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Abstract: Embedding in an interconnection network maps the interconnection network G to H and analyzes the 
relationship between G and H. Hypercubes and toruses are widely known as interconnection networks, and various 
algorithms have been developed. The HCN graph is a network with a hierarchical structure to improve the network 
cost of hypercube. In this study, we analyze the fault tolerance and embedding properties of HCN graphs. As a result 
of the research, the HCN graph has the same node connectivity and degree, so it has the maximum fault tolerance 
property. In addition, an algorithm that can one-to-one node map the HCN structure to the torus structure was 
proposed. The embedding results showed that it was possible to embed the torus structure in the HCN graph at an 
extension rate of 3 and dilation of 1. The results of the embedding study mean that various algorithms developed in 
Torus can be efficiently used in the HCN structure. 
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1. INTRODUCTION 

Today, large-capacity data processing and fast computing speed are required in the process of solving many 

problems in the fields of weather observation, nuclear energy, aerospace, advanced medicine, big data, and AI. 

Among many methods to improve computing performance, there is supercomputing that applies parallel processing 

techniques. A parallel processing computer connects a large number of processors through an interconnection 

network, enabling fast calculations and processing of large amounts of data. Research on interconnection networks 

has been conducted as a way to improve processing speed in parallel computer structures. An interconnection 

network is a structure in which a large number of processing devices are connected through communication lines. 

Graphs are used as mathematical models to analyze interconnection networks. 

Graph theoretical properties of interconnected networks include degree, symmetry, scalability, bipartite graph, 

interconnected network coloring, and independent sets. Application fields utilizing interconnection networks include 

message transmission routing algorithms, routing paths without node duplication, fault tolerance, fault tolerant routing, 

one-to-many broadcasting, Hamilton cycle, VLSI layout, and fault diagnosis [1]. 

The interconnection networks proposed so far are classified based on the number of nodes: Mesh, Torus, Honeycomb 

Mesh, Hypercube, Folded Hypercube, Star graph, Transposition Graph, HCN(n,n), HFN(n,n) and Hyper-star [1]. 

Embedding of an interconnection network is to analyze whether the algorithm developed in an interconnection network 

G can be utilized in another interconnection network H. Embedding analysis is a method to efficiently utilize algorithms 

developed in interconnection networks. Parallel processing techniques to improve computer performance model the 

interconnection network structure as a graph and analyze it from a graph theory perspective. The method of modeling 

an interconnection network as a graph represents the processors of the interconnection network as nodes in the 

graph, and the communication lines connecting the processors as edges of the graph. The analysis method is to map 

the nodes and edges of graph G to the nodes and edges of another graph H one-to-one. The evaluation criteria for 

embedding include dilation, density rate, and expansion rate. Dilation refers to the routing distance from node u' to v' 

in graph H when two adjacent nodes u and v in graph G are mapped to nodes u' and v' in H [2-4]. 

The mesh structure is a flat graph that is used in the fields of VLSI circuit design, mobile communication systems, 

graphics, animation, and 3D modeling. Parallel computer structures utilizing mesh structures have been 

commercialized by MPP (Goodyear Aerospace), MP-I (MASPAR), Victor (IBM), Paragon (Intel), and T3D (Cray) [5]. 
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There is a torus structure as an interconnection network in which the diameter of the mesh structure has been 

improved to approximately 1/2. A torus is a network constructed by connecting two nodes at both ends of a mesh row 

(column) with wraparound edges. The torus structure has advantages such as node symmetry, edge symmetry, short 

diameter, Hamilton cycle, and maximum fault tolerance [6][7][16]. 

Hypercube has node symmetry, edge symmetry, simple routing algorithm, and maximum fault tolerance. Hypercube 

has the disadvantage of increasing network costs because the degree increase rate is O(n) as the number of nodes 

increases [8][9]. To improve the network cost of hypercube, folded hypercube, HCN(n,n), HFN(n,n), etc. have been 

proposed [10][11][12]. 

