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Abstract: In the present transmission systems, it has become mandatory to utilize the available resources and also to 
substitute it with the renewable energy sources at the earliest. The optimal utilization of the resources provides an 
added advantage of reduction of its cost to the end consumers of electrical energy. In this paper, a multi- objective 
optimal power flow (OPF) in the existence of FACTS devices has been proposed for an integrated transmission system. 
The uniqueness of this paper is the choice of the multi-objective function. The objective function includes minimization 
of voltage deviation, power loss and negative social welfare (NSW). The reduction of loss and NSW ensures the 
reduction of per-unit charge of electricity at the customer-end leading to a greater customer satisfaction. The FACTS 
device used for the problem is Unified Power Flow Controller (UPFC). The hypothesis has been applied on an IEEE 
30 bus system. The Mouth Flame Optimization Algorithm has been used for the optimization of objective function. The 
results obtained have been presented, compared and analysed in detail. 

 

 

1. INTRODUCTION 

India is an overpopulated nation with growing power demand. The deregulation of the power industry has further 

increased the pressure on the transmission corridors in the country. Consequently, optimization of power flow has 

gained immense importance in the power world. At the same time, the use of FACTS devices in the AC transmission 

system is the only cost-effective solution to match the high efficiency of the HVDC systems. 

M.O.Lawal et.al [1] suggested a technique for handling the congestion constraints in an optimal power flow process 

for hydro-thermal system. A power flow tracing strategy is used to locate generators that lead to line congestion and 

penalize them by increasing their outputs to accomplish this remedy. The congestion is then eliminated by setting a 

penalized value for the maximum power of the generators affected. I.Batra et.al [2] explained the implementation of 

the TECM-PSO algorithm (TECM) to the non-linear congestion management problem of a deregulated power system 

for the advanced twin extremity mapping of the chaotic map. K. Teeparthi et.al [3] implemented the hybrid PSO-APO 

algorithm considering the wind and thermal generators for contingency conditions.  

Power system problems have been successfully resolved with FACTS devices [4]. A method to install a Unified Power 

Flow Controller (UPFC) at the proper position while taking contingencies was proposed by Visakha et al. in [5]. In the 

presence of TCSC, The optimal power flow of a power system with renewable systems has been performed by Nusair 

et al. [6]. Authors have used OPF when surrounded by FACTS devices to cut expenditures [7]. In the presence of 

TCSC and UPFC, the authors have performed OPF for an integrated wind farm system to reduce expenses [8]. 

FACTS device deployment and tuning must be done properly in order to address the various power system problems. 

Power system congestion and contingency issues have been successfully resolved with IPFC [9,10]. Since an IPFC 

has multiple terminals, it is necessary to plan the ideal position for each IPFC converter [11]. A voltage index-based 

contingency analysis has been proposed in [12]. For the purpose of enhancing voltage stability, Kumar et al. [13] 

have suggested a cat swarm optimization-based approach of IPFC placement. For voltage stability, Verma et al. [14] 

suggested placing FACTS devices in the ideal location. Control of FACTS devices has been studied in the context of 
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integrated power systems [15, 16]. In addition to technical concerns like voltage improvement, the positioning and 

sizing of FACTS devices for the highest social welfare, lowering the cost of load shedding and building new branches 

has been suggested in [17]. It has been noted that increasing social welfare is a matter that is more in line with the 

application of optimization. For a multi objective function, [18, 19] developed and successfully tested a combination 

of optimal power flow and placement and sizing of FACTS. 

The conventional OPF focuses solely on the prices charged by suppliers. The idea of consumer advantage must be 

included into the market model so that consumers can be considered. A product's consumer benefit is the value it 

adds to the user's life. Consumer gain can be expressed mathematically as a function of demand. For the provider, 

it's like cost, but with a minus sign. Social welfare can be calculated by subtracting the total consumer benefits from 

the total supplier expenses once consumer benefit has been specified. 

