and the condition of the difference between the order of growth of the coefficients is 

omitted. 

 

Theorem 4  Let Aj(z) be EFs that are CRG and E = {θ ∈ [0,2π): h(θ) = 0} be with m(E) = 0, and let A0(z) be a 

transcendental EF where ℑ(A0) has only bounded components. Then every solution f ≠ 0 of (1) has infinite order. 
 

Proof Assume f ≠ 0 where ρ(f) < ∞. Put E∗ = {θ ∈ [0,2π): h(θ) ≤ 0}. We have 2 cases depending on m(E∗) > 0 or 

m(E∗) = 0. 

 

Case 1. Suppose m(E∗) > 0, then there is a sectors such that the As(z)’s indicator, 1 ≤ s ≤ n − 1 is negative. A ray 

arg z = θ∗ in these sectors can be chosen so that h(θ∗) <  0. By Lemma 1, there is E ⊆  (1, ∞) with m(E) < ∞ such 

that for all |z|  =  r ∉  E⋃ [0, 1], we have 

|
f (k)(z)

f(z)
| ≤ |z|2ρ(f), k = 1, 2, … , n                                                                                                                                                                     (6) 

Using Lemma 5, there is zn = rneiθ∗
with rn ∈ G\E⋃ [0, 1] with lim

n→∞
rn = ∞ such that 

M(rn, A0) < L(rn, A0) ≤ |A0(z)| ≤ |
f (n)(zn)

f(zn)
| + ∑ |

f (j)(zn)

f(zn)
| Aj(zn) + ⋯ + |

f ′(zn)

f(zn)
|

n−1

j=1

≤ (n − 1)(1 + o(1))rn
2ρ(f) 

where (0 < d <  1). Because A0(z) is a nonconstant EF, then we have 
dT(rn, A0) < dlogM(rn, A0) ≤ 2ρ(f)logrn + o(1)                                                                                                                                      (7) 

as lim
n→∞

rn = ∞. Since A0(z) is transcendental, we have lim
rn→∞

T(rn,A0)

logrn
= ∞. Therefore we have a contradiction from (7). 

 

Case 2. Suppose that m(E∗) = 0, then the indicator of As(z), 1 ≤ s ≤ n − 1 satisfies h(θ) > 0, θ ∈ [0,2π)\E∗. By part 

(4) of definition 1, we have 

 

logAs(reiθ) = h(θ)rρ(r) +  o(rρ(r)) 

for z = reiθ with  θ ∈ [0,2π)\E∗ z ∉ C0 set, and lim
r→∞

ρ(r) → ρ(As). Then for any given (0 < δ <
π

4ρ
) and (0 < η <

ρ−ρ(A0)

4
), we have  

|Aj(z)| ≥ exp {(1 + o(1))α|z|ρ(Aj)−η} ; 

 

|A0(z)| ≤ exp{|z|ρ(A0)+η} ≤ exp {|z|ρ(Aj)−2η} ≤ exp {o(1)|z|ρ(Aj)−η} ; 

for 1 ≤ j ≤ n − 1, where z = reiθ and θ as specified above, α(δ) > 0. Then by Lemma 2, there is a constant bj ≠  0 s. 

t. 

|f(z) − bj| ≤ exp{−(1 + o(1))α|z|ρ−η}; 

where z = reiθ and θ as specified above. Then using principle due to Phragmen-Lindelof, f(z) is bounded in ℂ. Thus 

using Liouville's theorem we conclude that f is a constant in ℂ, which is a contradiction. Therefore the proof is 

completed. 

 

Theorem 5  Let Aj(z), 1 ≤ j ≤ n − 1 be EFs that are CRG and E = {θ ∈ [0,2π): h(θ) = 0} is with m(E) = 0, A0(z) is a 

transcendental EF with T(r, A0)~logM(r, A0), as r → ∞ for some G with m(G) < ∞ and z ∉ G. Then any nonzero solution 

of (1) has infinite order. 
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Proof let f ≠ 0 be a solution of (1) with ρ(f) < ∞. We test two cases based on m(E∗)  =  0 or m(E∗)  >  0. 

 

Case  1. Suppose m(E∗)  =  0, then h(θ) of As(z), 1 ≤ s ≤ n − 1 is positive for θ ∈  [0, 2π)\ E∗. The conclusion is similar 

to Case. 2 in the previous theorem. 

