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Abstracts: Recently, discretization of continuous distribution was enchanted by many researchers especially in the field 
of reliability engineering and life testing. This is because the existing models are unsuited for many practical situations. 
For discretizing continuous distributions, various methods are available in literature. Among them a newly developed 
method is the two-stage composite discretization method which includes three different methodologies. Using these 
methodologies, we propose some new discretized distributions obtained through the discretization of Rayleigh 
distribution. We compare the hazard rate functions of Rayleigh, Discrete Rayleigh with the newly proposed discrete 
distributions. The flexibility of the model is illustrated using immunogold assay data.  
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1. INTRODUCTION  

Recently discrete distributions played a key role in modeling survival data. In survival analysis, usually the 

variables are measured are in continuous scale. But there exist many practical situations which demands discrete 

measurements. For example, the time spent by a patient in a hospital is counted as number of days or weeks. Here 

instead of measuring the lifetime in a continuous scale we treat it in discrete manner. Also, the discrete 

measurements will make the models more appropriate. Usually, in reliability analysis continuous distributions play a 

vital role in modeling. But sometimes it produces a lot of derivational difficulties, and the approximation procedures 

results in discretization. Since too many discrete distributions are available in literature, they are not able to model 

many practical situations and hence many continuous distributions must be discretized. Now a days there are 

various methods available for discretizing continuous distributions. Alzaatrech et al. (2012) and Chakraborty (2015) 

carried out a survey of these methods and using them many continuous distributions were discretized. For details 

see, Lisman and van Zuylen (1972), Stein and Dattero (1984), Kemp (1997), Das Gupta (1993), Gupta and Kundu 

(1999), Szablowski (2001),  Roy (2003,2004), Inusah and Kozubowski (2006), Kozubowski and Inusah (2006), 

Krishna and Pundir (2009), Jazi et al. (2010), Nekoukhou et al. (2012), Lekshmi and Sebastian (2014), Nekoukhou 

Hamed Bidram (2015), Chakraborty (2015), Chakraborty and Chakravarthy (2016), Josmar et al.(2017), Berhane 

Abebe and Rama Shanker (2018), Ganji and Gharari (2018), Jayakmar and Sankaran (2018), Yari and Tondpour 

(2018), Abebe and Shukla(2019), Krishnakumari and Dais (2020), Krishnakumari and Dais(2021) and Morshedy 

et.al (2020). So, we concentrate our study in the development of some new discretized distributions from their 

continuous counterpart. 

The remaining part of the paper is organized as follows. In section 2 the discretization method developed by Yari 

and Tondpour (2018) is discussed. Some new discrete lifetime distributions are proposed and studied in section 3. 

In section 4, using hazard rate functions, we compare the newly proposed distributions with the existing 

distributions. Parameter estimation is done in section 5. An applications of the newly proposed New discrete 

Rayleigh (Type1) distribution is discussed in section 6. We concluded the article by section 7. 
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2.  DISCRETIZATION METHODS 

In recent years discretization of continuous distribution has got great recognition in many real-world scenarios. A 

lot of discrete distributions are so far proposed and studied by many researchers. For details, see the books by 

Balakrishnan and Nevzorov (2003), Jonson et al. (2005) and Consul and Famoye (2006). In this section we are 

concentrating on the discretization of Rayleigh distributions using the methods proposed by Yari and Tondpour 

(2018). He proposed three methodologies and each of which consists of two stages. In the first stage a new 

continuous random variable is constructed from the underlying continuous random variable and in the second 

stage, this new random variable is discretized by maintaining the same hazard rate function. The following are the 

three methodologies used. 

2.1 Methodology I 

Here, in the first stage, a continuous random variable X with cumulative distribution function F(x) and support [0, 

∞) is used to construct a new continuous random variable X1 having hazard rate function 

      (1) 

In the second stage, a discrete analogue Y of X1 is derived by using the following methodology where hazard 

rate function of Y retains the form of hazard rate function of X1. If the continuous random variable X1 has survival 

function Sx1 (x) and hazard rate function  (x) then the survival function of the discrete analogue Y is given by 

 

and the corresponding probability mass function is 

 

 

 

 (2) 

 

If P(Y=k) is such that the total probability is not equal to one, then we shall multiply every P(y) by the positive 

constant w that will ensure the total probability equals to one. Hence the probability mass function takes the form  

 

 

 

(3) 

 

where m can be infinite or infinite since is always between zero and one. 

