
International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

674 

Robust Analysis of XXE Attack Produced by Malware 

Surbhi Prakash1, Prof. AK Mohapatra2 

1 PhD Scholar, Indira Gandhi Delhi Technical University for Women, New Delhi, India. 

1 Professor, Indira Gandhi Delhi Technical University for Women, New Delhi, India. 

 

Abstract: Malware Analysis is one of the major growing sections in the cyber security area. Various trends and types 
have been introduced in the industry for example static malware analysis, Dynamic malware analysis, hybrid malware 
analysis and machine learning-based malware analysis techniques. There is various malware introduced for example 
virus, Worms, ransomware, spyware, botnets, etc. 
Security threats have increased drastically over the period. From viruses, spyware, worms, trojans, and ransomware 
to many zero-day Malware is reported and exploited in different platforms.    Platforms like Windows, Android, and 
Cloud (Iaas or Paas). The Phenomenon is like attackers always making targets to humans via social engineering 
methodology or Phishing. When we talk about humans, the first thing that comes to mind of an attacker is the platform 
from which they will be able to concentrate on the target. The basic approach used mainly in detecting Malware in any 
platform is signature-based detection, which is quite beneficial. Still, as Malware is designed to be more obfuscated, 
detecting those malicious activities using a signature-based approach takes a lot of work. After the signature-based 
method, the behavior-based process is used to detect Malware. As some drawbacks appeared in both approaches, 
then, researchers found methodologies that can use Machine Learning Algorithms, for example, KNN, Random Forest, 
Nearest Neighbor, etc. 

Keywords: Malware, vulnerability, Algorithm, XML, Detection. 

 

1. INTRODUCTION 

The purpose of malicious content detection is usually to provide the information we need to respond to a network 

intrusion. Our goals will typically be to determine exactly what happened, and to ensure that we’ve located all infected 

machines and files. When analyzing suspected malware, our goal will typically be to determine exactly what a 

particular suspect binary can do, how to detect it on our network, and how to measure and contain its damage. Once 

we identify which files require full analysis, it’s time to develop signatures to detect malware infections on our network. 

As we’ll learn throughout this project, malware analysis can be used to develop host-based and network signatures. 

This review includes different methods for feature extraction static analysis, Dynamic analysis, and hybrid analysis 

[1]. 

In this paper mainly we concentrate on the XML-based attack produced in any application where we have any upload 

functionality, so we designed one framework using machine learning language and Python to detect XXE vulnerability 

in we greater percentage. As in Owasp 2017 standard XXE is reported as a vulnerability at the fourth number and in 

updated version 2021 it is considered under the Injection section. 

1.1 Type of Malware Analysis Techniques 

On the basis of the literature review we have come up we have analysis of how many types of malware are there and 

the types of tools used for analysis. 

Malware analysis can be defined as malicious file analysis techniques including mostly executable files which are not 

human-readable [2]. 

So, we need some different techniques like static analysis and dynamic analysis. 

 

 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

675 

Basic Static Analysis 

Basic malware analysis includes observing files whether the file is malicious or not. Files with their signature 

identification can be included in this. Sometimes it provides sufficient information but mostly it does not provide fruitful 

information [1]. 

Basic Dynamic Analysis 

Basic malware analysis involves running the executables and observing the behavior it provides. quite more efficient 

results as compared to basic static analysis. Sometimes some people analyze. The program without having 

programming knowledge. 

Advanced Static Analysis 

Advanced static analysis consists of reverse- engineering, knowledge of disassembly, code constructs, and Windows 

operating system concepts. In Advanced static analysis, the code is executed in CPU and provide a better result [3]. 

Advanced Dynamic Analysis 

Advanced dynamic analysis consists of a debugger which is used to get the internal information of any malicious 

program. It is the best technique that is used to extract meaningful feature sets to analyze them [3 ]. 

Types of Malware 

There are different families of malware that come under this category. Different features of different families provide 

new characteristics of each sample and risk rate. Some of the malware types are: 

Backdoor: Malicious code which installs itself on the computer without the permission of an authenticated user. They 

steal the information without permission [6]. 

Botnet: Like a backdoor, it also gets unauthorized access to the computer but all the systems infected by the same 

botnet receive the same infection from the same command [6] 

Downloader: Downloaders can be defined as malicious code which used to download more malicious software. They 

spread in the system. rigorously and affect the system [6]. 

Information-stealing malware: Malware included in this category is malicious code that is used to steal information 

such as passwords, online banking, and email information [3][1]. 

