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Abstracts: Fine-tuning Convolutional Neural Networks (CNNs) weights and biases are essential for solving difficult machine learning 

problems. We provide a hybrid optimizations strategy that combines the benefits of Crowd Search (CSA) and Brainstorm Optimization 

(BSO). CSA-BSO optimizes CNNs. CSA-BSO optimizes CNN weights. Our fitness measures determine each crow's location and 

speed throughout the CSA phase. The BSO phase mixes optimal replies with random ones to create new solutions. The best new 

ideas move on. After a certain number of iterations, we alternate between the CSA and BSO phases and pick the best solution as the 

CNN's final state. We design and test the CSA-BSO approach on many CNN architectures and datasets. Experimentally, the hybrid 

algorithm outperforms CSA and BSO in convergence time and solution quality. CSA and BSO collaborate to efficiently employ feasible 

regions and investigate a bigger search field, boosting optimizations. Stable and adaptable, CSA-BSO supports many CNN 

architectures and data formats. This study's main contribution is the CSA-BSO, a unique hybrid optimizations approach for 

convolutional neural network weight and bias optimizations. It beats CSA and BSO. The recommended strategy improves CNN picture 

classification, object recognition, and NLP. 

Keywords: Convolutional Neural Networks, Optimization Algorithms, Crow Search Algorithm, Brainstorm    
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1. INTRODUCTION  

1.1 Backgisnd and Motivation: Computer vision, natural language processing, robotics, and most recently cyber 

security are just few of the areas where deep learning has emerged as a useful approach for addressing 

complicated issues. Deep learning's performance is highly dependent on fine-tuning the model's weights and biases 

through optimizations. Achieving top-notch model performance relies heavily on robust weight and bias generation. 

As deep learning models grow in complexity and size, sophisticated optimizations methods become more vital. 

 

1.2 Problem Statement: Despite the advancements in deep learning optimization, selecting the most suitable 

optimization technique for weight and bias generation remains a challenge. There are various optimization 

algorithms available, each with its own strengths and limitations. Understanding the characteristics of different 

optimization techniques and their impact on model performance is essential for practitioners and researchers in the 

field. Thus, there is a need to comprehensively analyses and evaluate distinct optimization techniques for weight 

and bias generation in deep learning. 

 

1.3 Objectives: 

The present research proposes and evaluates CSA-BSO, a hybrid optimizations technique for weight and bias 

optimizations in Convolutional Neural Networks (CNNs). Research goals: 

 

• Develop a hybrid algorithm: The goal is to create a unique hybrid optimization algorithm that combines the 

strengths of the Crow Search Algorithm (CSA) and Brainstorm Optimization (BSO) for CNN weight and bias 

optimization. To optimize, the algorithm should traverse the search space and exploit potential locations. 
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• Implement the CSA-BSO algorithm: The goal is to implement the suggested method, including the 

mathematical equations and actions for updating CNN weights and biases. Different CNN designs and 

datasets require flexible implementation. 

• The goal is to empirically test the CSA-BSO method on various CNN architectures and datasets. 

Convergence speed, solution quality, and algorithm resilience across optimization contexts evaluated. 

• Compare the CSA-BSO algorithm to standalone CSA and BSO techniques for CNN weight and bias 

optimization. The comparison should show how the hybrid algorithm outperforms the separate techniques. 

• Applicability and generalizability: The goal is to demonstrate the CSA-BSO algorithm's applicability and 

generalizability across machine learning applications such image classification, object identification, and 

natural language processing. This objective shows the algorithm's adaptability and efficacy in real-world 

circumstances. 

 

The research goals propose a hybrid optimization technique for CNNs that enhances convergence speed and 

solution quality. 

 

1.4 Motivation:  

The need to improve deep learning model performance and efficiency drove the development of "Crow Way," 

an optimizations method for weights and biases. Deep learning excels in computer vision, natural language 

processing, and speech recognition. For big and complicated models, optimizing deep neural network weights and 

biases is difficult. Crow Way addresses many motivations: 

 

• Nature-Inspired Algorithms: Crow Way takes inspiration from crows' clever foraging and communication 

routines. Nature-inspired algorithms may solve complicated optimizations issues, making them a 

promising method for weight and bias selection in deep learning. 

• Model Performance Improvement: Crow Way's main goal is to improve deep learning model 

performance. Accurate weight and bias selection improve model convergence, reduces loss functions, 

and improves model prediction accuracy, precision, and recall. 

• Handling Deep learning methods use enormous datasets with high-dimensional characteristics. Large 

search spaces may challenge traditional optimizations methods. Crow Way's inspiration from crows' 

intelligence may help it explore difficult search spaces and find appropriate weights and biases. 

• Robustness and Generalization: Crow Way-optimized deep learning models should increase 

robustness and generalization. An optimized model should perform well on both training and unseen 

data, delivering trustworthy and consistent predictions across scenarios. 

• Reducing Computational Complexity: Training deep learning models is computationally and time-

consuming, especially for large-scale structures. Crow Way reduces optimizations computational 

complexity to speed model training and deployment. 

 

1.5 Scope and Organization of the Paper: The scope of this research paper is focused on the analysis of 

optimization techniques for weight and bias generation in deep learning. The paper is organized as follows: Section 

2 provides an Deep Survey on Optimization Techniques along with its limitation Section 3 explores overview of deep 

learning optimization, highlighting the importance of weight and bias generation. Section 4 explores gradient 

descent and its variants  . Section 5 delves into adaptive optimization techniques Section 6 explore discusses 

evolutionary and swarm optimization methods.  Section 7 describes the experimental setup, along with proposed 

algorithm implementation and its results Finally, conclude with  outlines future directions. 

