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Abstracts: Ultrafine dust data has seasonality. Therefore, in this study, the ARIMA model and the multiplicative SARIMA 
model, which are time series modeling methods, were estimated in consideration of seasonality, and the accuracy of the 
estimated prediction model was proposed using the MAPE measure to propose an ultrafine dust prediction model. For 
the ultrafine dust data used for the estimation of the ARIMA model, a seasonally adjusted estimate using the 
decomposition method was used assuming a multiplicative model, and the original ultrafine dust data was used for the 
multiplicative SARIMA model. The estimated prediction models were the ARIMA(0,1,4) model and the multiplicative  

 model. Residual analysis to validate the estimated ARIMA(0,1,4) model showed that the 
histogram of the Portmanteau statistic p-value was found to be significant. The predicted result increased in January and 

March, and no increase was observed from April to December. For the multiplicative   model, 
the significance probability of the chi-square statistic was significant at all lags. The prediction result showed that it 
increased in January and February, decreased continuously from March, and increased again in November. The 

prediction accuracy of the ARIMA (0,1,4) model was about 82.1%, and the multiplicative  

model about 89.5%. The multiplicative   model was found to be about 7.4% better than 
ARIMA (0,1,4) in terms of the accuracy of the prediction model. 

Keywords: ARIMA Model, Decomposition Method, Multiplicative SARIMA Model, Seasonal Adjustment, MAPE, 

Residual Analysis. 

 

1. INTRODUCTION  

The main causes and response strategies for fine dust have become important social issues. High 

concentrations of fine dust caused by climate change and environmental pollution are a great threat to our daily 

lives, such as health, life expectancy, and economic activities. Fine dust is a very small particle pollutant that floats 

or scatters in the air and is mainly generated when chemical fuels such as coal and oil are burned or when gas is 

discharged from factories and automobiles. It is divided into fine dust smaller than 10㎛ (PM10) and ultrafine dust 

smaller than 2.5㎛ (PM2.5) in diameter. As for the cause of fine dust in Korea, it is being argued over whether it 

comes from China or from domestic power plants, heating, vehicles, industrial facilities, etc. And it is also being 

confused over how to deal with fine dust generated during cooking of grilled meat and fish in indoor environments 

such as restaurants and houses. As shown in Figure 1, the public's greatest anxiety among environmental issues 

was found in the fine dust sector, which accounted for 72.9% in 2020 and 64.6% in 2022 [1]. 

 

Fig. 1. Anxiety about environmental issues 
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Since fine dust is so small in size, it stays in the air and can adversely affect health by moving into the body 

through the respiratory tract. The impact of fine dust on health is direct and has a fatal effect on children, the elderly, 

and people with respiratory diseases. Ultrafine dust (PM2.5) has a relatively smaller particle diameter than fine dust 

(PM10), and is deposited in the alveoli and has a greater effect on the respiratory system [2]. According to recent 

research results, automobile exhaust gas, heating and power generation sectors, and each workplace account for 

the largest causes of fine dust emissions in Korea. According to the Seoul Research Institute, in the case of Seoul, 

the heating and power generation sector (39%) has the highest contribution to ultrafine dust (PM2.5) emissions, 

followed by the automobile sector (25%). Among automobiles, especially diesel vehicles accounted for 60% [3]. The 

National Fine Dust Information Center explains that the concentration of ultrafine dust (PM2.5) is related not only to 

the direct emission of air pollutants, but also to meteorological and topographical conditions that affect the spread 

and accumulation of pollutants. The level of fine dust in Korea is gradually improving thanks to the efforts of the 

people and the government, but it is still 1.5 to 2 times higher than that of major overseas cities such as Paris, 

Tokyo, London, and LA. The annual average concentration of fine dust in Seoul showed a clear trend of decreasing 

until 2012, and then repeatedly increasing and decreasing [4]. 

 

Fig. 2. Changes in fine dust air pollution in Seoul by year 

At a time when public anxiety about fine dust continues, it is more important than anything else to minimize 

public anxiety. It is very hard that individual citizens can solve the fine dust problem, including the air quality 

problem. Therefore, the government should comprehensively and specifically identify the problems and establish 

improvement directions and response strategies. In this study, based on ultrafine dust data measured in Dongjak-

gu, Seoul, we propose a prediction model for ultrafine dust concentration using a time series model considering 

seasonality. 