Rootkit:  Malicious code designed to conceal the existence of other code. Rootkits are paired up with different 

malware codes and give remote access to computers to infect the computer [3]. 

Spam-sending malware: Malware that infects an authenticated user's system and then uses that system only to 

send spam to earn some income from unfair means [5]. 

Worms and viruses: These malicious codes infect the system by replicating the files within the different files like 

exe, and pdf. Worms and viruses affect the boot sector and many important software of the system [5][6]. 

1.2 SPECIFICATION OF DATASET 

Dataset is an important parameter to analyze the different features of any file. This leads to the definition of more than 

thirty thousand features, which is a large feature set that covers a wide range of sample characteristics. The collection 

of datasets is from Virus Total private API [1]. Another analysis was on opcodes by using different machine learning 

algorithms [4]. DLL files for sandbox analysis is done in some analysis process [6]. Total Samples were collected 

from Virusign, Malware Bazar, and InQuestLabs. 

2. DESCRIPTION OF XML ISSUE 

In this paper, we have concentrated on the detection of XML-based vulnerabilities basically as XXE and Billion laugh 

attacks designed one Framework that can detect XXE in several applications and compared the previously designed 

parser with the newly designed Framework. 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

676 

XML External Entity attack is one of the major vulnerabilities in those applications that parse the XML inputs, this 

vulnerability occurs when an XML entity is being passed through the weakly configured Parser. 

This attack may lead to the disclosure of confidential data, a denial-of-service attack which is also known as a Billion 

Laugh attack, or server-side request forgery. 

XML 1.0 standard defines the structure of XML document.  There is one concept exit which is used for storage and 

known as entity. There are different types of entity exits for example external and Parameter often Known as External 

entity.    

How Malware Can Lead to XML External Entity Attack 

As malware is malicious software it will be injected in the DTD (external DTD), Document type definition, and when 

the parser is not configured properly, its vulnerable XML will be uploaded and parsed by the parser and uploaded to 

the website and exploit the application which result in Local File inclusion, Remote code execution or DOS.  

Table 1. Type of XML attacks 

XML Injection 

XML XSS 

XML Billion Laugh 

Server-Side Request 

Forgery 

XML External Entity 

XML Schema Poisoning 

XML Path 

Blind XXE 

XML Tautology 

XML Rpc File Access 

2.1Testing for configuration of Parsers based on Modern Language 

XML Parser is being designed for Parsing. Parsing is a process of refining components from a document to be 

uploaded on the server for the client services. Important data should be parsed with the proper security 

implementation. There should be a firewall in the network so that it will allow for parsing specific data of users. In this 

research work, we have collected 12 modern parsers which are mostly used in the industry for the purpose of parsing 

data which have a high rate of confidentiality. 

Testing of Parsers has been done on the bases: 

Table 2. Factors of Parsers 

 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

677 

 

Graph 1. Result for Severity Levels of Different Parser 

2.2 Methodology for static testing 

In Static testing Methodology we include only steps for manual testing and analyze those results. Execution of Payload 

and command resides under Advanced static testing or dynamic testing. 

 

Fig 1. Flow Diagram for analysis 

Creation of Framework on mutation-based test generation for XML Injection. A FRAMEWORK FOR XMLi TESTING 

We introduce a framework on Mutation-based test generation for XML Injection), a framework for testing web services 

against XMLi attacks. This is equipped with a set of mutation operators that can manipulate XML in order to generate 

all four types of XMLi attacks. For Type 3 (Replicating) and Type 4 (Replacing) in which XMLi attacks carry nested 

attacks in the form of XML content, Technique relies on a constraint solver and attack grammars to generate the 

nested attacks (also called as malicious content), making them more effective in circumventing the validation 

mechanisms of web services. First, need to work on mutation operators for generating each type of XMLi attack. 

Then, we describe in detail how malicious content (nested attacks) are generated for XMLi of types 3 and 4. Finally, 

we define the general test generation strategy implemented in this technique for the detection of successful XMLi 

attacks.  



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

678 

1. Need to study Mutation Operators which will be used for attack generation. 2. Producing Nested Attacks 3. Domain 

Constraints 4. Attack Grammer 5. using Constraint Solving Produce malicious constraints 6. Mutations based test 

generation 7. Study on Json. 

 

Fig 2. Framework Designed for Final Results 

The above diagram depicts the working of the Framework in the final phase here we have code for Parser as 

well, where we have designed parsers with the help of a modern parser that can able to parse malware as 

well. 