 

2. LITERATURE SURVEY: 

The brain stores and organizes information using the probabilistic Perceptron [1]. This study used Perceptron 

learning. This study introduces binary classification perceptron. The system successfully obtains linearly separable 

patterns. Limitations: This method only solves linear problems. 
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"Rumelhart, D.E., et al. (1986)." The proposed method is backpropagation. Error propagation backward updates 

weights and biases. The results show the possibility to simplify multi-layer neural network training. This strategy has 

drawbacks. Local minima might trap you. Weight initialization is crucial for performance [2]. 

Eun et al. (1998) studied. This work examines gradient-based learning for document recognition. This work will use 

the LeNet-5 architecture and stochastic gradient descent optimizations algorithm. This system recognizes 

handwritten digits using backpropagation and gradient descent. Digit recognition capability is top-notch. It can only 

handle low-resolution grayscale images [3]. 

Hinton et al. (2006) studied. This study uses contrastive divergence-trained Deep Belief Networks (DBNs). The 

programmed trains deep generative models layer-by-layer. Deep neural networks may be pre-trained and fine-tuned 

unsupervised.   This method is for unsupervised learning. It needs more supervised fine-tuning to improve 

performance [4]. 

(2014) Goodfellow et al. Two neural networks—a generator and a discriminator—make up Generative Adversarial 

Networks (GANs). Generative Adversarial Networks (GANs) are the topic. This approach trains generator and 

discriminator networks in a two-player game. This technique generates realistic samples using random noise. 

Training this model can cause mode collapse and instability [5]. 

Kingma, D. P., Ba et al. proposed the Adam optimizations method. This function calculates parameter adaptive 

learning rates effectively. Convergence speed and model correctness improved.  Hyperparameter tweaking can 

lead to inferior solutions [6]. 

2019 Zhang, H., and colleagues’ research. Fixup Initialization: Residual Learning without Normalization addresses 

vanishing/exploding gradients to improve deep neural network training. Initialization Fixup Technique improves deep 

neural network training without batch normalization. Results with fewer layers and parameters are competitive. 

Network designs limit generalizability [7]. 

In [8] researchers used over-parameterized adaptive gradient algorithms. In this study, we explore the potential 

benefits of over-parameterization for optimizations methods. The findings point to a faster convergence rate and 

better generality. Over-parameterization raises the bar for both processing power and storage space. 

(2020) Liu, Y. This study describes a biologically inspired deep neural network training optimizations technique. The 

approach is the Firefly Algorithm (FA). Firefly Algorithm (FA) swarm intelligence optimizes weights and biases. The 

findings show faster convergence and model correctness than standard optimizations strategies. Complex multi-

dimensional situations may challenge this model[9]. 

Chen, M., et al. (2021) cites. A metaheuristic algorithm-based review of neural network weight and bias tuning. This 

study employed GA, PSO, and DE, among other methods. This paper investigates metaheuristic methods for 

weight and bias parameter optimizations in applications. Different algorithms have different convergence times and 

model accuracies. Algorithm parameters and task complexity affect system performance[10]. 

2021. Li, Z. This research introduces self-supervised learning, ensemble clustering, and an ensemble teacher-

student paradigm for unbalanced data categorization. This study used ensemble clustering and an ensemble 

teacher-student architecture. Self-supervised learning solves unbalanced data categorization in this method. 

Improved unbalanced dataset handling boosts performance. Model accuracy has also increased. Ensemble-based 

techniques may need large computational resources [11]. 

Wang et al. (2022) studied. This study examines whether dynamic neuron allocation accelerates neural network 

training. DNA is Dynamic Neuron Allocation. Dynamic neuron allocation improves training efficiency and speed. The 

project improved model accuracy, training speed, and computing costs. Dynamically distributing neurons may 

increase computational overhead [12]. 

Hu, Z., et al. (2022) explores weight initialization and normalization strategies to improve neural network training. 

The experiment improved model accuracy, training stability, and disappearing or bursting gradients. Network design 

and issue characteristics determine initialization and normalization [13]. 

3. DEEP LEARNING OPTIMIZATION: 

3.1 Introduction to Deep Learning Optimization : 

To train deep neural networks to perform well across a variety of tasks, deep learning optimizations is essential. 

Optimizing network weights and biases minimizes the loss function. This improves model accuracy and generality. 

Deep learning optimizations involves iteratively changing model parameters. This adjustment is based on training 
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data faults or disparities between anticipated outputs and genuine labels. The optimizations method finds the 

parameter values that decrease disagreement and maximize model correctness. Optimization techniques control 

network parameter changes during training. These systems use gradient descent and its modifications to repeatedly 

change network weights and biases. Adjusting these settings to reduce the loss function is this procedure. Deep 

learning optimizations seeks to find a loss function global minimum. The network performs best on training data. 

Deep neural networks are complex and multi-dimensional, making this goal challenging to achieve. Calculating loss 

function gradients in respect to model parameters is part of the optimizations process. Gradients alter parameter 

values. Optimization method, learning rate, batch size, and other hyperparameters affect convergence speed and 

solution quality. Optimization methods for training deep neural networks have advanced in recent years. Adam, 

RMSprop, dropout, weight decay, and stochastic gradient descent with momentum are the approaches. 

Optimization strategies have helped deep learning in computer vision, natural language processing, and speech 

recognition. Novel optimizations algorithms to improve deep neural network training efficiency, convergence speed, 

and generalization performance are under investigation. 