2. Review of Previous Studies 

Fine dust was classified by the World Health Organization in 2013 as a group 1 carcinogen, most of which is air 

pollutant. In other words, fine dust has a fatal effect on people's lives and health. Therefore, the need for research in 

various aspects such as causes and countermeasures for fine dust is increasing. Most of the meteorological data 

and air quality data are used to predict the concentration of fine dust. In the methodology, various prediction 

methods such as nonlinear models using machine learning and deep learning, multilinear regression models that 

are statistical models, and time series models are used. The following is a detailed look at previous studies using 

various methods.  

K. P. Ra et al. predicted the concentration of fine dust using meteorological data and air pollutant data in an 

RNN/LSTM model [5]. Kang and Kang combined meteorological data and traffic data to predict fine dust based on 

machine learning using the Domain Adaptation method [6]. A. Chaloulakou et al. evaluated the fine dust prediction 

performance by comparing the PM10 concentration as the response variable and meteorological data as the 
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explanatory variable through an neural network model and a regression model [7]. Kim and Moon analyzed 

machine learning-based seasonal forecasting ability using PM10 as the dependent variable and 7 variables (PM2.5, 

NO2, SO2, diurnal temperature range, wind speed, humidity, visibility) as independent variables of meteorological 

and air pollution factors [8]. Lim studied a fine dust concentration prediction model using machine learning with 

PM10 as the response variable and 11 atmospheric factors as explanatory variables in consideration of correlation 

and multicollinearity [9]. Lee and Oh analyzed the correlation between humidity and fine dust concentration through 

a study on the effect of humidity on light scattering fine dust measurement [10]. Choo et al. applied a multilinear 

model and found that the cause influencing the concentration of PM2.5 in Seoul was the meteorological factor [11]. 

In addition, the concentration of fine dust has a seasonal characteristic in that the concentration increases in spring 

and winter and decreases in summer and autumn. Previous studies on this are as follows. The concentration of 

ultrafine dust in Korea, including China, Japan, and Mongolia, increases in spring and winter in average monthly 

concentration and high concentration occurrence days [12,13,14]. And among the techniques for predicting the 

concentration of fine dust, the application of the Stochastic model (time series) is known to produce high prediction 

performance when data are accumulated [15]. 

3. Research Method 

Ultrafine dust data has seasonality. Firstly, therefore, the autoregressive integrated moving average (ARIMA) 

model was applied using the seasonally adjusted values by removing the seasonality from the ultrafine dust data. 

The ARIMA(p,d,q) model is defined as follows.  

 (Equation 1) 

where, B is backward shift operator, and  is ultrafine dust time-series data with d-th order difference 

(non-seasonal differencing) to remove the trend.  and 

.  

And the seasonally adjusted estimates are calculated as follows. 

 
(Equation 2) 

where,  is the original value of ultrafine dust data, and  is an estimated seasonal component. 

Secondly, since the ultrafine dust data includes a seasonal factor, the multiplicative seasonal ARIMA model was 

applied. This model requires differencing (seasonal differencing) to remove seasonality, apart from differencing 

(nonseasonal differencing) to eliminate trend factors. The multiplicative  model is defined 

as follows.  

 (Equation 3) 

where, B is backward shift operator, and  is the D-th order seasonally differenced ultrafine 

dust time series data with d-th order nonseasonal difference and seasonal period s. 

,  , 

, . 
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And in (Equation 1) and (Equation 3),  follows the white noise process. 

The measure used to evaluate the predictive power of the ultrafine dust prediction model was the MAPE (mean 

absolute percentage prediction error) measure, which is defined as a function of prediction error, and the equation is 

as follows. 

 

(Equation 4) 

MAPE is mainly used when it affects outliers, and the lower the value, the higher the accuracy of the prediction 

model. 

4. RESEARCH RESULTS 

4.1 Constant term and ADF test 

(Table 1.) shows the results of the ADF test performed by log transformation and first order difference for 

variance stabilization and trend removal for ultrafine dust data with seasonality removed by decomposition 

assuming a multiplicative model. In the result, the p-value of the Tau statistic is less than  , so  is 

rejected and the ultrafine dust data is stationary time series data. And since the significance probability of the t-

statistic in the constant term t-test is 0.8429, which is greater than  ,  is adopted and the constant 

term is not included. 