In this paper, a multi-objective OPF for an integrated power system has been proposed. The transmission network 

consists of the conventional generators, solar and a wind power unit. The objective of optimization is the minimization 

of losses voltage deviation and improvement of social welfare. Since, it is a minimization function; a negative social 

welfare has been developed to fit the objective function. The objectives have been achieved in three steps. Firstly, an 

OPF of the integrated system has been performed for the multi-objective function. An index based optimal position 

for the placement of UPFC has been then sorted in the power system. The UPFC has been optimally tuned for further 

achieving the objectives. Finally, the integrated system has been once again optimized for the realization of the 

objectives of testing the system for its durability, contingency analysis has been performed on the system. The results 

have been presented and analyzed which emphasizes on the robustness of the system under unstable operating 

conditions. An IEEE 30 bus system has been used for the study. The Moth Flame optimization algorithm and an IEEE 

30 bus system have been used for the study.   

2. MULTI OBJECTIVE PROBLEM FORMULATION 

The work consists of minimization of the multi-objective function which consists of the following objectives 

Objective 1: Negative Social Welfare 

In order to maximise social welfare, one must raise the demand side cost, also known as the seller side cost, while 

lowering the generating side cost. Social welfare is defined as the difference between the overall benefits of buyers 

and sellers. Since it is a minimization function, hence a negative of the social welfare is minimized.  
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Where,  

C(Pg) = Cost of generation 

PGi = Power generation at bus i 

agi, bgi, cgi= generator cost coefficients 

B(Pd) = Demand side bidding 

adi, bdi, cdi= Load cost coefficients 

Pdi Real Power demand at bus i 

Objective 2: Minimization of Power Loss 
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Where, 

Vi, Vj= Voltage at bus i, j in p.u. 

Objective 3: Voltage deviation minimization 

The voltages must be correctly maintained in order to lessen the voltage collapse in order to obtain a decent voltage 

profile and reduce the large voltage swells. The following is the objective function for reducing voltage deviation: 

    (5) 

The voltage at the bus m and the number of buses are both represented by mV
 and BN
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min max

cr cr cr   
 

Vvr is the shunt converter voltage magnitude (p.u), δvr is the shunt converter phase angle, Vcr is the series converter 

voltage magnitude (p.u), δcr is the series converter phase angle.  

3. PROPOSED METHODOLOGY 

The multi-objective OPF problem is solved in the following step by step procedure- 

1. The solar and wind power units are placed at chosen buses in the transmission system. 

2. The OPF is conducted for the multi objective function. 

3. The location for the placement of UPFC is calculated using L-index.   The L-index measures the actual state 

of stability of the system with respect to its stability limit. It measures the stability of the complete system: 
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Where αL, αG are the load and generator buses respectively. The L index varies in the range between 0 to 1. L = 0 at 

no load while it is 1 at a point near voltage collapse. 

4. The OPF and optimal tuning of the UPFC is performed for the multi objective function. 

5. The robustness of the system is tested by performing contingency analysis of the above system.  

 

Figure 1: Block diagram of proposed methodology 
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4. MOTH FLAME OPTIMIZATION 

It is an optimization concept inspired by nature. The moths' nighttime navigation strategy served as inspiration for the 

algorithm. The moths move at a constant inclination to the moon. The moths also have a propensity to circle the lights 

in a spiral motion. It is presumed that the moths symbolize the multi-objective function's solution. The moths' location 

in the space is one of the problem's variables. The mathematical modelling of the Moths’ behavior is as mentioned 

below: 

Where S is the spiral function, Mi is the i-th moth, Fj denotes the j-th flame, and In light of these considerations, we 

define the MFO algorithm's logarithmic spiral as follows: 

 (10) 

 

 (11) 

Where Di denotes the separation between the i-th moth and the j-th falme, b is a constant used to specify how the 

logarithmic spiral will look, and t is a random value between the range [-1,1] and is  given by: 

| |i j iD F M= −
 (12) 

Where Mi is the ith moth for the jth flame and Di is the distance between them. 

 

Figure 2: Flow Chart of Moth Flame Algorithm 
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5. RESULTS AND DISCUSSION 

An IEEE 30 bus system with 41 transmission lines, 5 PV buses, one slack bus and remaining load buses have been 

shown in Fig. 1. Only load buses have been considered for UPFC placement.  The last two thermal generators at bus 

23 and 27 are replaced with solar and wind generators respectively. The generator reallocation for IEEE-30 bus 

system is studied. The OPF is performed for single objective functions followed by the multi-objective function 

optimization and the results have been compared in Table 1. OF1 represents the objective Negative Social welfare, 

OF2 represents Voltage Deviation, OF3 represents active power loss and OF4 represents Multi-objective 

Optimization. It is observed OF1 achieves the minimum value of NSW, OF2 achieves minimum voltage deviation 1.2 

p.u. OF3 attains minimum active power loss of 4.24 MW, while with the multi-objective function reasonably optimum 

values of all the four objectives have been achieved. Equal priority has been given to each of the objectives in this 

study, but the weightage can be changed as per requirement. 