In this paper, we propose and analyze a torus structure with the same number of nodes, 22n, and a node mapping 

algorithm for HCN(n,n). The structure of this paper is as follows. In Chapter 2, we learn about the torus and HCN(n,n) 

structures, and in Chapter 3, we analyze the fault tolerance of HCN(n,n) and the embedding algorithm between the 

22n−k × 2𝑘 torus and the HCN(n,n) graph. Analyze. Finally, conclusions are drawn in Chapter 4.         

2. RELATED RESEARCH 

A common method of expressing node addresses in a torus structure is to express them according to the row and 

column where the node is located.  

In this paper, the node address of a  22n−k ×  2𝑘 torus will be expressed using gray code. In the torus 22n−k ×  2𝑘 

structure, 22n−k represents the row position and 2k represents the column. The address of each node is expressed 

as a continuous 2n bit string by concatenating the row address followed by the column address. 

Gray code is a coding method in which only one bit changes in a continuous binary bit string [13]. Gray code has self-

conservativeness and periodicity, and (n+1)-bit gray code 𝑔𝑛 ···𝑔1𝑔0  is a random (n+1)-bit binary number. It can be 

derived from 𝑏𝑛 ···𝑏1𝑏0 as follows. 

𝑔𝑖=𝑏𝑖⊕𝑏𝑖+1, 0≤i≤n-1, 𝑔𝑛= 𝑏𝑛. 

Also, let 𝐵𝑖 be a binary bit string of integer i, and 𝐵′𝑖  be a bit string obtained by shifting 𝐵𝑖 one bit to the right. 𝐵′𝑖  is a 

binary bit string in which the 𝐵𝑖 bit string is shifted by one bit and 0 is inserted on the left. The i-th gray code G in the 

bit string of 𝐵′𝑖   can be defined as follows (0≤i≤ 2𝑛-1). 

𝐺𝑖=𝐵𝑖⊕𝐵′𝑖 

The symbol ⊕ in the formula represents exclusive-OR operation [9]. For example, 2-bit gray code is expressed as 

00-01-11-10. 3-bit gray code can be expressed as 000-001-011-010-110-111-101-100 using 2-bit gray code. 

A. Constant degree interconnection network 

The mesh class is used as an interconnection network for multiple computers. Node addresses constituting an n-

dimensional mesh can be expressed as an n-dimensional vector, and an edge exists when the addresses of two 

nodes differ by 1 in one dimension. Low-dimensional meshes have the advantage of being easy to design and highly 

scalable, but have the disadvantage of being large in diameter. High-dimensional meshes have smaller diameters 

and have efficient characteristics for parallel algorithms, but have the disadvantage of being expensive to implement. 

A torus structure was proposed to improve the shortcomings of the mesh structure. A torus has a regular network 

structure by adding wraparound edges to connect nodes at both ends of rows (columns) in a two-dimensional mesh 

structure. 

When the torus structure is expressed  k × n, there are k × n nodes, 2kn edges, degree 4, and diameter ⌈
𝑘

𝑛
⌉ + ⌈

𝑘

𝑛
⌉. In 

this paper, the node address of the 22𝑛−𝑘 x 2𝑘 torus is expressed as 𝐻 = (ℎ1ℎ2 … ℎ𝑛ℎ𝑛+1 … . ℎ2𝑛). Node address 

expressed as 2n bit strings The set of nodes with the same bit string from the 1st to the nth node will be called a 

cluster (ℎ1ℎ2 … ℎ𝑛). Therefore, there are 2𝑛 clusters in the 22𝑛−𝑘 x 2𝑘  torus. 

For example, a 4×4 torus has cluster(00), cluster(01), cluster(10), and cluster(11). The cluster and node addresses 

of the 4×4 torus structure are expressed in gray code as shown in Figure  same. Four nodes in one row (column) are 

the nodes that make up a cluster. In this paper, the 22𝑛−𝑘 x 2𝑘 torus is simply referred to as a torus. In Figure 1, nodes 

constituting the cluster 00 are {0000, 0001, 0011, 0010}. 
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Figure 1 

Various methods have been proposed to improve the diameter of the torus structure. For example, there are ways to 

reduce the number of degree of the interconnection network, change the node edge definition, use a structure with a 

short diameter, and layer the interconnection network structure. Toroidal mesh[19], Diagonal mesh[19], Honeycomb 

mesh[18], Petersen-torus[21], Hyper-torus[20], Semi-diagonal torus[17] are networks that improve the diameter of the 

constant degree graph  have been proposed[25].  

