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Abstracts: Shear strength parameters, including cohesion and friction angle, are among the most crucial factors in soil 
mechanics, playing a pivotal role in the design and construction of engineering projects. This paper aims to estimate 
these essential soil shear strength parameters using an ensemble learning model. To achieve this, the current study 
employs the Random Forest (RF) model incorporating various physical parameters of soil, such as density ( ), 
saturation degree (Sr), liquid limit (LL), silt content (SC), clay content (CC) to predict cohesion (c), and friction angle ( ). 
In order to assess the predictive performance of the used model, this research used various metrics, including the mean 
absolute error (MAE), root mean square error (RMSE), and correlation coefficient (R2), to evaluate the model’s accuracy. 
The results reveal that RF performs superior predictive capabilities. Furthermore, the proposed model prediction ability 
was compared to the previous empirical equations. The comparison results indicated that the prediction capability of RF 
outperforms the previously developed equations.     
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1. INTRODUCTION  

The Shear strength (SS) of soil refers to the inherent capacity of soil to resist shear forces without undergoing 

failure. It is a critical parameter used to assess soil mechanical behavior, which, in turn, informs the design and 

construction of geotechnical structures (Chitra & Gupta, 2014). In accordance with the Mohr-Coulomb Failure 

Criterion, shear strength is determined by two key parameters: cohesion (c), which represents the inherent bonding 

strength between soil particles, and the internal friction angle (φ), signifying the maximum angle between the 

horizontal plane and an inclined plane where soil particles maintain their equilibrium. The SS parameters can be 

received through methods conducted either in the field or in the laboratory. In the laboratory, two commonly 

employed tests are the Direct Shear Test, and Triaxial Compression Test. The in-situ tests include Standard 

Penetration Test (SPT), Cone Penetration Test (CPT), Pressuremeter Test, Vane Shear Test. However, the 

process of measuring the SS parameters, whether in the field or laboratory, is inherently costly, time-consuming, 

and labor-intensive (Khanlari et al., 2012; Mohammadi et al., 2022). Furthermore, obtaining precise undisturbed soil 

samples from the field poses significant challenges, owing to issues such as the handling of samples, 

transportation, release of overburden pressure, and maintaining ideal laboratory conditions. This necessitates 

vigilant supervision and care throughout the entire process (Yoseph, 2022). Hence, certain researchers have put 

forth various models for the estimation of the SS parameters based on multiple physical properties, including soil 

type, grain size distribution, density, water content, Atterberg limits, void ratio, saturation, etc…Many empirical 

equations have been developed for estimating the SS parameters using multiple linear and non-linear regression 

methods (Adunoye, 2014a; Adunoye, 2014b; Ersoy et al., 2013; Roy et al., 2019). However, determining the 

appropriate adjustment coefficients for these formulas can be a challenging task (Salari et al., 2015; Zhu et al., 

2022). This challenge significantly diminishes their predictive accuracy (Stefanow & Dudziński, 2021; Zhu et al., 

2022). With the advent and widespread application of machine learning (ML) in addressing engineering challenges, 

it has become a valuable tool for handling big data and complex conditions. Numerous studies have emerged 

utilizing ML techniques to predict shear strength of soil, employing a range of algorithms, most notably Artificial 

Neural Networks (ANN) (Zhu et al., 2022; Chao et al., 2021; Pham et al., 2018; Iyeke et al., 2016; Khanlari et al., 

2012; Mohammadi et al., 2022; Zakharov et al., 2022). Besides the ANN model, Support Vector Machine (SVM) is 

also a popularly used technique for estimating the shear strength of soil (Zhu et al., 2022; Chao et al., 2021; Pham 

et al., 2018). Random Forest (RF), a bagging ensemble learning model, stands out as a robust choice and finds 
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extensive utility in addressing geotechnical engineering issues (Nguyen & Kim, 2021a; Cheng et al., 2021; Nguyen 

et al., 2022). Nonetheless, Random Forest has not seen widespread utilization in the prediction of shear strength of 

soil. Furthermore, the development of a digital data system of engineering geological in the context of Vietnam has 

not garnered significant attention. From the above analysis, this research focuses on the development of a 

framework of Random Forest aimed at predicting shear strength parameters (cohesion, and internal friction angle) 

based on soil physical properties. The primary objective is to provide a simple and accurate means of estimating 

these parameters for a variety of soil types in Dong Nai province, Vietnam. The performance of the employed model 

was assessed using a range of metrics, encompassing the mean absolute error (MAE), root mean square error 

(RMSE), and the correlation coefficient (R²). Furthermore, the impact of various physical properties on the predictive 

capabilities of the used model is assessed using Decision Trees Feature Importance (DTFI). 