 

Figure 3 Modified IEEE 30 Bus Transmission System 

Table-1 Generation reallocation using MFO algorithm without UPFC on IEEE 30 bus system 

S.No Parameter OF1 OF2 OF3 OF4 

1 
Real power generation 

(MW) 

PG1 153.7853 50.0000 50.0000 54.1313 

PG2 43.9717 80.0000 80.0000 58.3613 

PG5 20.3108 50.0000 50.0000 50.0000 

PG8 10.0000 60.0000 42.6456 60.0000 

PGs 35.0000 35.0000 35.0000 35.0000 

PGw 30.0000 30.0000 30.0000 30.0000 

2 Total Active power generation (MW) 293.0678 305 287.6456 287.4926 

3 Total real power generation cost (Rs/hr) 586.4685 792.5050 721.3178 712.1188 
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S.No Parameter OF1 OF2 OF3 OF4 

4 Active power Loss (MW) 9.6678 21.6000 4.09 4.24 

5 Valve point effect(Rs/hr) 613.6008 835.3258 763.6632 761.4361 

6 Voltage deviation (p.u.) 2.2036 1.2071 1.2753 1.2127 

7 Carbon Emission(ton/hr) 0.1283 0.0595 0.0509 0.0491 

8 FPL 49.4666 49.4666 49.4666 49.4666 

9 FPG 586.4685 792.5050 721.3178 712.1188 

10 NSW 537.0019 743.0384 671.8512 662.6522 

11 Objective function 537.0019 1.2071 4.2456 1.1932e+03 

Table-2 Severity Index values for all BUSES of IEEE 30 bus system 

RANK BUS NUMBER LJ 

1 30 0.0816 

2 26 0.0785 

3 9 0.0741 

4 29 0.0673 

5 24 0.0612 

6 19 0.0593 

7 18 0.0586 

8 25 0.0567 

9 23 0.0532 

10 20 0.0531 

11 21 0.0519 

12 15 0.0509 

13 14 0.0489 

14 22 0.0437 

15 27 0.0434 

Table-3 Generation reallocation using MFO algorithm with UPFC at bus 30 on IEEE 30 bus system 

S.No Parameters OF1 OF2 OF3 OF4 

1 
Real power 

generation (MW) 

PG1 153.0473 75.3153 56.9351 73.0849 

PG2 43.3022 80.0000 80.0000 64.0341 

PG5 19.6081 50.0000 50.0000 50.0000 

PG8 10.0000 35.0000 35.0000 35.0000 

PGs 35.0000 35.0000 35.0000 35.0000 

PGw 30.0000 12.0000 30.0000 30.0000 

2 Total Active power generation (MW) 290.9576 287.3153 286.9351 287.119 

3 Total real power generation cost (Rs/hr) 579.4931 754.0696 708.1938 680.1837 

4 Active power Loss (MW) 7.5575 3.9153 3.5351 3.7190 

5 Valve point effect(Rs/hr)  605.6101 808.4632 752.6550 737.4227 
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S.No Parameters OF1 OF2 OF3 OF4 

6 Voltage deviation (p.u.) 0.3185 0.3046 0.3128 0.3132 

7 Carbon Emission(ton/hr)  0.1268 0.0642 0.0518 0.0528 

8 PQ send 0.0882 0.0879 0.0885 0.0884 

9 PQ rec 0.0834 0.0839 0.0844 0.0843 

10 

 Vcr 0.0350 0.0350 0.0350 0.0350 

Size Tcr -87.1236 -87.1236 -87.1236 -87.1236 

 Vvr 1.0061 1.0060 1.0062 1.0062 

 Tvr -13.7096 -11.4163 -10.3741 -10.7152 

11 FPL 49.4666 49.4666 49.4666 49.4666 

12 FPG 579.4931 754.0696 708.1938 680.1837 

13 NSW 530.0265 704.6030 658.7272 630.7171 

14 Objective function 530.0265 0.3046 3.5351 1.0339e+03 

Table-4 Generation reallocation using MFO algorithm with UPFC at bus 26 on IEEE 30 bus system 