Now, by using (3) the resulting pmf of Y in new methodology is 

; P(Y=k) 
= 

  

 
 

  P(Y=y) 
= 
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P(Y=y) = 

 

(4) 

 

2.2 Methodology II 

In this method, in the first stage a new continuous random variable X1 having hazard rate function 

 

is constructed using continuous random variable X with cumulative distribution function FX(x) and support [0, ∞). 

Then, in the second stage, a discrete analogue Y of X1 is derived by using (3). Also note that discrete distributions 

obtained in this methodology has increasing hazard rate function. 

2.3 Methodology III 

Here, in the first stage a continuous random variable X with cumulative distribution function FX(x) and Support [0, 

∞). is used to construct a new continuous random variable X1 having hazard rate function 

 

Then in the second stage, a discrete analogue Y of X1 is derived by using (3). Here the hazard rate function of Y 

is increasing (decreasing) on (a, b) where a, b € R+ if and only if FX(x) is decreasing (increasing) on the same 

interval. 

In the first two methods, hazard rate functions of Y are decreasing and increasing respectively and in the third 

method it can be increasing, U shaped or modified unimodal. An important advantage of the method is that discrete 

analogues obtained have monotonic and non-monotonic hazard rate functions. 

3. SOME NEW DISCRETE LIFETIME DISTRIBUTIONS 

Rayleigh distribution is the commonly used probability distribution for modeling data relating to reliability and life 

testing. It has emerged as a special case of Weibull distribution. It is widely used in communication theory, physical 

sciences, and reliability engineering. A discrete analogue of continuous distribution is derived by maintaining one or 

more discriminative property of the continuous distribution. A discrete Rayleigh distribution is used in the field of 

reliability approximation. For details see Roy (2004). In this section, we introduce some new discrete distributions 

derived from the continuous Rayleigh distributions namely, New discrete Rayleigh (Type I, II and III) using the 

methodologies explained in section 2. 

3.1 New Discrete Rayleigh Distribution (Type I) 

The probability density function and distribution function of a Rayleigh distribution with parameter  > 0 is given 

respectively by 
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        (5) 

and 

 

Using methodology 1 in section 2, the pmf of New Discrete Rayleigh distribution of Type I is obtained as 

  (6) 

The plot of New Discrete Rayleigh Type I distribution is given in Figure. 1. 

 

Figure. 1.New Discrete Rayleigh Type I Distribution 

Its hazard rate function is given by 

         (7) 

and is decreasing. 

3.2 New Discrete Rayleigh Distribution (Type II) 

 The pmf of New Discrete Rayleigh distribution of Type II is obtained by using methodology 2 in section 2 as 

  (8) 

Figure. 2 gives the plot of New Discrete Rayleigh Type II distribution. 
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Figure. 2. New Discrete Rayleigh Type II Distribution 

Its hazard rate function is increasing, and it is 

       (9) 

3.3 New Discrete Rayleigh Distribution (Type III) 

By applying methodology 3 in section 2, the pmf and hazard rate function of a discrete Rayleigh distribution of 

Type III is obtained respectively as 

  (10) 

and 

       (11) 

The hazard rate function is U shaped if  > 2. The plot of New Discrete Rayleigh 

Type III distribution is given in Figure. 3. 
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Figure. 3. New Discrete Rayleigh Type III Distribution 

4. COMPARISON 

Lifetime data are usually measured in a continuous manner. But there exists a lot of situations where it can be 

treated in a discrete way. Hazard rate is an unavoidable characteristic in reliability and life data analysis. Different 

shapes of hazard rate functions can give different distributions. Based on the conditions imposed on the 

parameters, the hazard rate functions may have increased, decreasing and bathtub shapes. Discrete analogues 

derived from the continuous distributions have the same shape as that of the continuous one for the same 

parametric values. In this section we discuss about the acquiescence of this fact.  