2. STUDY AREA AND DATA COLLECTION 

Dong Nai is located in the Southeast region of Vietnam, next to Ho Chi Minh City. The database is established 

upon the compilation of borehole data gathered for geotechnical investigations conducted in Dong Nai province. 

Within the survey area, a representative soil sample is obtained from each layer in the borehole. These prototypes 

serve as the basis for conducting experiments to determine the physical, and mechanical properties of soil. The soil 

samples undergo testing utilizing tools and methods in accordance with ASTM standards. For each soil sample, 

each property is tested twice in parallel, ensuring that the results do not deviate beyond the permissible margin of 

error.  

A total of 332 samples collected from 40 boreholes in Dong Nai province were used to determine the properties 

of soil in the laboratory. The observed data including cohesion, and friction angle of soil were obtained from the 

direct shear test following ASTM. The physical properties, including water content (w), density ( ), void ratio (e), 

saturation degree (Sr), plastic limit (PL), liquid limit (LL), silt content (SC), and clay content (CC) have been 

considered as features data for training the RF model.   

Table 1 presents the initial statistical analysis of the dataset, detailing the units for each variable. This table 

provides comprehensive statistical information, such as the mean, standard deviation, and quantiles for all the 

variables. 

Table 1. Statistical descriptions of the input features 

Statistical descriptions (g/cm3) Sr LL SC CC degree) c (kPa) 

Mean 2.717 0.877 0.421 0.225 0.292 14.986 24.982 

Standard Deviation 0.062 0.083 0.129 0.115 0.136 4.863 8.660 

Sample Variance 0.004 0.007 0.017 0.013 0.019 23.653 74.988 

Minimum 2.590 0.195 0.045 0.030 0.027 1.833 2.157 

Maximum 3.020 1.000 0.867 0.552 1.870 26.217 41.678 

Sum 902.192 291.233 139.757 74.773 96.858 4975.480 8294.007 

: density, Sr: degree of saturation, LL: liquid limit, SC: silt content, CC: clay content, : friction angle, c: cohesion. 

3. METHODS 

The proposed methodology involved five distinct steps, as depicted in Fig. 1. These steps are shown below: 

(i) Collecting, and analyzing databases.  

(ii) Assessing correlations among the features through Pearson and multicollinearity tests. 

(iii) Creating training (80% of the database), and testing (20% of the database) datasets. 

(iv) Employing the Random Forest model, which predicted the SS parameters. 

(v) Assessment and comparative analysis of model performance through the numerous metrics: MAE, RMSE, 

R2.  
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Figure 1. The flow chart of the proposed method 

Pearson correlation 

The Pearson correlation coefficient is the prevalent method for quantifying the linear correlation of the features in 

the ML training process (Amin Benbouras & Petrisor, 2021; Mohammadi et al., 2022). This coefficient, ranging from 

-1 to 1, assesses both the intensity and direction of the association between two variables. This coefficient near 1 

indicates a robust positive correlation, while a coefficient near -1 signifies a strong negative correlation. Conversely, 

coefficients near zero suggest the absence of a linear correlation. 

Multicolinearity tests 

The interconnections among independent variables hold significant importance in data analysis, profoundly 

impacting the accuracy of the models (Arabameri et al., 2020; Chen & Chen, 2021). Hence, a multicollinearity test 

was employed to assess the feature correlations in this study. This test can uncover multicollinearity issues that 

might lead to unaccuracy results. The evaluation of multicollinearity was performed using the tolerance (TOL) and 

variance inflation factor (VIF) (Nguyen & Kim, 2021a; Bui et al., 2011). If VIF <10 or TOL >0.1, these values were 

suitable to consider as input data (Chen et al., 2018). 

