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Abstracts: Context: FEA has been extensively used in implant dentistry to predict the biomechanical behavior of various 
dental implant designs, as well as the effect of clinical factors for predicting clinical success. Stress patterns in implant 
components and surrounding bone are well studied. Objective: To investigate the pattern of stress distribution in terms of 
equicrestal and subcrestal implant placement at various depths using short platform switching dental implants. Materials 
and Methods: 3D FEM of the mandibular anterior area was modelled with a uniformly cortical bone of 0.5 mm with an 
inner core of cancellous bone (FEM) using ANYSIS soft wear. Four implant modes were used with the following 
dimensions. Model 1. (6x4.6x3.5mm), models 2 (7.5x4.6x3.5mm), 3 (6x5.8x4.5mm), and 4 (7.5x5.8x4.5mm). For a 
realistic simulation, 100N and 200N of force were applied in axial and oblique directions (0°, 15°, and 30°, respectively). 
At different depths, both cancellous and cortical bone is evaluated for von Mises stress. Ten-noded tetrahedron 
components with three degrees of freedom per node are used to interpret translations on the x, y, and z axes. Results: 
Based on bone shape, force direction, and depth of implant placement, each of the five positions of platform-switched 
short osseointegrated implants examined by FEM simulations had a unique stress-based biomechanical behavior. 
Conclusions: Axial forces were less harmful than oblique forces. The cortical and cancellous bone experienced less 
stress because of the implantation of subcrestal implants. According to recent research, platform-switched short 
subcrestal implant models result in improved stress distribution around peri implant areas in D1 bone and the 
conservation of marginal bone loss.   

Keywords: Eqicrestal, Finite Element Model, Platform Switched Implants, Short Dental Implants, Subcrestal 

Implants Position, Von Mises Stress, D1 Bone. 

 

1. INTRODUCTION  

Periodontitis is the most common cause of tooth loss, but other factors include dental caries, injuries, 

developmental abnormalities, and genetic disorders.1 Replacement of missing teeth with dental implants has 

become an integral part of day-to-day dental practice. As a result, endosseous dental implants have gained 

widespread acceptance as a treatment option for replacing missing teeth in many clinical cases due to their 

practicality and high success rate. This rise in popularity has triggered a never-ending evolution, necessitating the 

use of implants in more difficult forms than previously thought possible.2  

Due to recent technological innovations, the dental profession has undergone revolutionary changes.3 Over the 

years, several clinical and systematic evaluations have noted a high success rate for endosseous dental implants. 

As a natural alternative to dentures, dental implants have a considerable positive impact on a person's general 

health.4 On the other hand, a number of factors might favour implant failure, with site-related issues being the 

greatest risk to implant insertion and success.5,6 Crestal bone loss for two-piece dental implants is considered 
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suitable at 1.5 mm in the first few days and 0.2 mm in the following years. The preservation of crestal bone levels is 

necessary for the defence of gingival margins and interdental papillae, as well as the ensuing success of the 

implant-supported prosthetic restoration.7,8 Clinicians and academics from all over the world became interested in 

this failure rate, which sparked a hunt for novel methods and procedures that would increase implant success. 

Utilizing short dental implants was one such effort. 

The literature lists several initiatives to preserve marginal bone levels surrounding implants. Newer implant 

designs, surfaces, and time load strategies have reduced the risk of bone resorption.9 Platform switch short, wider-

diameter implants and subcrestal implant placement techniques have both been utilized to reduce crestal bone loss. 

Platform switching, which involves moving the micro gap site away from the bone crest using an abutment that is 

smaller than the implant neck, has been shown to reduce early MBL.10,11. 

On the other hand, there is debatable information on implants positioned subcrestally. To effectively preserve 

marginal bone levels, several writers suggested positioning the implant platform 1 or 2 mm below the alveolar 

crest.12,13 Other investigations, however, found that compared to implants placed equicrestally, the deep location of 

the IAJ caused inflammatory infiltrates to spread more widely.14,15 The condition of the bone also affects how 

successful implant therapy is over the long term, with poor bone quality resulting in lower success rates. When 

evaluating a patient's bone for implant placement, clinicians frequently utilize the Lekholm and Zarb categorization 

for bone composition (types I through IV bone).12 By referencing radiographic appearance in 1990, Misch suggested 

a taxonomy of various bone densities. Misch divided the bone consistency into four parts based on the measured 

bone density (D-1 to D-4).16 

Platform-switched implants with conical connections implanted subcrestally, up to 15 months after implant 