B. Hierarchical interconnection network 

A layered structure of basic modules was proposed as a way to improve the diameter of the hypercube. Hierarchical 

structures that expand the number of nodes using basic modules include HCN(n,n) [23], HFN(n,n) [24], and 

Hierarchical Petersen Network [22]. 

HCN(n,n) is a network expanded to have a hierarchical structure using the n-dimensional hypercube 𝑄𝑛 as a basic 

module. HCN(n,n) has 22𝑛 nodes, (𝑛 + 1)22𝑛−1 edges, and degree n+1 [14-15]. The node address of HCN(n,n) is 

expressed as (I,J). In the node address (I,J), I represents the basic module of the hypercube, and J identifies the 

nodes inside the module. HCN(n,n) is divided into an internal edge and an external edge. 

Internal edges connect nodes in a module, and external edges connect nodes in different modules. The external edge 

is divided into diameter edge and non-diameter edge according to the node address (I,J). The diameter edge connects 

node (I,I) and node (J,J), and I and J are complementary to each other. An external edge that is not a diameter edge 

is called a non-diameter edge, and connects node (I,J) with node (J,I). 

 

Figure 2. HCN (3, 3) 

3. FAULT TOLERANCE AND NODE MAPPING ALGORITHM  

A. HCN (n,n) Fault Tolerance  

Fault tolerance is a measure that evaluates the severity of node failure in an interconnection network. Node (edge) 

connectivity is the minimum number of nodes (edges) that must be removed to divide the interconnection network 

into two or more graphs without overlapping nodes (edges). When k-1 or less nodes are removed from the 

interconnection network, the network is in a connected graph state, and when the appropriate k nodes are removed 
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and the interconnection network is separated, the degree of connectivity of the interconnection network is called k. 

An interconnection network with the same node connectivity and degree is said to have maximum fault tolerance [1]. 

Let the node connectivity, edge connectivity, and degree of the interconnection network G be (𝐺)𝑘
 , λ(𝐺), and δ(G), 

respectively. It is known that (𝐺)𝑘
 ≤ λ(𝐺) ≤ δ(𝐺)between the connectivity degree and the degree[16]. To analyze the 

maximum fault tolerance properties of the HCN(n,n) graph, we prove that the node connectivity and degree are the 

same. Additionally, using the degree and node connectivity results, it is shown that HCN(n,n) has the maximum fault 

tolerance. 

Theorem 1 The node connectivity of HCN(n,n) is n+1 (𝐻𝐶𝑁(𝑛, 𝑛))
𝑘

 
= n + 1, (n ≥ 2). 

Proof   The degree of  HCN(n,n) is n+1, and the basic module of the hierarchy is the n-dimensional hypercube 𝑄𝑛. It 

shows that HCN(n,n) is not divided even if n random nodes are removed from HCN(n,n). In (I,J), which represents a 

node of HCN(n,n), I is the address of the basic module itself, and J is the address of the node inside the basic module. 

The basic module of HCN(n,n) consists of 2𝑛 hypercubes 𝑄𝑛, and the node (I,J) inside the basic module is connected 

to the node (J,I) of another module by a non-diameter link. (1 ≤  𝐼, 𝐽 ≤ 2𝑛, 𝐼 ≠ 𝐽). Additionally, the node (I, J) inside 

the basic module is connected to the node (𝐼,̅ 𝐽)̅ of another module by a diameter link (1 ≤ 𝐼 = 𝐽 ≤ 2𝑛). 

In HCN(n,n),  let |X| be the failed nodes and be a subset of V(HCN(n,n)) where  It is shown 

that (𝐻𝐶𝑁(𝑛, 𝑛))  ≥  𝑛 + 1𝑘 by showing that the graph from which the faulty node set X is removed from HCN(n,n) is a 

connected graph. 