 Random forest model 

The Random Forest algorithm is an ensemble learning model comprising multiple individual decision trees. It is 

employed for the creation of both regression and classification models (Cheng et al., 2021). The outcome of this 

algorithm is influenced by two key variables: the number of trees and the maximum depth of each tree (Nguyen & 

Kim, 2021). As a result, in this study, a trial-and-error procedure was implemented to determine these variables. 

This method assisted in preventing overfitting and minimizing the occurrence of errors in the results produced by 

the Random Forest algorithm. 

Model performance assessment 

To assess the predictive capabilities of the models, three widely accepted validation criteria were chosen and 

employed: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R2) 

(Chao et al., 2021; Pham et al., 2018; Khanlari et al., 2012). R2 serves to signify the statistical relationship between 

the observed values and the predicted values from the models (Mohammadi et al., 2022). It ranges from 0 to 1, 

where 0 indicates an incorrect model and 1 signifies a precise model. Higher R2 values reflect superior model 

performance. On the other hand, RMSE represents the average squared difference between observed and 

predicted values (Khanlari et al., 2012), while MAE computes the average absolute difference between predicted 

and observed values (Khanlari et al., 2012). Both RMSE and MAE offer insights into the model's error assessment, 
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with lower values indicating enhanced model performance. The calculation of these values (MAE, RMSE, R2) can 

be executed using the following equations: 

 

 

 

where, Yi is measured value, Xi is predicted value, Ῡ is the average of measured value, and n is data numbers. 

4. RESULTS AND DISCUSSIONS 

Feature selection results   

Pearson correlation 

Fig. 2 provides the heat map of Pearson's correlation coefficients, showcasing the relationships among soil 

physical properties. The correlation coefficients among w, e, PL, and LL show a high value from 0.8 to 1.0 and 

achieved a statistically significant positive association. Highly correlated input features have the potential to diminish 

the performance of machine learning algorithms. In order to ensure optimal model performance, these input 

features will be evaluated for potential removal from the database due to their significant similarity to each other 

(Mohammadi et al., 2022). Therefore, w, e, PL will be eliminated from the input features of the RF model.  

Multicollinearity test 

Following the removal of three input features, a multicollinearity test was carried out on the remaining features to 

evaluate the correlations between each feature and the others. The results of this assessment showed that all 

features have no multicollinearity, according to the VIF (1.099–1.363) and TOL values (0.734–0.910).  

Predicted shear strength parameters   

Random forest was utilized to estimate c and φ in this study. The RF model was designed with input layers 

comprising soil physical properties ( , Sr, LL, SC, CC), while the output layer consisted of c and φ. For developing 

RF model to predict the SS parameters, the available data was divided into two sets: a training set, which 

encompassed 80% of the data, and a test set, comprising the remaining 20% of the data. The training set served 

the purpose of fitting and training the RF model, while the test set was employed to assess the model's performance 

on previously unseen data. The outcomes of this evaluation are presented in Fig. 3. The RF model exhibited a high 

performance, with an R² of 0.9385 for cohesion prediction during the training stage (Fig. 3a), and an R² of 0.9764 

for friction angle prediction (Fig. 3b). These superior results were consistently observed when the models were 

tested using the validation dataset, achieving an R² of 0.9233 for cohesion prediction (Fig. 3a) and an even more 

impressive R² of 0.9773 for friction angle (Fig. 3b). Table 2 shows the MAE, RMSE values from the training, and 

testing datasets. For the cohesion prediction, the RF model achieved the MAE, and RMSE values of 1.7162, 

1.9630, and 2.2620, 2.4138 for the training, and testing datasets, respectively. When predicting friction angle, the 

RF model performs the MAE, and RMSE values of 0.5248, 0.5376, and 0.7887, 0.7210 for the training, and testing 

datasets, respectively. The evaluation results validate the success of the RF model in accurately predicting 

cohesion and friction angle using readily available physical properties.  
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Table 2. Evaluation results of the RF model 

Metrics c  

 Train Test Train Test 

MAE 1.7162 1.9630 0.5248 0.5376 

RMSE 2.2620 2.4138 0.7887 0.7210 

R2 0.9385 0.9233 0.9764 0.9773 

 

 

Figure 2. Heat map of Pearson's correlation 

Numerous empirical formulas for predicting soil shear strength parameters are available in the literature. For the 

purpose of evaluating the comparative performance of the RF model, four specific studies were selected. These 

equations, proposed by  Ersoy et al., (2013) (study 1); Roy & Dass, (2014) (study 2); Adunoye, (2014a, 2014b) 

(study 3) were chosen because the database employed in this study encompasses the majority of the parameters 

needed for calculating shear strength parameters via these methods.  