insertion, may be affected by certain variables. From a biomechanical perspective, the basic interplay between 

ordered living bone and dental implants determines whether any implant type or design will be successful or 

unsuccessful.17 The construction of finite element models (FEMs) in vitro aids in the understanding of principles for 

clinical application.18,19 These models clearly offer additional benefits without involving any animals or people, but 

they also deliver information on stress, strain, and implant structures using in vivo techniques. But it also evaluates 

any biomechanical issues in advance.10,11,20 FEM has recently evolved into a useful technique in implant dentistry 

for assessing stress distribution patterns. The scientific rationale for the use of short dental implants is based on the 

concept of functional surface area (FSA). Increased implant length increases the implant’s total surface area and 

improves primary stability by increasing the implant’s contact with the bone (BIC). However, the FSA, which 

transfers compressive and tensile loads to the bone, is limited to the crestal of 5-7 mm. This cannot be changed by 

lengthening the implant, while a short implant with a wider diameter offers both enhanced primary stability and 

increased FSA.21 Advantages of short dental implants include avoiding more invasive procedures thereby reducing 

morbidity and healing time. 

Two implant techniques have been proposed for preserving the degree of crestal bone surrounding implants: 

platform switching and subcrestal location.22-24 The assumption is that when an implant is placed into the alveolar 

bone, there will be an unanticipated absence of bone surrounding it, which is hard to predict in advance, despite all 

the research and developments in implant design. Even now, people still cite the seminal work on crestal bone loss 

in the first and following years.25 

1.1. Objectives of the Study 

Research hypothesis – platform switch short dental implants: whether has any significant effect on crestal bone 

changes. Also, the research question is whether different forces at varying angulations have any significant effect 

on different bone types. Based on this research question the following are the objectives of our research. 

1. To study the influences of von Mises stress in the D1 cortical and cancellous bone.  

2. To evaluate bone stress in platform-switched implants when different forces are applied (100N, 200N) in D1 

bone. 
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3. To compare stress distributions in D1 bone concerning angulation of load applied (0°, 15°, 30°) 

4. To evaluate peri-implant bone stress distribution for platform-switched implants placed at different depths 

relative to the bone types D1. 

5. To evaluate stress in D1 cortical and cancellous bone according to implant diameter and length. 

2. MATERIAL AND METHODS 

In this study, we utilized partial mode. Specific areas such as the mandibular anterior segment were constructed. 

A mandibular anterior segment with implants and superstructure was modeled on a personal computer (PC- HP 22-

C0020NE), using a finite element program (ANSYS 14.5, Pittsburgh USA). D1 models were created with an inner 

cancellous core surrounded by a 2mm thick outer cortical layer as shown in figure 1. A total of four titanium platform 

switch short implant models were created according to the length and diameter of the implant used. Model 1 was 

designed with a 6mm implant length, 4.6mm implant diameter, and 3.5mm abutment (6x4.6x3.5mm). Similarly, 

model 2 (7.5x4.6x3.5mm), model 3 (6x5.8x4.5mm), and model 4 (7.5x5.8x4.5mm) were designed with the help of 

ANSYS workbench software. (Figure 1,2). 

All the materials employed in the models were homogenous, linearly elastic, and isotropic. Anisotropic materials 

only have Young's modulus and Poisson's ratio as discrete material constants since their characteristics are the 

same in both directions. The literature was used to determine the elastic characteristics. (Table1) Most FEA models 

were deemed to have good bone-implant interfaces that accurately represented 100% osseointegration. In this 

study, the implant was surrounded by a thick cortex, simulating full osseointegration and avoiding slippage and 

separating at the implant-bone interface. 

The meshing was accomplished by issuing a meshing order. Models meshed with ten-node tetrahedron 

elements. 3D FEM geometric models are messed with by Hypermesh software (ANSYS version 14.5). Translations 

were interpreted on the x, y, and z-axis with ten nodded tetrahedron elements with 3° of freedom per node. The 

total number of elements and nodes for cortical bone, cancellous bone, implant, and abutment that were used in 

this study are as mentioned in Table 2. 

In the current study, we used the vertical and oblique forces of 100 N and 200N applied at the center of the 

occlusal surface at 0°, 15°, and 30° angulation. Forces of 100N, and 200N were chosen because this force is widely 

accepted in the literature as compared to the average magnitude of the occlusal force. A platform-switched implant 

was placed at 0mm (equicrestal), 0.2mm, 0.4mm, 0.6mm, and 0.8mm to 1mm subcrestal positions. Models were 

analyzed under axial and non-axial loads in static conditions. Von Mises stresses (in Mega Pascal’s) were obtained. 