<?xml version=”1.0”  ?> 

<address> 

     <friend /> 

     <name>John <nickname>Spike</nickname> Smith</name> 

     <streetAddress>123 Maple Ave. </streetAddress> 

</address> 

my  $text; 

                my  $tag 

               m{^(.*)< (.*?)>$}s; 

               $text = $1; 

               $tag  = $2; 

( 

    [  “address” , “’’ ], 

    [   “name” , “” , “John” ] 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

679 

) 

Our   @tree = (“xml”,  “”);                #Parsed XML Tree 

Our   $context =   \@tree;                  #Context stack 

Our    @context = ();                      #Current context 

$/  =   “>”; 

While  (<>) 

{     

                 Last  if   $_ eq  “”;         #End of File 

                 # There might be text in front of the XML element. 

                  my  $text; 

                  my  $tag; 

                  m{^(.*)<(. *?)>$}s; 

                  $text  =  $1 

                  $tag   =  $2 

                   If    ($text   ne  “”) 

                  { 

                             Push  @{$context},  $text; 

                   } 

} 

If      ($tag =~ m{ 

                    ^(/?)                  # closing  tag 

                     (\S+)                # tag name 

                     #  Optional attributes 

                     ( 

                        #  <space>  <attr-name> = “<attr-value>” 

                          (?;\s+ 

                                [\w:]+    #Attribute name 

                                = 

                                \”[^\”]”\”    # Attribute value 

                           

                                                  Fig 3. Creating XML Parser 

3. OUTPUTS OF FRAMEWORK 

It has been implemented in two languages Python and PHP. The database used is MySQL and the server used is 

Xampp. 

Dashboard functionality itself defines the work done by the framework for testing and providing outputs. For the 

execution of this work, we have taken 20 link URLs as our dataset is different from Parsers. We have done testing of 

10 modern parsers and obtained output of their vulnerabilities in the above figure and graph in the section of testing 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

680 

results for Parsers. Now we have taken website data for testing and finding the vulnerabilities based on XML in those 

web applications. They provided us with response codes as per their functionality and response length to verify what 

amount of data was present in the web application during testing. As in the proof of work figures below, we can 

observe that in the first step executable tool asks for the link to the target website, After entering the target URL it will 

provide the output of the header or we can say the information of Banner Grabbing. After getting information of Banner 

grabbing then again it will ask for a target URL with a parameter then it will define the existence of the vulnerability in 

the web Dashboard of Framework Uploading Files Sending files for analysis Test cases execution Details of interface 

Summary Results: 1. Vulnerability 2. Response code 3. Response Length application after getting a vulnerability true 

positive result it will show the response code of the website and the current status of the website 

Different algorithms used for malware analysis: Nave baye, Decision tree, Knn, Boosted J48, SVM, Random Forest, 

Gradient Boosting Decision Tree, Artificial Neural Network. In this work we have implemented framework based on 

Genetic Algorithm. 

We use the following standard metrics for measuring the detection effectiveness. Let TP (True Positive) be the number 

of malicious files that were correctly classified as malicious, FP (False Positive) be the number of benign files that 

were misclassified as malicious, FN (False Negative) be the number of malicious files that were incorrectly classified 

as benign, and TN (True Negative) be the number of correctly classified benign files. Detection accuracy is defined 

as [1][6]: 

Accuracy = TP+TN 

TP+TN +FP+FN 

They presented basically a malware family classification approach with limited complexity in feature design and 

mechanism employed. They also used some machine learning algorithms one as SVM, n-gram, and XGBoost. 

Evaluation measure is performed by two methods accuracy and logarithmic [2][7]. 

n m 

Logloss = -1∑ ∑ yij log(Pij) N i=1 j=1 

3.1 Proof of Work 

Observed the header information in the output 

 

Figure 4. Output of executable file 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

681 

 

Figure 5. Output of Banner Grabbing 

(ii) Enter the target URL with the parameter id and observe whether the URL is vulnerable or not finally by checking 

all the services and data of XML. 

 

Figure 6. XXE Detection 

(iii) Now check the response code. We can observe the 200 response code of www.homeshop18.com/. 

 

Figure 7. Response code of target 

4. COMPARISON OF TOOLS 

There are so many vulnerability assessment tools available in the industry which are used for vulnerability 

Assessment only. There is a list of tools and compared list which can detect XML-based vulnerabilities. XML-based 

vulnerabilities assessments being detected by only a small amount of tools. 