Table 1. Ultrafine dust ADF test 

Type Lags Rho Pr < Rho Tau Pr < Tau 

ZM 

0 -100.592 0.0001 -20.54 <.0001 

1 -290.999 0.0001 -11.84 <.0001 

2 101743.1 0.9999 -6.83 <.0001 

3 117.6012 0.9999 -6.43 <.0001 

4 49.0232 0.9999 -6.97 <.0001 

5 42.7959 0.9999 -5.15 <.0001 

SM 

0 -100.592 0.0001 -20.36 0.0001 

1 -291.67 0.0001 -11.74 0.0001 

2 152657.6 0.9999 -6.76 0.0001 

3 117.7542 0.9999 -6.37 0.0001 

4 49.0445 0.9999 -6.89 0.0001 

5 42.7688 0.9999 -5.09 0.0002 

4.2 ARIMA(0,1,4) model estimation 

 The results of model identification using the default values of MINIC (minimum information criterion) using BIC 

(Bayesian information criterion) are shown in (Table 2.), and the parameter estimation results using ML (maximum 

likelihood) estimation method are shown in (Table 3.). 

In (Table 2.), the minimum value is MINIC=-3.24474, so the identified model is the MA (4) model. 
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Table 2. MA (4) Model Identification 

Model 

Lags 
MA 0 MA 1 MA 2 MA 3 MA 4 MA 5 

AR 0 -1.92739 -2.60686 -2.78833 -3.18523 -3.24474 -3.19052 

AR 1 -2.78686 -3.11044 -3.04615 -3.15371 -3.20518 -3.19505 

AR 2 -2.98471 -3.05391 -3.00847 -3.20697 -3.21153 -3.18537 

AR 3 -2.98264 -3.04544 -3.02377 -3.14775 -3.14747 -3.1186 

AR 4 -2.99968 -3.11487 -3.04763 -3.14307 -3.0807 -3.05279 

AR 5 -3.22188 -3.20984 -3.17289 -3.14973 -3.08899 -3.13259 

 As a result of estimating the parameters by applying the ARIMA (0,1,4) model to the ultrafine dust data with 

seasonality removed in (Table 3.), the p-value of parameter  is less than , so  

was rejected and all parameters are statistically significant. 

Table 3. ARIMA (0,1,4) parameter estimation 

Parameter Estimate S.E t -Value Pr >|t| 

MA1,1 1.76347 0.17625 10.01 <.0001 

MA1.2 -1.0954 0.24855 -4.41 <.0001 

MA1,3 0.82778 0.23858 3.47 0.0005 

MA1,4 -0.5057 0.15665 -3.23 0.0012 

Therefore, the estimated ARIMA (0,1,4) prediction model is as follows. 

   (Equation 5) 

4.3 ARIMA (0,1,4) model test and prediction 

As a result of the white noise test of the residuals for the ARIMA (0,1,4) model, the histogram of the p-value was 

located below the significance level  in the Portmanteau test. And the ultrafine dust predicted by the 

ARIMA (0,1,4) prediction model is as shown in (Figure. 3.), where it increased in January and March of 2023, and 

did not increase from April to December and maintained a certain level. 

 

Fig. 3. Prediction by ARIMA (0,1,4) model (constant term not included) 
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4.4 Multiplicative  model identification 

As a result of performing autocorrelation analysis by logarithmic transformation and first-order non-seasonal 

differencing and seasonal differencing on the ultrafine dust raw data, it appeared as a stationary time series in the 

sample autocorrelation function (SACF) and partial autocorrelation function (SAPCF) figures. As a result of the 

constant term test, the p-value of the t-statistic was 0.9017, indicating that the constant term was not included at the 

significance level . Therefore, among several candidate models with the model identification criterion set to 

, the models that passed the Portmanteau test criteria for the residuals were the multiplicative 

 model and the multiplicative   model. Then, between the two 

models, the multiplicative  model was selected on the criterion for the Bayesian 

information criterion (BIC) with the minimum value and the minimum variance . 