The values thus obtained are tabulated and graphically presented. Ethical approval for this study was provided by 

the Institution Ethical Committee.  
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Figure 1: D1 Bone Model Meshed with Implants: 

 

Figure 2: 100N, 200N Forces Applied in Vertical and Oblique Directions. 

Table1: Elastic properties used in FEM model analysis. 

S.No Material Young’s Modules (MPa) Poisson’s Ratio 

1 Cortical bone 13.700(GPa) 0.30 

2 Cancellous bone 1.10(GPa) 0.30 

3 Pure Titanium 110000 (MPa) 0.33 

4 Titanium alloy  114000 (MPa) 0.30 

Table 2: Total number of elements and nodes for cortical bone, cancellous bone, implant, and abutment used in the 

FEM model. 

Model 4.6 

-6mm 

length 

Elements Nodes 

Model 4.6 

-7.5mm 

length 

Elements Nodes 

Model 5.8 

-6mm 

length 

Elements Nodes 

Model 5.8 

-7.5mm 

length 

Elements Nodes 

Cortical 

Bone 
102149 164995 

Cortical 

Bone 
101285 163693 

Cortical 

Bone 
101783 161652 

Cortical 

Bone 
101929 163582 

Cancellous 

Bone 
132893 198911 

Cancellous 

Bone 
135324 202274 

Cancellous 

Bone 
131879 197528 

Cancellous 

Bone 
134232 199288 

Implant 14230 24046 Implant 16238 26829 Implant 16238 28762 Implant 17239 29776 

Abutment 9867 15719 Abutment 10281 16282 Abutment 9965 16128 Abutment 10192 17289 
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Table 3: Descriptive Statistics of Stress in D1 Cortical Bone in 4.6 diameter implant. 

  D1 Cortical Bone (6x4.6x3.5mm) D1 Cortical Bone (7.5x4.6x3.5mm) 

   Implant position  

 Angulation 

Equicrestal 0.5mm 1mm 1.5mm 2mm Equicrestal 0.5mm 1mm 1.5mm 2mm 

Force of 

100N 

0c 8.29 9.64 10.59 12.51 15.94 9.49 9.03 9.66 11.87 14.9 

15c 18.42 17.71 19.22 18.28 23.88 16.8 16.93 18.15 17.57 22.83 

30c 25.36 24.73 26.94 13.02 14.74 23.02 23.85 25.46 12.09 12.82 

Force of 

200N 

0c 17.41 19.53 22.98 31.2 38.81 19.91 18.21 21.23 29.54 35.99 

15c 38.94 35.23 37.25 42.81 54.49 35.76 34.01 35.99 40.97 50.69 

30c 54.04 49.15 39.89 16.2 19.02 49.41 47.81 38.31 13.09 13.78 

 

 

Figure 3: Graphic representation of von Mises forces in D1 Cortical Bone in 4.6 diameter implant. 

Table 4: Descriptive statistics of stress in D1 Cancellous Bone in 5.8 diameter implant. 

  D1 Cortical Bone (6x5.8x4.5mm) D1 Cortical Bone (7.5x5.8x4.5mm) 

   
Implant position 

 Angulation 

Equicrestal 0.5mm 1mm 1.5mm 2mm Equicrestal 0.5mm 1mm 1.5mm 2mm 

Force of 

100N 

0c 7.29 7.15 7.9 9.53 10.98 7.27 6.74 7.59 9.91 10.55 

15c 13.18 13.69 15.72 14.03 17.34 13.35 13.13 15.1 14.64 16.72 

30c 18.27 19.53 22.53 11.38 11.99 18.62 18.87 21.79 19.62 22.5 

Force of 

200N 

0c 15.19 15.31 17.74 22.39 26.28 14.61 14.45 17.79 23.15 25.56 

15c 28.86 29.96 31.03 30.42 37.44 28.26 28.57 30.7 31.7 36.7 

30c 40.85 42.86 36.02 13.31 13.23 40.26 41.15 43.58 39.24 45 
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Figure 4: Graphic representation of von Mises forces in D1 Cortical Bone in 5.8 diameter implant. 

Table 5: Descriptive Statistics of Stress in D1 Cancellous Bone in 4.6 diameter implant. 