Let the nodes of HCN(n,n) be S, and the graph obtained by removing the set of failed nodes X from HCN(n,n) is 

denoted as HCN(n,n)-X. It is divided into two types according to the location of the node X to be removed from 

HCN(n,n), showing that HCN(n,n)-X is always a connected graph. 

Case 1. When the faulty node set X is located in one basic module of HCN(n,n)  

When the address of node S of HCN(n,n) is (I,J), from the degree n+1 of HCN(n,n) to the node in hypercube 𝑄𝑛 with 

the address of basic module I including node S The number of connected degree is n. If n nodes adjacent to node S 

are the same as the node X to be removed, the basic module I including node S is divided into two components. That 

is, it is divided into a hypercube 𝑄𝑛-X graph and node S. However, all nodes of basic module I, including node S, are 

connected to nodes (J,I) in other basic modules J by non-diameter links if  𝐼 ≠ 𝐽. Also, when I = J, there is one edge 

connecting the nodes (𝐼,̅ 𝐽)̅ in the basic module 𝐼 ̅by a diameter link.  

And the node (J,I) and the node (𝐼,̅ 𝐽)̅ are connected to the inner edge of another basic module by a non-diameter link 

or diameter link. Therefore, in HCN(n,n), if n faulty node sets X are located within one basic module, HCN(n,n)-X is 

always connected. If only α out of n nodes adjacent to a certain node S of basic module I belong to the failed node 

set X, and n-α failed nodes belonging to the failed node set It is easy to see from the above case that HCN(n,n) is a 

connected graph. 

Case 2. When X is located in two or more basic modules 

In HCN(n,n), assuming that failed nodes are distributed across two or more basic modules I and J, the number of 

nodes that fail in one basic module I or J is at most n-1. In HCN(n,n), the number of degree for each node in the basic 

module is n, so even if n-1 adjacent nodes are removed from node S of basic module I or J, node S remains 1 of 

basic module I including node S. It can be seen from case 1 that it is connected to the dog node. If the remaining 

node to be removed is a node of basic module J that does not include S, it can be seen that HCN(n,n)-X is connected. 

Therefore, it can be seen that HCN(n,n) is always connected even if the faulty node set X at any position is removed 

from HCN(n,n).  

The node connectivity of HCN(n, n) is (𝐻𝐶𝑁(𝑛, 𝑛))
𝑘

 
≥ 𝑛 + 1, which is the same as the number of degree, and HCN(n, 

n) is a regular network with a number of degree n+1, (𝐻𝐶𝑁(𝑛, 𝑛))
𝑘

 
≤ 𝑛 + 1. Therefore, (𝐻𝐶𝑁(𝑛, 𝑛))

𝑘

 
= 𝑛 + 1, and 

HCN(n, n) has the maximum fault tolerance. 
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B. HCN (n,n) Node mapping Algorithm  

22𝑛−𝑘 x 2𝑘 torus and HCN(n,n) have the same 22𝑛 nodes. The nodes of the torus are mapped one-to-one to those 

with the same node address in HCN(n,n). Because the torus cluster has the same structure as the basic module of 

HCN, the torus cluster node is mapped to the basic module node of HCN(n,n). And the edge connecting the cluster 

of the torus is mapped to the external edge connecting the basic module of HCN(n,n). 

Theorem 2   22𝑛−𝑘 x 2𝑘 torus structure is HCN(n,n), which allows one-to-one node mapping with a dilation of 3 and 

an expansion rate of 1. 

Proof   Let us classify two adjacent nodes in a torus structure as 𝐻 = (ℎ1ℎ2 … ℎ𝑛ℎ𝑛+1 … ℎ2𝑛) and 𝐻′ =

(ℎ′1ℎ′2 … ℎ′𝑛ℎ′𝑛+1 … ℎ′2𝑛).   A random node in HCN is 𝑆 = (𝑠1𝑠2 … 𝑠𝑛𝑠𝑛+1 … . 𝑠2𝑛), 𝑆′ = (𝑠′1𝑠′2 … 𝑠′𝑛𝑠′𝑛+1 … 𝑠′2𝑛).   Map 

node H of the torus into node S of the HCN, and map node H' of the torus into node S' of the HCN. The dilation is 

analyzed by analyzing the path length from node S of HCN to node S'. The cases are divided according to the bit 

string conditions of the node H of the torus and the adjacent H'. 