S.No Parameters OF1 OF2 OF3 OF4 

1 
Real power generation 

(MW) 

PG1 153.0166 84.6901 56.8950 73.0806 

PG2 43.2944 80.0000 80.0000 63.9987 

PG5 19.6062 50.0000 50.0000 50.0000 

PG8 10.0000 35.0000 35.0000 35.0000 

PGs 35.0000 25.8898 35.0000 35.0000 

PGw 30.0000 12.0000 30.0000 30.0000 

2 Total real power generation cost (Rs/hr) 579.3646 778.4442 708.0964 680.0312 

3 Active power Loss (MW) 7.5172 4.1799 3.4950 3.6793 

4 Valve point effect(Rs/hr)  605.4616 835.5996 752.5318 737.2706 

5 Voltage deviation (p.u.) 0.3157 0.3022 0.3124 03126 

6 Carbon Emission(ton/hr)  0.1268 0.0719 0.0518 0.0527 

7 QUPFC (p.u) -0.0579 -0.0556 -0.0571 -0.0571 

8 FPL 49.4666 49.4666 49.4666 49.4666 

9 FPG 579.3646 778.4442 708.0964 680.0312 

10 NSW 529.8980 728.9776 658.6298 630.5646 

11 Objective function 529.8980 0.3022 3.4950 1.0297e+03 

It is observed from Table-2 that the Bus 30 is the most severe bus followed by Bus 26 as indicated by its L-index. 

UPFC has been placed at bus 30 and bus 26 and the results are presented in Table 3 and Table 4 respectively. L-

index is compared with and without UPFC in Fig. 2. It is observed that the L-index of the severe lines have been 

reduced by the placement of UPFC. Contingency analysis is done for the above system. The most severe 

contingencies and the lines most effected by the above contingencies are depicted in Table 5, It is observed that line 

no. 28-27, 9-10 and 27-30 are the most severe contingencies and the buses effected by it are 30 and 19 respectively. 

The line power flows in the above contingency conditions have been compared in Table-6. 
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Fig. 4 Comparison of L-index with and without UPFC. 

Table-5 Line failures rated as "severe" in descending Lj order 

S. No. 
Line outage Severity bus 

SEB REB Lj max Value BUS no with Lj max 

1.  28 27 0.3737 30 

2.  9 10 0.1729 19 

3.  27 30 0.161 30 

4.  27 29 0.1443 30 

5.  10 21 0.1282 21 

6.  4 12 0.1265 14 

7.  25 27 0.1247 26 

8.  10 20 0.1217 20 

9.  6 28 0.1136 30 

10.  19 20 0.1064 19 

11.  29 30 0.1053 30 

12.  6 8 0.0975 30 

13.  1 3 0.0935 30 

14.  3 4 0.0928 30 

15.  22 24 0.0924 26 

16.  2 5 0.0917 30 

17.  4 6 0.0908 30 

18.  10 22 0.0901 30 

19.  2 6 0.0897 30 

20.  12 15 0.0864 30 

21.  6 10 0.0862 30 
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S. No. 
Line outage Severity bus 

SEB REB Lj max Value BUS no with Lj max 

22.  23 24 0.0858 30 

23.  2 4 0.085 30 

24.  18 19 0.0849 30 

25.  21 23 0.0848 30 

26.  5 7 0.0836 30 

27.  8 28 0.0835 30 

28.  12 14 0.0833 30 

29.  12 16 0.0832 30 

30.  15 18 0.083 30 

31.  14 15 0.0816 30 

32.  15 23 0.0816 30 

33.  16 17 0.0812 30 

34.  6 7 0.0806 30 

35.  6 9 0.0795 30 

36.  10 17 0.0794 30 

37.  24 25 0.0737 30 

Table 6 Contrast of line flows under normal and line outage conditions 

SEB REB 
Power flow in line 

limit (MVA) 