Table 4. Model identification of  

 
Candidate models 

portmanteau test 

 
  

 reject   

 accept 7.174967 0.060472 

 accept 9.588324 0.063659 

 reject   

 reject   

 reject   

 reject   

 reject   

 reject   

4.5 Multiplicative  model estimation 

(Table 5.) shows the parameter estimation results of the multiplicative  model. Since 

the t-statistic p-value of the estimated parameter is less than the significance level , the estimated 

parameter is statistically significant. 

Table 5. Parameter estimation of  

Parameters by Maximum Likelihood Estimation 

Parameter Estimate S.E t -Value Pr >|t| 

MA1,1 0.81574 0.08675 9.4 <.0001 

MA2,1 0.55592 0.15741 3.53 0.001 

Therefore, the estimated multiplicative  prediction model equation is as follows. 

 (Equation 6) 

4.6 Multiplicative  model test and prediction 

(Table 6.) is the portmanteau test result of the residuals for the multiplicative  model. At 

all lags, since the p-value of the chi-square ( ) statistic is less than , the residuals follow white noise. 
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Table 6. Portmanteau test of residuals 

Autocorrelation Test of Residuals 

Lags 
Chi-

Square 

Pr > 

ChiSq 
Autocorrelation Coefficient 

6 5.59 0.2321 0.043 0.207 -0.129 -0.173 -0.007 -0.122 

12 8.47 0.5827 -0.148 0.015 0.113 0.038 0.094 -0.053 

18 14.13 0.5892 0.126 0.204 0.01 -0.052 -0.054 -0.126 

24 18.79 0.6586 0.185 -0.119 0.015 -0.006 0.049 0.063 

(Figure. 4.) is the predicted result of ultrafine dust by multiplicative  model. Looking at 

the forecast results, it was found that it increased in January and February 2023, decreased continuously from 

March, and increased again in November. 

 

Fig. 4. Prediction by  model 

4.7 Prediction Model Accuracy Evaluation 

 The ARIMA (0,1,4) prediction model and the multiplicative  prediction model were 

found to follow white noise as a result of residual analysis, so the two prediction models are models that can be 

used for prediction. As a result of using the MAPE (mean absolute percentage prediction error) measure to evaluate 

the prediction accuracy of the two models, it was found that the ARIMA (0,1,4) model had a prediction error of about 

17.9% on average with MAPE = 0.179241, and that the multiplicative  model's 

MAPE=0.105281 showed an average prediction error of about 10.5%. That is, the prediction accuracy of the ARIMA 

(0,1,4) model was about 82.1%, and the prediction accuracy of the multiplicative model was about 89.5%. 

Therefore, the multiplicative  model was estimated to have about 7.4% better predictive 

power than ARIMA (0,1,4). 

CONCLUSION 

In a situation where people's anxiety and fear about ultrafine dust are amplifying, fine dust prediction research is 

very important. In this study, a prediction model for ultrafine dust was proposed using a time-series modeling 

method. The ultrafine dust data used in the study was the final definitive measurement data provided by Air Korea 
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(http://www.airkorea.or.kr) [16]. The data was measured from January 2018 to December 2022 in Dongjak-gu, 

Seoul, and was used after converting it to a monthly average. The Stochastic model of time series for prediction 

were the ARIMA model and the multiplicative SARIMA model. Both the ARIMA (0,1,4) model, which was estimated 

after removing seasonality through decomposition, and the multiplicative  model, which 

was estimated after performing first-order nonseasonal differences and seasonal differences on the raw ultrafine 

dust data, turned out to be valid models. However, the prediction results and accuracy were different. The prediction 

results of the ARIMA (0,1,4) model showed an increase in January and March of 2023 and no increase from April to 

December. The prediction result of the multiplicative  model showed an increase in 

January and February, a decrease from March, and an increase again in November, and showed higher prediction 

accuracy in terms of prediction accuracy. Therefore, we propose a multiplicative  model 

with less prediction error as a prediction model for ultrafine dust. As seen in this study, it is difficult to build a 

prediction model for ultrafine dust with high prediction accuracy. There are several predictive modeling methods, 

and even if the validity of the prediction models is proven, the prediction results bring different results. Therefore, 

continuous research on prediction models to improve the prediction accuracy, such as machine learning and deep 

learning methods including time series modeling methods, is required. 
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