 

3.2 Challenges in Deep Learning Optimization : 

The optimizations of deep neural networks presents various challenges that must be resolved in order to achieve 

efficient and effective training. The following are several significant challenges encountered in the optimizations of 

deep learning: 

▪ The issue of vanishing or exploding gradients is a common challenge encountered in deep neural networks 

that have numerous layers. The gradients utilized for updating the parameters of the network exhibit 

significant magnitudes, either extremely small or large, thereby posing challenges for the optimizations 

algorithm to achieve convergence. The problem becomes more prominent in networks featuring activation 

functions with gradients that approach zero or infinity. 

▪ The optimizations landscape of deep neural networks is known for its complexity, which is frequently 

characterized by the presence of multiple local minima and plateaus. Conventional optimizations algorithms 

are susceptible to becoming trapped within suboptimal regions, resulting in slower convergence rates and 

suboptimal solutions. The task of escaping from these regions to locate the global minimum presents a 

substantial challenge. 

▪ Deep neural networks often overfit, meaning the model performs well on training data but fails to generalize 

to new data. Overfitting occurs when a model learns the noise and patterns in the training data, which are 

not representative of the population. Overfitting must be addressed by rigorous model complexity control 

and regularization. 

▪ Computational demands arise when dealing with deep neural networks, particularly when working with 

large-scale models and datasets. The optimizations process necessitates conducting numerous forward 

and backward passes through the network, which can consume significant time and resources. The training 

of deep models often necessitates the use of high-performance hardware or distributed computing 

infrastructure. 

▪ Hyperparameter Tuning: Deep neural networks possess a range of hyperparameters, encompassing 

learning rate, batch size, regularization strength, and network architecture selections. The task of 

determining the most suitable hyperparameter values is a complex one, as the selection of different 

combinations can result in diverse optimizations dynamics and performance outcomes. The process of 

hyperparameter tuning typically necessitates substantial experimentation and computational resources. 

▪ The size and quality of the dataset are crucial factors for deep learning models as they necessitate a 

substantial volume of labelled training data to acquire significant representations. Acquiring a substantial 

and varied dataset can pose difficulties, particularly in domains where data is scarce. The optimizations 

process and model performance can be influenced by data quality, which encompasses label accuracy and 

potential biases. 

▪ Generalization and Robustness: Deep neural networks are expected to exhibit strong generalization 

capabilities, enabling them to effectively process unseen data. Additionally, they should demonstrate 

robustness by effectively handling variations and noise present in the input. The attainment of effective 

generalization necessitates the implementation of meticulous model regularization techniques, suitable 

dataset augmentation methods, and the resolution of concerns such as bias and adversarial attacks. The 
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importance of guaranteeing robustness in the optimizations process cannot be overstated when it comes to 

real-world implementation. 

▪ To effectively tackle these challenges, it is necessary to employ a combination of algorithmic 

advancements, architectural choices, and regularization techniques. Ongoing research efforts are focused 

on the development of novel optimizations algorithms, regularization methods, and optimizations 

frameworks. These advancements aim to enhance the convergence speed, performance, and 

generalization capabilities of deep neural networks. The objective is to facilitate efficient and effective 

optimizations across various tasks and domains. 

3.3 Importance of Weight and Bias Generation : 

Deep neural network weights and biases affect model behavior and data learning. Building and training neural 

networks requires weight and bias creation.  Weight and bias creation are crucial to deep learning 

optimizations. 

▪ Representation Learning: Deep neural networks possess the ability to autonomously acquire intricate 

representations from unprocessed data. The weights and biases within the network serve to establish the 

connection strengths between neurons, thereby facilitating the network's ability to comprehend complex 

patterns and relationships within the input data. The utilization of appropriate weight initialization enables 

the network to commence with a sensible initial representation, thereby facilitating efficient learning. 

▪ Model Flexibility: Weights and biases determine a neural network's flexibility. These parameters help the 

model adapt to data complexity. The model achieves an optimal trade-off between underfitting, when the 

model is too simplistic and fails to capture the data's complexity, and overfitting, when the model memorizes 

the training data but struggles to generalize to new data. 

▪ The convergence of the optimizations process can be significantly influenced by the selection of initial 

weights and biases. Insufficiently initialized weights may result in sluggish convergence or becoming 

ensnared in suboptimal solutions. The utilization of suitable weight and bias generation techniques is crucial 

in establishing an optimal starting point for optimizations. This, in turn, facilitates faster convergence 

towards improved solutions. 

▪ Deep neural networks use weight decay and dropout to reduce overfitting. Properly initializing weights and 

biases improves regularization procedures. This encourages generality and prevents overfitting. Well-

initialized weights help the model avoid local minima, improving generalization performance. 

▪ The phenomenon of vanishing or exploding gradients is a common issue encountered in deep neural 

networks, which can significantly impede the optimizations process. The implementation of appropriate 

weight initialization methods can effectively address these concerns by guaranteeing that the gradients do 

not diminish to zero or become excessively large during the backpropagation process. This feature enables 

consistent and effective optimizations throughout the duration of the training process. 

▪ Transfer learning and fine-tuning involve the utilization of pretrained models or model components. These 

approaches are commonly employed in scenarios where existing models can be leveraged to enhance 

performance. In these instances, the weights and biases of the pretrained model are utilized as an initial 

reference for subsequent optimizations. Proper initialization of weights and biases is of utmost importance 

in these situations to guarantee successful knowledge transfer and optimal adaptation to the target task. 