  D1 Cancellous Bone (6x4.6x3.5mm) D Cancellous Bone (7.5x4.6x3.5mm) 

  Angulation 

Equicrestal 0.5mm 1mm 1.5mm 2mm Equicrestal 0.5mm 1mm 1.5mm 2mm 

Force of 100N 

0c 2.16 1.86 2.12 2.65 2.2 1.7 1.35 1.46 2 1.55 

15c 2.64 2.29 2.2 3.29 2.56 1.9 1.53 1.6 2.31 1.72 

30c 3.16 2.6 2.48 2.12 2.56 2.11 1.64 1.7 1.84 1.44 

Force of 200N 

0c 4.11 3.61 4.38 5.7 4.85 2.99 2.69 3.42 4.22 3.3 

15c 4.73 4.35 5.33 6.97 5.63 3.23 3.01 3.9 4.84 3.59 

30c 5.44 4.86 4.36 3.51 2.92 3.43 3.17 3.51 3.53 3.79 

 

Figure 5: Graphic representation of von Mises forces in D1 Cortical Bone in 4.6 diameter implant. 
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Table 6: Descriptive Statistics of Stress in D1 Cancellous Bone in 5.8 diameter implant. 

  D1 Cancellous Bone (6x5.8x4.5mm) D1 Cancellous Bone (7.5x5.8x4.5mm) 

  Angulation 
Equicrestal 0.5mm 1mm 1.5mm 2mm Equicrestal 0.5mm 1mm 1.5mm 2mm 

Force of 100N 

0c 2.66 1.46 2.11 2.37 1.62 5.02 3.12 4.07 4.79 4 

15c 2.8 1.55 2.42 2.8 2.03 4.74 3.51 5.27 5.87 4.83 

30c 3.41 1.81 2.61 1.47 2.67 5.69 3.82 3.86 3.7 4.73 

Force of 200N 

0c 1.33 1.83 1.43 1.35 2.85 2.64 2.72 2.88 4.2 5.81 

15c 1.55 2.23 1.85 1.59 3.3 3.22 3.4 3.67 4.78 6.54 

30c 1.77 2.5 2.16 1.76 2.31 3.64 3.89 4.32 3.52 3.52 

 

Figure 6: Graphic representation of von Mises forces in D1 Cortical Bone in 5.8 diameter implant. 

3. RESULTS 

A total of eight models were created and categorized into four groups. Stress was evaluated at the bone-implant 

interface with two different forces (100N, 200N) in D1 bone by using Ansys software, von Mises stress was 

evaluated with the help of color-coded bands. Each band of color signified a unique range of stress values, 

represented in Mega Pascal (MPa). In all models, cortical bone exhibited maximum stress greater than cancellous 

bone. [Figure 3] With regards to angulations of load, greater stress was observed in the axial direction of 30°, 15°, 

and at least at 0° irrespective of the amount of load applied. [Figure 3] An increase in implant length did not exhibit 

stress reduction at the equicrestal position but subcrestal placement exhibited maximum stress in model 1. 

However, both models 1 and 2 showed a decrease in von Mises stress as implant diameter increased, with 5.8 mm 

implants having the lowest von Mises stress. Figuring 4 Both cortical and cancellous bone displayed their maximum 

stress with a 200N axial force. Images 3 and 4 Regardless of the direction of the force applied, both bones 

experienced more stress as the force increased. However, the axial orientation (30°) of the 200N forces showed 

significant stress. Images 3 and 4 In both groups, subcrestal placement had a little lower stress level than 

equicrestal implantation [Table 3, Figure 3,4].  

4. DISCUSSION 

In comparison to natural teeth, stress destitution in implants will differ due to the absence of periodontal 

ligament. As a result, dental implants are more at risk due to excessive load leading to peri-implantitis.26 
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Comparison of von Mises stress between Cortical vs Cancellous: In line with earlier investigations, the present 

study showed that cortical bone had the highest peak stress, and that the trabecular area experienced the lowest.27-

30 Maximum stress was noticed as the primary area of contact in cortical bone, and in the case of cancellous bone, 

it has been noticed at the apex. This is because stress concentration in cortical bone is limited to the immediate 

region surrounding the implant; in cancellous bone, stress is distributed over a much wider area. It is because the 

cancellous bone is weaker than cortical bone and is less resistant to deformation and thicker than cortical bone 

(D1).31,32 

Comparison of Forces and von Mises Stress: The current study revealed that the greater the force greater was 

stress in all bone models. The least stress was seen with a force of 100N and maximum stress with 200N force. 