The performance of these empirical methods and the RF model on the training and validation sets is presented 

in Figs. 4 and 5, specifically for cohesion and angle of friction, respectively. Regarding the prediction of cohesion 

(Fig. 4), the used model demonstrates the highest R2 values compared to the previous empirical equations for the 

training, and testing, respectively (Fig. 4a). In addition, the RF model exhibits lower MAE (Fig. 4b), and RMSE (Fig. 

4c) values in comparison to the previous model. These results are similarly observed in predicting friction angle 

(Fig. 5). These outcomes underscore the enhanced predictive capacity of the Random Forest (RF) model when 

compared to the earlier models. The main reason for this finding comes from the RF model, being a bagging 

ensemble learning technique grounded in decision tree algorithms, gains performance improvements by 

aggregating the decisions of individual models (Nguyen & Kim, 2021). Consequently, the predicting results of the 

RF exhibits higher accuracy compared to the empirical equations, which were obtained from linear regression 

method. This method relies on the assumption of linearity between the features, which can potentially yield less 

accurate results (Iyeke et al., 2016). Furthermore, this approach can lead to excessive similarities between an 

analysis and a dataset, potentially resulting in the failure to generate reliable predictions and accurately forecast 

future observations. 
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            (a)            (b) 

  

Figure 3. Correlation between the measured and predicted values: (a) cohesion, (b) friction angle 

          (a)         (b)               (c) 

   

Figure 4. Comparison between this study and the previous studies for cohesion prediction: (a) R2, (b) MAE, (c) RMSE. (study 1: 

Ersoy et al., 2013; study 2: Roy & Dass, 2014; study 3: Adunoye, 2014b)   

(a) (b) (c) 

   

Figure 5. Comparison between this study and the previous studies for friction angle prediction: (a) R2, (b) MAE, (c) RMSE. 

(study 1: Ersoy et al., 2013; study 2: Roy & Dass, 2014; study 3: Adunoye, 2014a)   

Sensitivity analysis was undertaken to assess the importance of the input features concerning the cohesion, and 

friction angle prediction. In this study, assessing the contributions and levels of importance of the input features 

through Decision Tree Feature Importance (DTFI) technique. The DTFI yields importance scores for the features 

computed using Gini impurity. The significance of the input parameters is visualized in Fig. 6. From Fig. 6, SC, LL, 

, and CC have significantly affected both cohesion (Fig. 6a), and friction angle (Fig. 6b) of soil. These findings 
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align with prior researches that investigated the correlation between physical properties and shear strength 

parameters (Murthy, 2002; Kayadelen et al., 2009; Mousavi et al., 2011; Dadkhah et al., 2010; Tafari et al., 2021; 

Jiang et al., 2021; Ersoy et al., 2013; Roy & Dass, 2014; Adunoye, 2014a). 

(a) (b) 

  

Figure 6. Importance of the input features: (a) cohesion, (b) friction angle 

CONCLUSIONS 

This study explores the potential of the Random forest model in predicting shear strength parameters of soil. To 

assess the performance of the used method, the study employs metrics such as R2 (determination coefficient), 

RMSE (root mean square error), and MAE (mean absolute error). The values of these metrics proved that the 

proposed framework is successful in predicting shear strength parameters from the easily-available physical 

properties.  

The results obtained from this study were compared to the results from the previous empirical equations. This 

comparison demonstrated the outperforming predictive ability of the RF model in shear strength parameters 

estimation.  

The impact of the input features on the prediction outcomes was also assessed through the Decision Tree 

Feature Importance (DTFI) method. The results from the DTFI indicate that SC, LL, , and CC wield significant 

influence on the prediction of cohesion and friction angle. 
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