▪ The generation of appropriate weight and bias values is a crucial aspect of optimizing deep learning 

algorithms. The ability of the model to learn meaningful representations, its flexibility to adapt to various 

data complexities, the speed at which optimizations converges, and the model's generalization performance 

are all affected by this. Researchers have proposed a range of weight initialization methods and techniques 

aimed at enhancing the performance of deep neural networks and improving the optimizations process. 
 

4. GRADIENT DESCENT AND ITS VARIANTS:  

4.1 Formulation of Gradient Descent: 

 In deep neural network training, gradient descent is a popular optimizations approach. Using the loss function 

gradients, the network's weights and biases are changed repeatedly. This explanation explains the gradient descent 

algorithm. Weights (W) and biases (b) define a deep neural network's architecture. The training dataset includes 
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input characteristics (X) and target labels (Y). We minimize a loss function (L) that gauges the network's predictions 

vs the actual labels. In machine learning, the gradient descent method iteratively moves in the opposite direction of 

the loss function gradient to update model parameters. This deliberate move lowers the model to a local or global 

minimum, improving its performance and predictive power. The gradient descent update is: 

1. Initialize the weights and biases with initial values (W_0, b_0). 

2. Iterate until convergence or a predefined number of iterations: 

• Compute the forward pass of the network to obtain the predicted outputs (Yahata). 

• Calculate the loss function (L) using the predicted outputs and the true labels. 

• Estimate the loss function gradients for weights and biases 

 

• Update weights and biases using gradients and a learning rate (α): 

 

 

• Repeat the above steps for each mini-batch or sample in the training dataset. 

The learning rate (α) controls the step size or quantity of parameter modification every iteration. It influences 

convergence speed-stability trade-off. Large learning rates can speed convergence but overshoot the minimum, 

whereas modest learning rates hinder convergence. 

4.2   Batch Gradient Descent:  

Batch Gradient Descent (BGD) optimizes deep neural networks by updating model parameters based on gradients 

computed using the whole training dataset in each iteration. Optimizing neural network weights and biases is simple 

and commonly utilized. Batch Gradient Descent is detailed here. 

Algorithm: 

1. Randomized neural network weights and biases. 

2. Set the learning rate (α), which controls the step size of parameter updates. 

3. Repeat until convergence or a predefined number of iterations: 

a. Compute the forward pass of the network to obtain the predicted outputs. 

b. Calculate the loss function using the predicted outputs and the true labels. 

c. Compute the gradients of the loss function with respect to the weights and biases using the entire training 

dataset: 

 
d. Gradients and learning rate update weights and biases: 

 

 
e. Repeat steps a-d for each iteration. 

Batch Gradient Descent benefits: 

• BGD computes gradients utilizing the whole training dataset, resulting in more accurate gradient estimates. 

This improves convergence and optimization. 

• BGD ensures convergence to a global loss function minimum under specific conditions. This attribute 

assures the algorithm's optimum result. 

• Simple and stable updating rule: BGD. After computing the gradients throughout the dataset, weights and 

biases are changed for consistent and predictable parameter modifications. 

Batch Gradient Descent Limitations: 

• BGD processes the full training dataset each iteration, which can be computationally demanding, especially 

for big datasets. It may delay convergence and lengthen training. 

• BGD stores the entire training dataset to calculate gradients. Datasets that don't fit in memory are 

impractical or inefficient. 
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• BGD changes parameters sequentially using dataset gradients. This sequential nature hinders parallelism 

and contemporary hardware design efficiency. 

• BGD can converge to saddle points, which are optimization landscape sites where certain dimensions have 

minima and others have maxima. This slows convergence and makes saddle point escape harder. 

 

4.3 Mini-Batch Gradient Descent:  

The Mini-Batch Gradient Descent (MBGD) technique optimizes deep neural network training. The suggested 

strategy combines BGD and SGD to take use of their capabilities. Each iteration of MBGD updates model 

parameters using gradients from a randomly selected subset (mini-batch) of the training dataset. MBGD 

outperforms BGD and SGD in convergence and computing efficiency. 

Algorithm: 

1. Randomized neural network weights and biases. 

2. Set the learning rate (α), which controls the step size of parameter updates. 

3. Set the mini-batch size (m). 

4. Repeat until convergence or a predefined number of iterations: 

a. Randomly shuffle the training dataset. 

b. Divide the shuffled dataset into mini-batches of size m. 

c. For each mini-batch: 

• Compute the network forward pass to forecast outputs. 

• Calculate the loss function using the predicted outputs and the true labels. 

• Use the current mini-batch to compute the loss function gradients for weights and biases: 

 

• Update weights and biases using gradients and learning rate: 

 

 

d. Repeat steps c for each mini-batch. 

Mini-Batch Gradient Descent benefits: 

• MBGD is computationally more efficient than BGD, especially for big datasets, because each 

iteration processes just a fraction of the training data. Vectorized operations accelerate training. 

• MBGD delivers more steady convergence than SGD since each parameter update is based on 

gradients computed across numerous samples. This can improve optimizations consistency and 

update smoothness. 

• Parallelism: MBGD may use GPUs to compute gradients for different mini-batches in parallel. 

• MBGD has a greater probability of escaping local minima than SGD since it evaluates more 

samples every update. 

Mini-Batch Gradient Descent Limitations: 

• Learning Rate Sensitivity: MBGD requires the right learning rate. A modest learning rate slows 

convergence, while a big one overshoots the minimum. 