Case 1. ℎ1ℎ2 … ℎ𝑛 = ℎ′1ℎ′2 … ℎ′𝑛 

The bit string of node S of HCN to which node H of torus is mapped is (𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛 , 𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛), and the bit string 

of node S' to which node H' is mapped is (𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛 , 𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛).  In the bit strings of nodes S and S', only the 

j-th bit is complementary to each other, so it can be seen that nodes S and S' are nodes within the same module of 

HCN. By the definition of HCN, nodes S and S' are nodes adjacent to each other. Therefore, it can be seen that 

embedding is possible at a dilation of 1 when mapping the nodes H and H' of the torus to the nodes S and S' of the 

HCN, respectively. 

 

Figure 3. Case1 

Case 2.  ℎ1ℎ2 … ℎ𝑛 ≠ ℎ′1ℎ′2 … ℎ′𝑛 

  The bit string of node S of HCN to which node H' of the torus is mapped is (𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛 , 𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛), and the 

node S' to which node H' is mapped is (𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛 , 𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛).  Since only the i-th bit in the bit strings of nodes 

S and S' is complement, it can be seen that S and S' are nodes in different modules of HCN. The nodes of the mapped 

HCN (𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛 , 𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛)are converted to (𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛 , 𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛)by non-diameter edges. Connect to 

Connect the connected node (𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛 , 𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛) to the node (𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛 , 𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛) inside the 

module. 

Connect the connected (𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛, 𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛) to (𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛 , 𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛) by a non-diameter edge. 

Therefore, it can be seen that embedding is possible at a dilation of 3 when mapping the nodes H and H' of the torus 

to the nodes S and S' of the HCN, respectively. 

 

Figure 4. Case 2 
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Case 3. ℎ1ℎ2 … ℎ𝑛 ≠ ℎ′1ℎ′2 … ℎ′𝑛  and   ℎ1ℎ2 … ℎ𝑛 = ℎ𝑛+1 … ℎ2𝑛 

The bit string of node S of HCN to which node H of the torus is mapped is (𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛 , 𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛), and the bit 

string of node S' to which node H' is mapped is (𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛 , 𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛). Among the mapped bit strings of node 

S, since 𝑠1𝑠2 … 𝑠𝑖 … 𝑠𝑛 = 𝑠𝑛+1 … 𝑠𝑗 … 𝑠2𝑛, there is no need to use the first connected non-diameter edge in case 2. 

Therefore, in this case, dilation is 2. 

 

Figure 5. Case 3 

As proven in the three cases above, the dilation required to embed a torus in HCN is 3 or less. 

Theorem 3  HCN(n,n) can be mapped to a 22𝑛−𝑘 x 2𝑘 Torus at a dilation of 𝑂(2𝑛). 

Proof The internal edge, non-diameter edge, and diameter edge are the edges that make up HCN. After HCN's nodes 

U= (I,J) and V= (J,I) are thought to be 1-to-1 respectively as Torus' nodes U'= (I,J) and V'= (J,I), the dilation is 

calculated by analyzing the path length. 

Case 1. Internal edge 

The n-dimensional hypercube, the basic module of HCN, is represented by an inner edge. The inner edge of HCN 

can be mapped 1-to-1 into a cluster of 22𝑛−𝑘 x 2𝑘 Torus, so the dilation is 1. For example, the edge (0000,0001) of 

HCN is mapped to (0000,0001) in the torus structure. 

 

Figure 6. Internal Edge 

Case 2. Non-diameter edge 

The node address V= (J,I) is connected to the HCN node U= (I,J) by a non-diameter edge. The nodes U and V of 

HCN are mapped 1-to-1 into U'= (I,J) and V'= (J,I), which have the same node address of Torus. There are two 

possible movement paths from Torus node U'= (I,J) to V'= (J,I) as follows. Each cluster in Torus has 2n nodes in each 

row and column, organized in a ring shape. 