Line flows under normal 

condition 

Line flow under Line 

outage of 28-27 

1 2 100 0.3105 - 0.1964i 0.2384 - 0.3564i 

1 3 100 0.2308 - 0.2109i 0.2616 - 0.2686i 

2 4 100 0.1675 - 0.1614i 0.2260 - 0.1731i 

3 4 100 0.2027 - 0.2058i 0.2317 - 0.2568i 

2 5 100 0.3651 - 0.2641i 0.3921 - 0.2730i 

2 6 100 0.1421 - 0.2719i 0.2000 - 0.3023i 

4 6 100 0.1613 - 0.2111i 0.1756 - 0.2118i 

5 7 100 -0.0860 - 0.0573i -0.0603 - 0.0606i 

6 7 100 0.3181 - 0.1650i 0.2918 - 0.1604i 

6 8 100 -0.2261 - 0.2583i -0.1384 - 0.2406i 

6 9 100 0.0334 + 0.0326i 0.1104 - 0.0406i 

6 10 100 0.0874 - 0.0505i 0.1313 - 0.0941i 

9 11 100 -0.3500 + 0.3493i -0.3500 +0.3467i 

9 10 100 0.3834 - 0.3163i 0.4604 - 0.3843i 

4 12 100 0.1288 - 0.1514i 0.2000 - 0.2069i 

12 13 100 -0.3000 - 0.0135i -0.3000 - 0.0143i 

12 14 100 0.0750 - 0.0155i 0.0864 - 0.0206i 
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SEB REB 
Power flow in line 

limit (MVA) 

Line flows under normal 

condition 

Line flow under Line 

outage of 28-27 

12 15 100 0.1712 - 0.0325i 0.2116 - 0.0592i 

12 16 100 0.0706 - 0.0049i 0.0899 - 0.0163i 

14 15 100 0.0122 + 0.0021i 0.0233 - 0.0023i 

16 17 100 0.0351 + 0.0142i 0.0541 +0.0035i 

15 18 100 0.0594 - 0.0042i 0.0656 - 0.0065i 

18 19 100 0.0269 + 0.0057i 0.0330 +0.0036i 

19 20 100 -0.0681 + 0.0398i -0.0620 +0.0378i 

10 20 100 0.0914 - 0.0497i 0.0853 - 0.0475i 

10 17 100 0.0553 - 0.0733i 0.0364 - 0.0627i 

10 21 100 0.1967 - 0.1499i 0.2484 - 0.1919i 

10 22 100 0.0695 - 0.0411i 0.1637 - 0.0994i 

21 23 100 0.0194 - 0.0330i 0.0694 - 0.0714i 

15 23 100 0.0399 + 0.0030i 0.0836 - 0.0228i 

22 24 100 0.0689 - 0.0401i 0.1606 - 0.0931i 

23 24 100 0.0271 - 0.0136i 0.1200 - 0.0761i 

24 25 100 0.0081 + 0.0149i 0.1855 - 0.0880i 

25 26 100 0.0355 - 0.0238i 0.0358 - 0.0241i 

25 27 100 -0.0275 + 0.0388i 0.1391 - 0.0453i 

28 27 100 0.1610 - 0.0870i - 

27 29 100 0.0621 - 0.0171i 0.0630 - 0.0189i 

27 30 100 0.0712 - 0.0171i 0.0724 - 0.0193i 

29 30 100 0.0371 - 0.0062i 0.0374 - 0.0068i 

8 28 100 0.0725 + 0.0423i 0.0214 +0.0585i 

6 28 100 0.0892 - 0.0467i -0.0212 +0.0240i 

The Optimal power flow for line 28-27 contingency are compared in Table 7. For the above contingencies an UPFC 

is placed in at bus 30 and the results have been presented in Table 8. It is observed that the loss has been reduced 

from 7.67 MW to 5.81 MW respectively for line 28-27 contingency. 