 

Depicted URL 
as vulnerable 

http://www.homeshop18.com/


International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

682 

Comparative Analysis 

Table 3. Comparative Analysis of Tools 

 

4.1 Results and Analysis 

In the theoretical study of vulnerabilities based on XML, we have explored many vulnerabilities but when it comes to 

the point of industrial context, we have explored that there are three major vulnerabilities based on XML. A list of 

parameter tempering attacks are: 

• Tautology attack 

• Meta Character injection  

• Comment injection attack 

• CDATA section injection attack 

• Tag injection attack 

• External entity injection attack 

• Alternate encoding attack 

• Injection via evaluation function 

 

Graph 1. Results on the basis of classification 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

683 

 

Fig 5. Pie Chart for classification of malware. 

5. OBSERVATION AND CONCLUSION 

XML Based vulnerabilities are one of the important issues in upcoming services like SOAP and Rest. All the form-

based applications are vulnerable to injection attacks. In this work I have shown the implementation of Automatic and 

Effective Framework for testing XML based vulnerabilities. I have explored three main vulnerabilities like XXE , BIL 

and XML Injection. Statistics have been given that XML injection have higher percentage among three famous 

vulnerabilities found and explored. 

ACKNOWLEDGEMENT 

I acknowledge that the data I have presented in this review is not taken by unauthorized means if data is considered 

for study purposes, then it has been mentioned in the references. I have given correct information with correct usage 

of sources. 

This work has been performed in the Ph.D. study of Indira Gandhi Delhi Technical University Women. This work has 

been verified in the software company “Kadam Technologies Pvt Ltd.” (A web and mobile design & and 

development company). 

6. REFERENCES 

[1]  R.Mosli, R. Li, B. Yuan, and Y. Pan, “Automated malware detection using artifacts in forensic memory 

images,” in 2016 IEEE Symposium on Technologies for Homeland Security, HST 2016, 2016, pp. 1–6. 

[2]  M.Karresand, “Separating Trojan horses, viruses, and worms - A proposed taxonomy of software weapons,” 

in IEEE Systems, Man and Cybernetics Society Information Assurance Workshop, 2003, pp. 127–134. 

[3]  Smartphone Market Share. Accessed: Apr. 30, 2020. [Online]. Available: https://www.idc.com/promo/ 

smartphone-market-share/os 

[4]  J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, ‘‘Significant permission identification for Machine-

Learning-Based Android malware detection,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225, Jul. 

2018 

[5]  M. Taleby, Q. Li, M. Rabbani, and A. Raza, ‘‘A survey on smartphones security: Software vulnerabilities, 

malware, and attacks,’’ Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 10, pp. 30–45, 2017 

[6]   A. A. A. Samra, H. N. Qunoo, F. Al-Rubaie, and H. El-Talli, ‘‘A survey of static Android malware detection 

techniques,’’ in Proc. IEEE 7th Palestinian Int. Conf. Electr. Comput. Eng. (PICECE), Mar. 2019, pp. 1–6 

[7] .  K. Gyamfi and E. Owusu, ‘‘Survey of mobile malware analysis, detection techniques and tool,’’ in Proc. IEEE 

9th Annu. Inf. Technol., Electron. Mobile Commun. Conf. (IEMCON), Vancouver, BC, Canada, Nov. 2018, 

pp. 1101–1107. 

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os


International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

684 

[8]  P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Rajarajan, ‘‘Android security: A 

survey of issues, malware penetration, and defenses,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 

998–1022, 2nd Quart., 2015 

[9]  M. L. Polla, F. Martinelli, and D. Sgandurra, ‘‘A survey on security for mobile devices,’’ IEEE Commun. 

Surveys Tuts., vol. 15, no. 1, pp. 446–471, 1st Quart., 2012. 

[10]  Web of Science. Accessed: Apr. 30, 2020. [Online]. Available: https:// webofknowledge.com 

[11]  Accessed: Apr. 30, 2020. [Online]. Available: https://ieeexplore.ieee. 

[12]  SpringerLink. Accessed: Apr. 30, 2020. [Online]. Available: https://link. springer.com 

[13]  H. Zhang, S. Luo, Y. Zhang, and L. Pan, ‘‘An efficient Android malware detection system based on method-

level behavioral semantic analysis,’’ IEEE Access, vol. 7, pp. 69246–69256, 2019 

[14]  S. Lou, S. Cheng, J. Huang, and F. Jiang, ‘‘TFDroid: Android malware detection by topics and sensitive 

data flows using machine learning techniques,’’ in Proc. IEEE 2nd Int. Conf. Inf. Comput. Technol. (ICICT), 

Kahului, HI, USA, Mar. 2019, pp. 30–36. 