• Selecting the mini-batch size (m) is a hyperparameter. Large batch sizes hinder convergence and 

increase memory needs, whereas small batch sizes provide noisy gradient estimates. 

• MBGD may converge to saddle points like other gradient-based optimizations techniques. 
 

4.4 Stochastic Gradient Descent: SGD is a popular deep neural network optimizations approach. It uses 

gradient descent to update model parameters based on a single training sample. SGD has various 

advantages over BGD and MBGD, which employ the complete training dataset or a small fraction (mini-

batch). 
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Algorithm: 

1. Randomized neural network weights and biases. 

2. Adjust the learning rate (α) to regulate parameter update step size. 

3. Repeat until convergence or a predefined number of iterations: 

a. Randomly shuffle the training dataset. 

b. Shuffled dataset training examples: 

• Compute the forward pass of the network to obtain the predicted output. 

• Calculate the loss function using the predicted output and the true label. 

• Calculate the loss function gradients with respect to weights and biases using the current 

training example: 

 

• Alter weights and biases using gradients and learning rate: 

 

 

Stochastic Gradient Descent benefits: 

• Computational Efficiency: SGD processes one training example at a time, making it memory-friendly. It's 

beneficial for enormous datasets that don't fit in memory. 

• SGD may converge quicker than BGD and MBGD. SGD may swiftly modify the model to each training 

sample by updating parameters based on individual samples, potentially accelerating convergence. 

• Stochastic gradient estimates allow SGD to escape local minima. The algorithm can better explore the 

optimizations landscape with noisy updates. 

Stochastic Gradient Descent Limitations: 

• SGD gradients are noisier than BGD or MBGD due to random sample selection. Noise can increase 

optimizations oscillations and impede convergence. 

• SGD learning rate is critical. Too high a learning rate can cause unstable updates and divergence, while too 

low can stall convergence. 

• SGD may struggle to converge on sparse datasets. Random sampling may result in inadequate updates for 

uncommon characteristics, slowing convergence or generalization. 

• Parallelization Limitations: SGD updates depend on individual example gradients, making parallelization 

difficult. This sequential nature hinders parallel processing designs. 

4.5 Comparative Analysis of Gradient Descent Variants : 

Table 1: Comparative Analysis of Gradient Descent Variants [10-12] 

Technique Dataset Use Results Limitations 

Training 

Time 

Required Scope for Improvement 

Batch 

Gradient 

Descent (BGD) 

Entire training 

dataset 

Accurate 

gradients, 

stable 

convergence 

Computationally 

expensive, 

memory 

requirements Highest 

Parallelization 

techniques, advanced 

optimization algorithms 

(e.g., Adam, RMSprop) 

Mini-Batch 

Gradient 

Small random 

subset (mini-

Balanced 

efficiency and 

Mini-batch size 

selection, Moderate 

Mini-batch size, learning 

rate adaption, 
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Descent 

(MBGD) 

batch) convergence learning speed parallelization 

Stochastic 

Gradient 

Descent (SGD) 

Single training 

example at a 

time 

Computational 

efficiency, 

faster 

convergence 

Noisy gradients, 

learning rate 

selection, sparse 

data handling Lowest 

Learning rate 

adaptation, 

parallelization 

techniques, mini-batch 

sampling strategies 

➢ Batch Gradient Descent (BGD): 

o Dataset Use: BGD computes the gradients using the entire training dataset in each iteration. 

o Mathematical Update: 

o Update rule:  

,  

where θ represents the model parameters (weights and biases), α is the learning rate, and ∇J(θ) is 

the gradient of the cost function J(θ) with respect to θ. 

o Results: BGD provides accurate gradients, leading to stable convergence. 

o Limitations: BGD is computationally expensive since it processes the entire dataset in each iteration. It also 

requires significant memory resources to store the entire dataset. 

➢ Mini-Batch Gradient Descent (MBGD): 

o Dataset Use: MBGD computes the gradients using a small random subset (mini-batch) of the training 

dataset in each iteration. 

o Mathematical Update: 

o Update rule: 

 where θ represents the model parameters, α is the learning rate, and ∇J(θ) is 

the average gradient of the cost function J(θ) computed over the mini-batch. 

o Results: MBGD strikes a balance between efficiency and accuracy, offering faster convergence compared 

to BGD and more stable convergence compared to SGD. 

o Limitations: The choice of the mini-batch size is crucial. A small size may result in noisy gradient estimates, 

while a large size may lead to slower convergence. 

➢ Stochastic Gradient Descent (SGD): 

o Dataset Use: SGD computes the gradients using a single training example at a time. 

o Mathematical Update: 

o Update rule:  

 where θ represents the model parameters, α is the learning rate, and 

∇J(θ) is the gradient of the cost function J(θ) computed using a single training example. 

o Results: SGD is computationally efficient and can converge faster in certain cases due to its 

stochastic nature, which allows it to escape local minima better and explore different regions of the 

optimization landscape. 

o Limitations: SGD has noisy gradient estimates due to the random selection of examples, which can 

result in more oscillations during optimization. Selecting an appropriate learning rate is crucial, and 

it may struggle with sparse data due to the random nature of example selection. 

5.  ADAPTIVE OPTIMIZATION TECHNIQUES 

5.1 Introduction to Adaptive Optimization: 

Adaptive optimization techniques have the objective of dynamically modifying the learning rate during the 

training process, taking into consideration the observed behavior of the optimization process. These techniques 

employ adaptive modifications to the learning rate to enhance convergence speed, optimization performance, and 

robustness. 