 

Case 2. Suppose m(E)  >  0, then there is a sectors in which h(θ) of As(z), 1 ≤ s ≤ n − 1 is negative. Thus, there is 

IAs
 ⊆  [0, 2π) where IAs

 is interval s. t. h(θ), θ ∈ IAs
 is negative. By Lemma 1, there is E1  ⊆ (1, ∞) having m(E1) <

∞ such that z with |z| =  r ∉ E1⋃ [ [0, 1], (12) holds. Set  

IA0
(r) = {θ ∈  [0, 2π): log|A0(reiθ)| ≤ clogM(r, A0), 0 <  c <  1}                                                                                                     (8) 

and let m(IA0
(r)) be its Lebesgue measure. From proximate function definition m(r; A0) it follows  

T(r, A0) = m(r, A0) ≤ (
2π − m (IA0

(r))

2π
) logM(r, A0) + c

m (IA0
(r))

2π
logM(r, A0) 

Therefore, T(r; A0) ~ logM(r; A0) for r ∉ E2 where m(E2) < ∞, this implies m(IA0
(r)) → ∞. Combining (2), (6) with (8), 

yields 

M(r, A0)c ≤ |A0(reiθ)| ≤ |
f (n)(zn)

f(zn)
| + ∑ |

f (j)(zn)

f(zn)
| Aj(zn) + ⋯ + |

f ′(zn)

f(zn)
|

n−1

j=1

≤ (n − 1)(1 + o(1))rn
2ρ(f)

 

for r ∉ E1⋃E2⋃[0,10 r → ∞ and θ ∈ IAs
\IA0

. Since A0(z) is transcendental, we obtain a contradiction. 

 

Theorem 6 Let Aj(z) be EFs that are CRG and E = {θ ∈ [0,2π): h(θ) = 0} is with m(E) = 0, and let A0(z) be EF 

extremal for DC. Then any nonzero solution of (1) is with infinite order. 
 

Proof Assume that f ≠ 0 is a solution of (1) has ρ(f) < ∞. We have 2 cases. 

 

Case 1. Suppose m(E∗)  =  0, then the indicator of As(z) is with h(θ)  >  0 for every θ ∈  [0, 2π)\ E∗. The arguments 

are similar as in Case 1 in the previous theorem. 

 

Case 2. Assume m(E∗)  >  0, then there exist a sectors satisfy As(z)’s indicator, 1 ≤ s ≤ n − 1 is with h(θ)  <  0. 

Hence, there is IAs
⊆  [0, 2π) where IAs

 is an interval s. t. h(θ) <  0, θ ∈ IAs
. We choose a ray arg z = θ∗ belongs to 

IAs
. Using Lemma 1, there is E1  ⊆ (1, ∞) has m(E1) < ∞ s. t. (12) holds for all z with |z| =  r ∉ E1⋃ [ [0, 1]. We have 

the following two subcases: 

 

Subcase. 1. Assume that arg z = θ∗ is a Borel direction with order ρ(A0) of A0(z). Given η >  0 small enough so that 

(θ∗ − η, θ∗ + η)  ⊆  IAs
 and 2η <

π

ρ(As)
 . Choose  (θ∗ − η < φ1 < θ∗) and (θ∗ < φ2 < θ∗ + η), then φ2 − φ1 <

π

ρ(As)
 . By 

Lemma 6, L1 ∶  arg z = φ1 or L2 ∶  arg z = φ2, say L2, satisfies (5). Combining (2) with (6) yields 

|A0(rneiθ)| ≤ |
f (n)(rneiφ2)

f(rneiφ2)
| + ∑ Aj(zn) + |

f(rneiφ2)

f(rneiφ2)
|

n−1

j=1

≤ (n − 1)(1 + o(1))rn
2ρ(f)

, rn  ∉ E1                                                        (9) 

 

By Lemma 3 and (5), there is G ⊆  ℝ has m(G) = ∞ s. t. |A0(reiθ)| > exp{rρ(A0)−ϵ} , r ∈  G, θ ∈  [0, 2π) and ϵ > 0 small 

enough. Combine this and (9), we get 

exp{rρ(A0)−ϵ} < exp{rρ(A0)−ϵ} ≤ (n − 1)(1 + o(1))rn
2ρ(f)

,   r ∈  G\E1 

This is a contradiction. 

 

Subcase. 2. Assume arg z = θ∗is not a Borel direction with ρ(A0) of A0(z). We take δ > 0 enough small s. t. (θ∗ −

δ, θ∗ + δ) ⊆ IAs
. Using Lemma 4, we get 
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lim
|z|→∞

loglog|A0(z)|

logr
= ρ(A0), z ∈ S(θ∗ − δ, θ∗ + δ)\E 

and z holds lim
r→∞

m(S(θ∗ − δ, θ∗ + δ); r, ∞) ∩  E)  =  0. A similar argument used in Subcase 1 we get 

exp{rρ(A0)−ϵ} < |A0(reiθ)| ≤ (n − 1)(1 + o(1))rn
2ρ(f)

, z = reiθ  ∈ S(θ∗ − δ, θ∗ + δ)\E, r ∈  G\E1 

This is a contradiction. Thus, the proof is completed. 

 

CONCLUSIONS 

In this research, we have dealt with finding some necessary conditions that must be placed on the coefficients of 

homogeneous linear CDEs in order to prove that for each nonzero solution to such equations has an infinite order. 

We have used Nevanlina's theory of complex differential equations to study this type of equations and it proved its 

strength and effectiveness in area. 
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