[15]  M. Lindorfer, M. Neugschwandtner, and C. Platzer, ‘‘MARVIN: Efficient and comprehensive mobile app 

classification through static and dynamic analysis,’’ in Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf., 

Jul. 2015, pp. 422–433. 

[16]  Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, ‘‘A combination method for Android malware detection based on 

control flow graphs and machine learning algorithms,’’ IEEE Access, vol. 7, pp. 21235–21245, 2019. 

[17]  T. Gao, W. Peng, D. Sisodia, T. K. Saha, F. Li, and M. Al Hasan, ‘‘Android malware detection via graphlet 

sampling,’’ IEEE Trans. Mobile Comput., vol. 18, no. 12, pp. 2754–2767, Dec. 2019 

[18]  A. N. Mucciardi and E. E. Gose, ‘‘A comparison of seven techniques for choosing subsets of pattern 

recognition properties,’’ IEEE Trans. Comput., vol. C-20, no. 9, pp. 1023–1031, Sep. 1971. 

[19]  W. Han, J. Xue, Y. Wang, L. Huang, Z. Kong, MalDAE : Detecting and explaining malware based on 

correlation and fusion of static and dynamic characteristics, Comput. Secur. 83 (2019)208–233, 

http://dx.doi.org/10.1016/j.cose.2019.02. 007. 

[20]  Y. Gao, Z. Lu, Y. Luo, Survey on malware anti-analysis, in: 5th International Conference on Intelligent 

Control and Information Processing, ICICIP 2014 - Proceedings, 2015, pp. 270–275, 

http://dx.doi.org/10.1109/ICICIP. 2014.7010353. 

[21]  J. Singh, J. Singh, Ransomware: an illustration of malicious cryptography (2) (2019), 1608–1611, 

http://dx.doi.org/10.35940/ijrte.B2327.078219. 

[22]  W. Zhang, H. Wang, H. He, P. Liu, DAMBA: Detecting android malware by ORGB analysis, IEEE Trans. 

Reliab. 69 (1) (2020) 55–69, http://dx.doi.org/10. 1109/TR.2019.2924677. 

[23]  J. Singh, J. Singh, J. Singh, Assessment of supervised machine learning algorithms using dynamic API calls 

for malware detection assessment of supervised machine learning algorithms using dynamic API calls for 

malware detection, Int. J. Comput. Appl. (2020) 1–8, http://dx.doi.org/10.1080/1206212X.2020. 1732641. 

[24]  M. Rabbani, Y.L. Wang, R. Khoshkangini, H. Jelodar, R. Zhao, P. Hu, A hybrid machine learning approach 

for malicious behaviour detection and recognition in cloud computing, J. Netw. Comput. Appl. 151 (2020) 

102507, http://dx.doi. org/10.1016/j.jnca.2019.102507 

[25]  Wikipedia, Malware, 2020, https://en.wikipedia.org/wiki/Malware. 

[26]  Omer Aslan and Refik Samet, “A comprehensive review on malware detection approaches,” IEEE Access 

8, 6249–6271, 2020. 

[27]  Deepti Gupta, Smriti Bhatt, Maanak Gupta, Olumide Kayode, and Ali Saman Tosun, “Access control model 

for google cloud iot. In 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity),” 

IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on 

Intelligent Data and Security (IDS). IEEE, 198–208, 2020. 

[28]  Wei Yan, “CAS: A framework of online detecting advance malware families for cloud-based security,” In 

2012 1st IEEE International Conference on Communications in China (ICCC). IEEE, 220–225, 2012. 

[29]  Qublai K Ali Mirza, Irfan Awan, and Muhammad Younas, “A CloudBased Energy Efficient Hosting Model for 

Malware Detection Framework,” In 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 

1–6, 2018. 

https://ieeexplore.ieee/
http://dx.doi.org/10.35940/ijrte.B2327.078219
https://en.wikipedia.org/wiki/Malware


International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 1, pp 674-685 

685 

[30]  Deepti Gupta, Olumide Kayode, Smriti Bhatt, Maanak Gupta, and Ali Saman Tosun, “Learner’s Dilemma: 

IoT Devices Training Strategies in Collaborative Deep Learning,” In 2020 IEEE 6th World Forum on Internet 

of Things (WF-IoT). IEEE, 1–6, 2020 

[31]  Jagsir Singh, Jaswinder Singh “ A survey on machine learning-based malware detection in executable files” 

Journal of Systems Architecture(Elsevier). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
DOI: https://doi.org/10.15379/ijmst.v10i1.2630 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, 
provided the work is properly cited. 

 

mailto:https://doi.org/10.15379/ijmst.v10i3.1470