(Figure 3,4, Table 3, 4) (Table 5,6). While there is no scientific proof of the amount of stress upon which remodeling 

of bone stops and reabsorption begins the greatest bone strength is the biological limit of the cortical bone.33 

Comparison of von Mises stress between Axial versus oblique load: In the current investigation, stress and the 

direction of applied force were most clearly observed in the cortical bone. Regardless of implant diameter, length, or 

depth (supracrestal / subcrestal) of placement, this investigation showed increased stress concentration in an 

oblique direction (30°) compared to an axial direction (0°). In comparison to axial forces, oblique forces are more 

damaging and cause more stress to build up near the peri-implant bone. Therefore, it is advised to prevent or 

minimize oblique pressures that concur with the work of the previous writers.34 While there is no scientific proof of 

the amount of stress upon which remodeling of bone stops and reabsorption begins, the greatest bone strength is 

the biological limit of the cortical bone.33 When the compressive stress in the cortical bone surpasses 100 to 

130MPa, bone loss owing to overloading is predicted.35 

Comparison of von Mises stress in Platform switch implants: Concerning implants that were repaired using the 

platform-switching idea, mixed results have been reported. By centralizing stress, platform-switched implants 

mechanically alter and realign stress, which ultimately affects marginal bone loss surrounding the peri-implant. 

According to the findings of the current investigation, shallow subcrestal implantation at 0.5mm caused the least 

stress in the cortical bone and at 2mm in the cancellous bone, which was consistent with the findings of other 

studies.36,37 

Comparison Between Implant Length, Diameter, and von Mises Stress: Implant shape is one of the most 

important elements that influence load transmission at the bone-implant contact.38 According to numerical statistics, 

implant diameter is more important than implant length in preventing crestal bone loss, which is consistent with our 

results.39,40 Implants with 5.8mm diameter exhibited minimum stress in all bone models in comparison with 4.6mm 

diameter implants. (Figure 4,6) 

Increased implant length increases the implant's overall surface area and improves primary integrity by 

improving bone-implant contact (BIC). However, the functional surface area (FSA), which shifts compressive and 

tensile loads to the bone, is limited to the crestal of 5-7 mm. Just by increasing implant length, FSA will not alter, 

while a short implant with a larger diameter has both better primary stability and increased FSA. Depending on the 

implant design, an increase of 1 mm in diameter will increase the surface area by 30-200 %.21 (Figure 3,4,56) 

By comparison, there was a 3.5-fold crestal stress reduction upon improving the implant diameter on the 

contrary there was only a 1.65-fold in stress reduction by increasing implant length.39 Long implants are therefore 

no longer necessary to enhance masticatory load distribution. Maximum stress is present at the principal point of 

contact in the primary interphase between the implant and bone. This phenomenon can be attributed to the 

“engineering principle” of composite beam analysis.38,40. Increasing the implant diameter has been shown in several 

FEM studies to reduce crestal bone strain. In addition, it has been suggested that the diameter of the implant is 

more essential than its length in terms of enhancing the stress distribution pattern. 

Comparison of von Mises stress between equicrestal versus subcrestal plant placement: There are conflicting 

claims about the placement of subcrestal implants in the literature. Few studies have examined the idea of a 

platform switch and the implantation of short subcrestal implants under biomechanical circumstances. This 
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investigation into D1 bone may be the first of its kind. Cortical bone stress considerably Thus, it is suggested that 

subcrestal implantation leads to less cortical bone stress. This condition is due to several biomechanical actions 

that subcrestal implants take when they do not engage the crestal cortical bone. Additionally, due to its elastic 

modulus, cancellous bone showed the least stress at the subcrestal position. It encourages better stress distribution 

as a result.29,30 As the anterior mandible is the cosmetic zone, a marginal bone at the implant neck is essential for 

implant survival and aesthetics. (Figure 4,6) 

CONCLUSIONS 

The calculated results from the current study show that, for short implants, implant diameter is judged to be a 

more efficient design component than the length of the implant. This is to limit the danger of bone overloading and 

promote implant biomechanical stress-based efficacy. According to recent research, platform switch short 

subcrestal implant models result in improved stress distribution around peri implant areas in D1 bone and the 

conservation of marginal bone loss. Nevertheless, all the models examined for this study showed von Mises stress 

concentrations that were within a human cortical bone's biological range. 
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