Table 7 Optimal power flows for various objective functions with line 28-27 contingency and renewable 

energy sources without UPFC 

S.No Parameter OF1 OF2 OF3 OF4 

1 
Real power generation 

(MW) 

PG1 154.7089 50.0000 50.0000 50.0000 

PG2 44.6334 80.0000 65.9036 80.0000 

PG5 20.7118 50.0000 50.0000 50.0000 

PG8 11.9230 60.0000 60.0000 46.0748 

PGs 35.0000 35.0000 35.0000 35.0000 

PGw 30.0000 30.0000 30.0000 30.0000 

2 Total Active power generation (MW) 296.9771 305 290.9036 291.0748 
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S.No Parameter OF1 OF2 OF3 OF4 

3 Total real power generation cost (Rs/hr) 599.5968 792.5050 731.8436 734.9881 

4 Active power Loss (MW) 13.5770 21.6000 7.5036 7.6748 

5 Valve point effect(Rs/hr) 628.9318 835.3258 778.2820 778.0069 

6 Voltage deviation (p.u.) 3.7781 2.5095 2.7190 2.7793 

7 Carbon Emission(ton/hr) 0.1302 0.0595 0.0508 0.0524 

8 FPL 49.4666 49.4666 49.4666 49.4666 

9 FPG 599.5968 792.5050 731.8436 734.9881 

10 NSW 550.1302 743.0384 682.3770 685.5215 

11 Objective function 550.1302 2.5095 7.5036 1.7309e+03 

Table 8 Optimal power flow for various objective functions with contingency at line 28-27 and renewable 

energy sources with UPFC at Bus 30 

S.No Parameters OF1 OF2 OF3 OF4 

1 
Real power 

generation (MW) 

PG1 154.6545 77.3962 59.0389 74.4099 

PG2 43.6828 80.0000 80.0000 64.8082 

PG5 19.7207 50.0000 50.0000 50.0000 

PG8 10.0000 35.0000 35.0000 35.0000 

PGs 35.0000 35.0000 35.0000 35.0000 

PGw 30.0000 12.0000 30.0000 30.0000 

2 Total Active power generation (MW) 293.0580 289.3962 289.0389 289.2181 

3 Total real power generation cost (Rs/hr) 686.1970 859.4231 813.3162 786.6665 

4 Active power Loss (MW) 9.6580 5.9962 5.6389 5.8181 

5 Valve point effect(Rs/hr)  713.3383 914.5940 859.1175 844.4137 

6 Voltage deviation (p.u.) 0.4490 0.4348 0.4422 0.4427 

7 Carbon Emission(ton/hr)  0.1296 0.0658 0.0531 0.0542 

8 PQsend 0.1190 0.1186 0.1190 0.1190 

9 PQrec 0.0935 0.0938 0.0945 0.0945 

10 

 Vcr        0.0350 0.0350 0.0350 0.0350 

Size Tcr    -87.1236 -87.1236 -87.1236 -87.1236 

 Vvr        1.0146 1.0145 1.0146 1.0146 

 Tvr    -24.0483 -22.5569 -20.9503 -21.2679 

11 FPL 49.4666 49.4666 49.4666 49.4666 

12 FPG 686.1970 859.4231 813.3162 786.6665 

13 NSW 636.7304 809.9565 763.8496 637.1999 

14 Objective function 636.7303 0.4348 5.6389 1.3633e+03 

The voltage profile of the system with and without FACTS devices has been depicted in Figure 3. The convergence 

of the multi-objective function without and with UPFC has been compared in Figure 4. The negative social welfare 

with and without UPFC under various system conditions is shown in Figure 5. 
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Figure 5 Voltage profile of the multi-objective function. 

 

Figure 6 Convergence of the Multi-objective function. 

 

Figure 7 Comparison of Negative Social Welfare with and without UPFC 
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A stable power infrastructure is essential to luring in industry and international investment. Consumer participation in 

the electrical market will grow in significance as the industry undergoes further restructuring. Everyone involved in the 

electricity system benefits when everyone has access to the price information they need to make informed choices 

about their energy consumption. Consumers will adjust their energy usage to reflect the value they place on it when 
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they become exposed to price volatility. The market will be able to make more informed long-term decisions, such as 

whether and where to invest in expanding the gearbox system, with the support of supplier and consumer input. With 

the help of FACTS devices, renewable energy sources already a viable alternative to conventional power systems 

can be made even more stable and reliable. The OPF in the presence of renewable generation effectively improves 

the power flow capacity of the system. Optimal tuning and placement of UPFC further improves the efficiency of the 

system. The social welfare is found to improve by 18% after the implementation UPFC in the desired location. Moth 

Flame optimization is an efficient optimization algorithm which is suited for the multi-objective problem. UPFC being 

more cost-effective in comparison to the other FACTS devices in the market is a viable option. 
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