Path 1: U'= (I,J) → (I,I) → V'= (J,I) 

Path 2: U'= (I,J) → (J,J) → V'= (J,J) 

The path from U'=(I,J) → (I,I) of path 1 requires a maximum length of  
2𝑛

2
 within one cluster consisting of a row-shaped 

ring. The path length from node (I,I) → V'=(J,I) requires a maximum length of  
2𝑛

2
 within one cluster consisting of a 
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column-shaped ring. Therefore, the dilation of path 1 is 2n. If a similar method is applied to path 2, the dilation is 2n.  

For example, the path of HCN's edge (0011, 1100) mapped from the torus is as follows. 

Path: 0011 −> 0111−>1111−>1101−>1100 

 

Figure 7. Non-diameter edge 

Case 3. Diameter edge 

In HCN, nodes U= (I,I) and V= (J,J) are connected by diameter edges. At this time, I=𝐽.̅ The nodes U and V of HCN 

are mapped 1-to-1 to U'= (I,I) and V'= (J,J), which have the same node address of Torus. The same method as case 

2 is applied to the path length from node U' to V'. Therefore, the dilation is 2𝑛 .For example, the path of HCN's edge 

(0000,1111) mapped from the torus is as follows. 

Path: 0000−>0001−>0011−>0111−>1111 

 

Figure 8 

Therefore, HCN can map nodes one-to-one with a 22𝑛−𝑘 x 2𝑘 Torus with dilation of 𝑂(2𝑛). 

4. CONCLUSION 

The demand for high-performance computing to solve many problems in the field of science and technology continues 

to increase. Embedding of interconnection networks is a research field aimed at efficiently utilizing algorithms 

developed in computer architectures for parallel processing. Embedding of an interconnection network is mapping a 

network G to a network H to find out how a network G is included in or related to another network H. 

In this paper, through analysis of the fault tolerance of the HCN(n,n) graph, it was shown that the HCN(n,n) graph has 

the maximum fault tolerance. In addition, the embedding properties were analyzed to utilize the algorithm developed 
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in the torus structure, which is widely used as an interconnection network, in the HCN(n,n) graph. It was shown that 

the torus structure can be embedded in HCN(n,n) with dilation of  3, and the HCN(n,n) structure can be mapped to 

the torus graph with an extension rate of 𝑂(2𝑛). The research results of this paper mean that various algorithms 

developed in Torus can be efficiently used in HCN(n,n). 

Acknowledge 

This work was supported by Sunchon National University Research Fund in 2023.(Grant number: 2023-0321) 

5. REFERENCES 

[1] T. Feng, "A Survey of Interconnection Networks," IEEE computer, pp. 12-27, December 1981. 

[2] S. B. Akers and B. Krishnamurthy, “A Group-Theoretic Model for Symmertric Interconnection Network," 

IEEE Trans. Comput., Vol. 38, No. 4, pp. 555-565, 1989. 

[3] Y. Wu, "Embedding of Tree Networks into Hypercubes," J. Parallel and Distributed Computing, Vol. 2, pp. 

238-249, 1985. 

[4] Yang, Y.Y. Tang and J. Cao, "Embedding Torus in Hexagonal Honeycomb Torus," IET Computers & Digital 

Techniques, Vol. 2, pp 86-93, Mar 2008.  

[5] J. Bruck, R Cypher and C.-R. Ho, "Wildcard Dimensions, Coding Theory and Fault-Tolerant Meshes and 

Hypercubes," IEEE Trans. on Computers, Vol. 44, No. 1, pp. 150-155, 1995. 

[6] J. G. Peters and M. Syska, "Circuit-Switched Broadcasting in Torus Networks," IEEE Trans. Parallel 

Distributed syst., Vol. 7, No. 3, pp. 246-255, March 1996. 

[7] J. Jwo, S. Lakshmivarahan, and S. Dhall, "Embedding of Cycles and Grids in Star Graphs," Proc. of IEEE, 

Vol. 5, pp. 540-547, 1990. 

[8] Y. Saad and M. H. Schutltz, "Topological Properties of Hypercubes," IEEE Trans. Comput., Vol. 37, pp. 