5.2 Adam:  
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Adam uses adaptive learning rates and momentum to update parameters. It keeps exponentially decaying averages 

of previous gradients (m_t) and squared gradients (v_t): 

 

 

where g_t is the gradient at time step t, and beta1 and beta2 are the decay rates for the first and second 

moments, respectively. 

The parameter update is performed as follows: 

 

 
 

where theta_t is the parameter at time step t, and epsilon is a small constant for numerical stability. 

5.3 Adagrad:  

Adagrad adjusts each parameter's learning rate depending on past gradient information. It keeps a total of 

squared gradients (G_t) for each parameter: 

 

 
 

The parameter update is performed as follows: 

 

 
 

where g_t is the gradient at time step t. where g_t is the gradient at time step t, beta is the decay rate, and 

epsilon is a small constant for numerical stability. 

 

5.4 RMSprop:  

Root Mean Square Propagation: An exponentially decreasing average of squared gradients solves 

Adagrad's diminishing learning rate. The running average of squared gradients (v_t) is: 

 
 

The parameter update is performed as follows: 

 

 
 

where g_t is the gradient at time step t, beta is the decay rate, and epsilon is a small constant for numerical 

stability. 

 

5.5 AdamW:  

Adam with Weight Decay: AdamW is a variant of Adam that incorporates weight decay regularization. 

Weight decay adds a penalty term to the loss function based on the magnitudes of the weights. In AdamW, 

the weight decay is decoupled from the gradient updates to prevent biasing the first moment estimate. The 

parameter update is modified as follows: 

 

 
 

where lambda is the weight decay coefficient. 
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5.6: Comparative Analysis of Adaptive Optimization Techniques:  

Table 2: Comparative Analysis of Adaptive Optimization Techniques: [15-17] 

Technique 

Convergence 

Speed 

Optimization 

Performance 

Robustness 

to 

Learning 

Rates 

Handling 

of Sparse 

Gradients 

Computational 

Complexity 

Memory 

Requirements 

Impact 

on 

Accuracy 

Adam Fast High Yes Yes Moderate Moderate High 

Adagrad Moderate Moderate Yes No Low Low Moderate 

RMSprop Fast High Yes Yes Moderate Moderate High 

AdamW Fast High Yes Yes Moderate Moderate High 

 

 

6. EVOLUTIONARY AND SWARM OPTIMIZATION 

Engineering, computer science, and operations research apply evolutionary and swarm optimization 

approaches. Natural evolution and social insect colonies inspired these methods. Evolutionary optimization 

techniques use selection, recombination, and mutation to find the best solution. These algorithms iteratively 

improve candidate solutions depending on fitness. GA is the best-known evolutionary algorithm. However, social 

insects like ants and bees inspire swarm optimization. A population of particles or persons interacts with each 

other and the environment to find the best solution. Swarm intelligence algorithm Particle Swarm Optimization 

(PSO) is popular in optimizations research. Evolutionary and swarm optimization methods have solved several 

optimizations issues, including function optimizations, engineering design, scheduling, and data clustering. 

These methods enable resilient and efficient search for near-optimal solutions in complicated and dynamic 

problem environments. 

 

6.1 Genetic Algorithms: Genetic Algorithms: Genetic Algorithms (GAs) belong to a category of optimizations 

algorithms that draw inspiration from the principles of natural selection and genetics. The foundation of these 

systems lies in the fundamental principles of chromosomes, genes, fitness evaluation, and genetic operators. 

1. Initialization: 

• Generate an initial population of chromosomes randomly or using other initialization techniques: 

 
where P is the population of size pop_size, and each chromosome x_i represents a set of 

weights and biases. 

2. Fitness Evaluation: 

• Use f(x) to assess chromosomal fitness: 

 
3. Selection: 

• Select parent chromosomes for reproduction using fitness-proportional selection: 

 
4. Crossover: 
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• Apply crossover between selected parent chromosomes to generate offspring chromosomes: 

 

 

• Choose parent chromosomes x_p and x_q from P based on P_select. 

• Perform crossover between x_p and x_q to produce offspring chromosomes x_c and x_d. 

• Replace x_i and x_{i+1} in the population with x_c and x_d. 

5. Mutation: 

• Introduce random changes or alterations in the genes of the offspring chromosomes: 

 

for each gene g in each offspring chromosome x_i: 

   if random () < mut_prob: 

      g = g + random_value ()  # Adjust the gene with a random value 

Replacement: 

 

• Replace a portion of the current population with the offspring chromosomes: 

• For generational replacement: 

 

 
  

• For steady-state replacement: 

• Replace a subset of the population with the offspring chromosomes. 

6. Termination: 

• Repeat steps 3–6 until a termination condition is met: 

• Maximum generations. 

• Fitness value met. 

• Convergence observed (e.g., little improvement in fitness over several generations). 

 

6.2 Particle Swarm Optimization: PSO optimizes a population of particles. Bird flocking and fish schooling 

inspire it. Particle Swarm Optimization (PSO) uses particles to find the best solution. Iterative position 

modifications based on their own and the swarm's best particle's experiences do this. 

Algorithm:  

1. Particle Representation: 

• Let x_i represent the position (a vector of weights and biases) of the i-th particle in the search space.  

• Each x_i is a neural network weight and bias solution. 

2. Initialization: 

• Initialize the positions and velocities of the particles: 

 

    

 

 
where m is the total number of weights and biases in the neural network. 

3. Fitness Evaluation: 

• Use a fitness function f(x_i) to evaluate each particle's fitness. 