Here, we consider the comparison of Rayleigh distribution, discrete Rayleigh distribution introduced by Roy 

(2004) and the newly proposed New Discrete Rayleigh distributions (Type I, Type II and Type III) using hazard rate 

function. 

Hazard rate function of Rayleigh distribution is given by the equation 

hx(x)=x/  2  

Its graph is given in figure 4.  

 

Figure 4. Hazard plot- Rayleigh distribution 

The hazard rate function of discrete Rayleigh distribution of Roy (2004) is given by 
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Its hazard plot is given in Figure 5. 

 

Figure. 5. Hazard plot-Discrete Rayleigh Distribution 

The hazard rate function of New Discrete Rayleigh distribution (Type I, Type II and Type III) is obtained, and it is 

given in section 3 by (7), (9) and (11). 

The corresponding plots are given in Figure 6. 

   

Figure. 6. Plots of hazard rate (i) New Discrete Rayleigh Type I (ii) New Discrete 

Rayleigh Type II (iii) New Discrete Rayleigh Type III 

Figure 4 and 5 shows that hazard rate function of Rayleigh and discrete Rayleigh distributions are always 

increasing. But in the case of the newly proposed distributions for all values of , it is decreasing for New Discrete 

Rayleigh Type I and increasing for New Discrete Rayleigh Type II distribution. The hazard rate is a U-shaped curve 

for New Discrete Rayleigh Type III distribution for  > 2. 

5. ESTIMATION 

We estimate the parameters of New Discrete Rayleigh distribution Type I distribution using the method of 

proportion. 
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6. REAL DATA ANALYSIS  

As an application of New Discrete Rayleigh distribution Type I distribution, we consider the data se used by 

Cullen, Walsh, Nicholson, and Harris (1990). Here we give the counts of sites with 1, 2, 3, 4 and 5 particles from 

immunogold assay data and 122, 50, 18, 4 and 4 were the counts. Figure 7 shows the observed data. 

 

Figure 7. Observed data 

Since it has the same shape as that of New Discrete Rayleigh Type I distribution, the empirical data is fitted for 

New Discrete Rayleigh Type I distribution. The estimated value of   . The embedded graph is shown in 

figure 8. 

 

Figure 8. Embedded graph 

The goodness of fit of the proposed model is checked using chi-square statistic and it is found that the New 

Discrete Rayleigh Type I distribution is a good fit for immunogold assay data.  Also, for comparing its suitability with 

Discrete Burr XII (Type I) distribution (Yari and Tondpour (2018)), the loglikelihood, AIC and BIC values are 

tabulated and are shown in Table 1. 

Table 1: Values of MLE’s, Chi-square, LL, AIC, and BIC values 

Distribution fitted Estimated 

values 

Chi-square LL AIC BIC 

Discrete Burr XII (Type I) p=0.9554 

c=0.3596 

1.7031 -206.7 417.48 418.07 

NewDiscrete Rayleigh 

(Type I) 
=2.2 

1.439 -174.281 350.562 350.8586 
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Table 1 shows that New Discrete Rayleigh (Type I) distribution is a better model than Discrete Burr XII (Type I) 

distribution. 

Summary 

We usually encounter many practical situations where lifetimes are appropriate for discrete measurement rather 

than continuous one. In the past decades discrete distributions like Geometric and Negative binomial are used to 

model discrete lifetime data. But these distributions are not able to model many practical situations. Now a days, 

there are various discretization methods available in literature. This leads to the development of discretizing 

continuous distributions.  In this work we, derive some new lifetime distributions viz. Discrete Rayleigh (Type I, II 

and III). Since in reliability and lifetime analysis, hazard function is a chief characteristic, a comparative study based 

on hazard rate functions of these distributions with the existing distributions is also done. The study reveals that for 

all values of  , the hazard rate function is increasing for Rayleigh and discrete Rayleigh distributions. But for New 

Discrete Rayleigh Type I distribution, it is decreasing and for New Discrete Rayleigh Type II distribution it is 

increasing. The hazard rate is a U-shaped curve for New Discrete Rayleigh Type III distribution for  > 2. A real 

data analysis is carried out using immunogold assay data. The flexibility of the newly proposed model is compared 

with Discrete Burr Type I distribution and finds that the proposed model is a better model than the existing one. 
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