867-872, 1988. 

[9] S. Vaidya, P. S. N. Rao and S. R. Shankar, "A Class of Hypercube-like Networks," Proc. of the 5th IEEE 

Symposium on Parallel and Distributed Processing, pp. 800-803, Dec. 1993. 

[10] K. Ghose and K. R. Desai, "Hierarchical Cubic Networks," IEEE Trans. Parallel Distributed syst., Vol. 6, No. 

4, pp. 427-436, 1995. 

[11] S-K. Yun and K-H. Park, "Comments on Hierarchical Cubic Networks," IEEE Trans. Parallel and Distributed 

syst., Vol. 9, No. 4, pp. 410-414, 1998. 

[12] D-R. Duh, G-H. Chen and J-F. Fang, "Algorithms and Properties of a New Two-Level Network with Folded        

Hypercubes as Basic Modules," IEEE Trans. Parallel and Distributed Systems, Vol. 6, No. 7, pp. 714-723, 

July 1995. 

[13] H. Mehta, R.M. Owens and M.J. Irwin, “Some issues in Gray code addressing,” Proceedings of the Sixth 

Great Lakes Symposium on VLSI, March 1996. 

[14] S.-K. Yun and K.-H. Park, "Comments on Hierarchical Cubic Networks," IEEE Trans. Parallel Distributed 

syst., Vol. 9, No. 4, pp. 410-414, 1998. 

[15] S-L. Zhao, R-X. Hao and J. Wu, “The generalized 4-connectivity of hierarchical cubic networks,” Discrete 

Applied Mathematics, Vol. 289, No. 31, pp. 194-206, 2021. 

[16] T. Hasunuma and C. Morisaka, “Completely independent spanning trees in torus networks,” Networks, Vol. 

60, No. 1, pp. 59-69, 2012. 

[17] Y-G. Wang, H-M Du and X-B. Shen, “Topological properties and routing algorithm for semi-diagonal torus 

networks,” The Journal of China Universities of Posts and Telecommunications, Vol. 18, No. 5, pp. 64-70, 

2011. 

[18] I. Stojmenovic, “Honeycomb Network: Topological Properties   and Communication Algorithms," IEEE 

Trans. Parallel and Distributed Systems, Vol. 8, No. 10, pp. 1036-1042, 1997. 

[19] K-W. Tang and S-A. Padubidri, “Diagonal and Toroidal Mesh Networks," IEEE Trans. Comput., Vol. 43, No. 

7, pp. 815-826, 1994. 

[20] J-S. Kim, S-W. Kim, K. Qiu, and H-O. Lee, “Some Properties and Algorithms for the Hyper-torus Network," 

Journal of Supercomputing, Vol. 69, pp. 121-138, 2014. 

[21] J-S. Kim, H-O. Lee, M-H. Kim, and S-W. Kim, “The New Petersen-torus Networks," Journal of 

Supercomputing, Vol. 71, pp. 894-908, 2015. 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 2, pp 2132-2140 

2140 

[22] J-H. Seo, J-S. Kim, H-J. Jang, and H-O. Lee, “The Hierarchical Petersen Network: A New Interconnection 

Network with Fixed Degree," Journal of Supercomputing, Vol. 74, pp. 1636-1654, 2018. 

[23] K. Ghose and K-R. Desai, “Hierarchical Cubic Networks," IEEE Trans. Parallel Distributed systs., Vol. 6, 

No. 4, pp. 427-436, 1995. 

[24] D-R. Duh, G-H. Chen and J-F. Fang, “Algorithms and Properties of a New Two-Level Network with Folded 

Hypercubes as Basic Modules," IEEE Trans. Parallel Distributed systs., Vol. 6, No.7, pp. 714-723, 1995. 

[25] H-M. Lee and D-H. Seo, “FedLC: Optimizing Federated Learning in Non-IID Data via Label-wise Clustering," 

IEEE Access, Vol. 11, pp. 42082-42095, 2023. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOI: https://doi.org/10.15379/ijmst.v10i2.2781 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, 
provided the work is properly cited. 

https://doi.org/10.15379/ijmst.v10i2.2781