• Global and Personal Bests: 

Keep track of the personal best (pbest) position and fitness for each particle: 
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▪ Also, keep track of the global best (gbest) position and fitness among all particles: 

 

 

 
4. Velocity Update: 

▪ Update the velocity of each particle using the velocity update equation: 

 
where: w controls particle velocity. Cognitive and social learning components c1 and c2 regulate the 

particle's personal and global best. rand1 and rand2 are 0–1 random values. 

5. Position Update: 

Update the position of each particle using the position update equation: 

  

 
6. Termination: 

Fitness evaluation, velocity update, and position update are repeated until a termination 

condition is fulfilled. 

  

6.3 Comparative Analysis of Evolutionary and Swarm Optimization Techniques: 

 

▪ Swarm vs. Population: Evolutionary algorithms look for solutions using a population. A fitness function 

selects, crosses, and mutations these solutions. Social insects and bird flocks affect swarm optimisation 

methods. Particles or agents scan the search space for the best solution. Particles move based on local and 

global information. 

▪ Exploitation vs. Exploration: Exploration and exploitation are EAs' main concerns. To find suitable places, the 

population initially searches broadly. The method exploits revealed regions to find the optimal solutions. 

Exploration trumps exploitation in swarm optimizations. To discover the global optimum, the swarm particles 

expand out in the search space. They search using the swarm's intelligence. 

▪ Speed: Convergence: Compared to swarm optimizations, EAs take more function evaluations and 

generations to converge. EAs provide diverse exploration but sluggish convergence due to their population-

based character. Swarm optimizations strategies generally converge quicker because they emphasize 

exploration. Particles' collective behavior and communication effectively converge on suitable search space 

locations. 

▪ Restricted Handling:  EAs solve optimizations issues with limitations. Fitness evaluation can use constraint-

handling methods like penalty functions or repair mechanisms. Swarm optimizations works well for 

unconstrained optimizations issues. However, swarm methods have been modified and extended to 

accommodate restrictions. 

▪ Complexity: Algorithmic: Compared to swarm optimizations, EAs have more algorithmic complexity. Genetic 

operators like crossover and mutation need a lot of processing. 

Swarm optimizations methods, especially those with simple rules and limited interactions, are computationally 

simpler. They work well in parallel and distributed environments. 

▪ Robustness: EAs can tackle multimodal optimizations challenges and are resilient. Population variety 

promotes exploration and prevents premature convergence. Swarm optimizations may solve difficult 

problems, but beginning circumstances and parameter selections may affect it. Good performance requires 

balancing exploration and exploitation. 
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FIGURE 1.a: Comparative analysis: Exploration and Exploitation.  FIGURE 1.b: Comparative analysis: Convergence Speed  

 

 
FIGURE 1.c: Comparative analysis: Robustness 

 

 
FIGURE 1.d: Comparative analysis: Optimization Technique in Neural N/W 

In FIGURE 1.a, FIGURE 1.b, FIGURE 1.c, FIGURE 1.d[13-15] compares neural network optimizations 

methods. A multi-bar graphic shows analytical scores for exploration and exploitation, convergence speed, and 

robustness. The graph contrasts Swarm Optimization with Evolutionary Algorithms. Bars reflect each technique's 

category. Each bar's height denotes its analysis category score. Exploration and exploitation, convergence speed, 

and robustness measure the technique's ability to balance exploring the search space and exploiting promising 

solutions. The graph shows analysis scores, making it simple to compare the two optimizations’ strategies across 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 2, pp 1732-1750 

1746 

categories. The legend and x-axis labels explain the color-coded bars. The graph simplifies the comparison analysis 

and makes it easier to evaluate neural network optimizations strategies. 

7. EXPERIMENTAL SETUP: 

 
Figure 2: CNN weight and bias optimizations procedure 

 

Figure 2[17-18] depicts data classification as normal or attackers. CNN bias and weight. CNN’s first layer, 

the convolutional layer, filters input data to extract valuable properties. The activation function non-linearizes the 

convolutional layer's output, and a pooling layer compresses its spatial dimensions. The output is mapped to a 

specified number of completely connected layer classes. Before training CNN, establish its weights and biases. The 

network's performance depends on the launch procedure. Backpropagation can fine-tune the CNN's weights and 

biases to minimize the difference between its predicted and observed output. SGD adjusts model weights and 

biases during training. An optimizer reduces the loss function by adjusting weights and biases to help the CNN learn 

classification features. Create a robust CNN by first generating weights and biases that take advantage of their 

strengths and minimize their weaknesses. The network's performance is very sensitive to the choice of initialization 

method and optimization algorithm; hence, new methods that simultaneously boost efficiency and cut down on 

computation are urgently required. 

During training, convolutional neural networks (CNNs) optimize weights and biases to minimize loss. The 

optimizations process calculates the loss gradients about the weights and biases and updates these parameters 

using an optimizations technique like stochastic gradient descent (SGD). 

We have one training example with input X and label Y. CNN output with weights W and biases b: 

 
where '*' represents the convolution operation. 

The output Z is then passed through an activation function to produce the final output of the CNN, which is 

compared to the true label Y to compute the loss L. 

The weights and biases are then updated using the following equations: 

 

 
where learning rate is the hyperparameter that regulates update step size, dW and db are the loss gradients with 

respect to weights and biases, respectively. 

Backpropagation uses the derivatives of the loss with respect to each layer's outputs and the chain rule to calculate 

the gradients with respect to the weights and biases. 

The update equations adjust weights and biases to minimize loss, while the learning rate determines 

update step size. Weights and biases may fluctuate or diverge with a high learning rate, causing unstable 

optimizations. If the learning rate is too low, the optimizations may converge slowly or become trapped in a poor 

solution. 
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Algorithm: 

Crow Search Algorithm (CSA) and Brainstorm Optimization (BSO) are nature-based optimizations techniques for 

convolutional neural networks (CNNs) weights and biases. CSA-BSO is a mixture of these algorithms. CSA-BSO 

improves optimizations by combining CSA and BSO search techniques. 

The mathematical equations involved in the CSA-BSO algorithm for optimizing the weights and biases of a CNN are 

as follows: 

I. Initialization: 

▪ Initialize the CNN weight and bias vector population of probable solutions.  

▪ Set the maximum iterations (T) and evaluations per iteration (N). 

II. Crow Search Algorithm (CSA): 

▪ Use a fitness function to calculate f_i for each population solution. 

▪ Start the population's crows' positions and velocities. 

▪ Update the position and velocity of each crow using: 

 

▪ Update the population: 

 

 

▪  

▪ Evaluate the fitness of the new solutions and update the population if necessary. 

III. Brainstorm Optimization (BSO): 

 

▪ Generate a new set of potential solutions by combining the current best solutions with randomly generated 

solutions. 

▪ Test the new solutions. 

▪ Select the finest current and new solutions to construct the next population. 

▪ Repeat until you reach the maximum evaluations per iteration. 

IV. Hybrid CSA-BSO Algorithm: 

▪ Alternate between CSA and BSO for a specified number of iterations. 

▪ Use CNN’s best iteration as the final answer. 

In the above equations, x_i(t) is the position of the ith crow at iteration t, v_i(t) is its velocity, p_i is its best position 

so far, p_g is the global best position, w is the inertia weight, c1 and c2 are acceleration coefficients, r1 and r2 are 

random numbers between 0 and 1, lambda is a scaling factor, and C_t is a crow movement vector. Algorithm fitness 

functions vary by CNN and task. 

PsuedoCode: 

 # Perform the hybrid algorithm iterations 

for i in range(max_iter): 

    # Perform the crow search algorithm 

    for j in range(max_evals): 

        # Calculate the fitness of each potential solution 

        fitness_values = [fitness_function (w, b) for w, b in pop] 

         

        # Update the position and velocity of each crow 

        for k, (w, b) in enumerate(pop): 

            r1 = random. random() 

            r2 = random. random() 

            v_w = w + w * w * ct * (c1 * r1 * (pop[k][0] - w) + c2 * r2 * (pop [0][0] - w)) 

            v_b = b + b * b * ct * (c1 * r1 * (pop[k][1] - b) + c2 * r2 * (pop [0][1] - b)) 

            w_new = w + v_w 

x_i(t+1) = x_i(t) + v_i(t) v_i(t+1) = wv_i(t) + c1r1*(p_i-x_i(t)) + c2r2(p_g-x_i(t)) 

 

x_i(t+1) = x_i(t+1) + lambda*C_t 
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            b_new = b + v_b 

            pop[k] = (w_new, b_new) 

Results  

Epoch(10) Population Time  Loss Acuracy 

1 4000 10s 2ms/step 0.8369 0.6927 

2 4000 10s 2ms/step 0.5393 0.8041 

3 4000 10s 2ms/step 0.4691 0.8310 

4 4000 10s 2ms/step 0.4292 0.8471 

5 4000 10s 2ms/step 0.3984 0.8574 

6 4000 10s 2ms/step 0.3766 0.8666 

7 4000 10s 2ms/step 0.3572 0.8745 

8 4000 10s 2ms/step 0.3424 0.8794 

9 4000 10s 2ms/step 0.3275 0.8849 

10 4000 10s 2ms/step 0.3139 0.8902 

 

Test accuracy: 0.8422  

 

 
  Loss Results  

 
  Accuracy Result 

 

Confusion matrix: 

 Actual     0     1     2    3    4    5     6     7     8    9 
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Predicted                                                      

0          47     0     4    0    0    0     4     0     1    0 

1           0  2529     0    0    0    1     0     0     0    0 

2           0     0  1745    1  181    0     5     0     1    0 

3           0     0     1  898   45    0     0     0     0    0 

4           0     0    51   12  960    0    35     0     3    0 

5           0     0     0    0    0  433     0    88     0   56 

6           9     0    12    0    5    0  1298     0     0    0 

7           0     0     0    0    0    5     0  1237     1  115 

 

In above graphs  represent the loss result and accuracy result after generating optimum weights and bias and using 

those individuals train the CNN for the detecting node either normal or attackers node in the IoT Environment.  

8. CONCLUSION: 
An effective optimizations approach that may be used to create optimal weights and biases for a CNN model 

trained on the N-BaIoT dataset is the Hybrid Crowd Search and Brainstorming Nature-Based approach. The 

programmed effectively approaches discovering the optimal weights and biases for a CNN model by combining the 

search skills of the Crow Search programmed with the exploration capabilities of the Brainstorming Nature-Based 

Algorithm. The ranges of weight and bias, as well as the number of iterations and population size utilized, might 

affect the algorithm's output. Better test accuracy and classification outcomes are possible because to the algorithm-

generated optimal weights and biases that boost the CNN model's performance. When applied to the N-BaIoT 

dataset and other similar datasets, the Hybrid Crowd Search and Brainstorming Nature-Based Algorithm shows 

promise as a means of optimizing CNN model performance. Additional study can uncover this algorithm's usefulness 

in different settings. 
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