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Abstracts: This paper compares a new Cubature Kalman Optimizer performance against the Teaching Learning 
Based Optimization in solving the CEC2014 test suite. The Cubature Kalman Optimizer is inspired by the 
estimation algorithm named Cubature Kalman filter, while the Teaching Learning Based Optimization is inspired by 
the teaching-learning process in a classroom. Both algorithms can be characterized as a parameter-less nature. 
Graphical analysis based on convergence curve shows that Cubature Kalman Optimizer has better exploration 
than Teaching Learning Based Optimization in the first half of the total iteration that make it able to find better 
solution. On the other hand, for boxplot, both algorithms show comparative based on consistency. Meanwhile, 
statistical analysis shows that the Cubature Kalman Optimizer algorithm is a promising approach compared to 
Teaching Learning Based Optimization. 
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1. INTRODUCTION  

Exact optimization methods often struggle to solve complex nonlinear and multimodal problems 

encountered in many real-world applications within a reasonable computational time. As a result, 

researchers turn to metaheuristic optimization methods to tackle such challenges. Metaheuristic 

algorithms are versatile techniques that can be adapted to address a wide range of optimization 

problems. These algorithms rely on a collection of agents to search for near-optimal solutions within a 

reasonable computational effort. Typically, they start by initializing the population and evaluating the 

fitness of the initial population. Subsequently, these algorithms iteratively generate a new population 

to replace the current one by defining the search direction of the agents. The way these steps are 

performed distinguishes one algorithm from another (Talbi, 2009). 

In recent years, the versatility and effectiveness of metaheuristic algorithms in solving large-scale and 

diverse optimization problems have captivated researchers' attention. Metaheuristics can be classified 

into five categories based on their sources of inspiration: evolution algorithms, swarm intelligence 

algorithms, physics-inspired algorithms, human and animal lifestyle, and estimation-based algorithms. 

In the evolution category, the Genetic Algorithm (GA) (Holland, 1984) simulates Darwinian evolution. It 

involves selection, crossover, and mutation to replace the worst solution in each generation. Solutions 

improve based on the best solutions obtained from particles and the swarm. Swarm intelligence 

encompasses the Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), which simulates fish 

schooling and bird flocking to determine the best course of action. Each particle represents a potential 

solution with its position and velocity. The best solution influences velocity updates in the entire population 

and the solutions of individual particles. The physics-inspired category includes the Black Hole (BH) 

(Hatamlou, 2013) algorithm, which emulates the phenomenon of black holes attracting stars in space. It 
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mimics the massive gravitational power of black holes and their ability to engulf nearby objects. In the 

human and animal lifestyle, the Teaching Learning Based Optimization (TLBO) (Rao et al., 2012) 

algorithm draws inspiration from the teaching-learning process in a classroom. It simulates the influence 

of a knowledgeable teacher on learners. TLBO comprises two phases: the teacher phase and the learner 

phase. The teaching phase represents the exploitation component, where the teacher's knowledge guides 

the learners in improving their solutions. The learners adjust their solutions based on the teacher's 

solution, incorporating the best attributes to refine their solutions towards the global optimum. In the 

estimation- based category, popular algorithms include the Simulated Kalman Filter (SKF) (Ibrahim et al., 

2016), inspired by the Kalman Filter. SKF operates similarly to the KF algorithm (Kalman, 1960), going 

through the prediction, measurement, and estimation steps in every iteration. Another estimation-based 

algorithm is the Single Agent Finite Impulse Response Optimizer (SAFIRO) (Ab Rahman et al., 

2018), which draws inspiration from unbiased finite impulse response techniques (Shmaliy et al., 2016; 

Uribe-Murcia et al., 2021). 

The Cubature Kalman Optimizer (CKO) (Musa et al., 2023) algorithm is a new proposed algorithm 

draws inspiration from the estimation algorithm known as the Cubature Kalman filter (CKF). As an 

optimizer, the CKO agent works as CKF to estimate an optimal or near-optimal solution. The overall 

process of the CKF algorithm is divided into six phases: initialization, fitness evaluation and update best 

solution, solution prediction, simulate measurement, measurement prediction, and solution update. The 

first two processes are similar to most metaheuristic algorithms. In contrast, the proposed optimizer has 

four dedicated operations: solution prediction, simulated measurement, measurement prediction, and 

solution update phases. The purpose of the simulated measurement phase is to simulate the actual 

measurement output in a real estimation process, while the solution prediction, measurement prediction, 

and solution update phases are adopted from the CKF. CKO only has one parameter, which makes it 

easy to implement. The formulation of CKO aims to strike a balance between the exploration and 

exploitation phase. It has produced competitive results compared to well-known algorithms, including 

single-agent finite impulse response optimizer (SAFIRO), single-solution simulated Kalman filter (ssSKF), 

simulated Kalman filter (SKF), asynchronous simulated Kalman filter (ASKF), particle swarm optimization 

algorithm (PSO), genetic algorithm (GA), grey wolf optimization algorithm (GWO), and black hole 

algorithm (BH). 

The literature demonstrates that CKO consistently outperforms algorithms belonging to different 

classes of metaheuristics, excluding those inspired by human and animal behavior. However, to further 

investigate the performance of CKO compared to a human and animal behavior algorithm, we conducted 

a comparative analysis between CKO and TLBO. This research aims to fill the gap in understanding the 

relative strengths of these algorithms by evaluating their performance on 30 benchmark functions from 

the CEC2014. The obtained results clearly indicate that CKO exhibits significant advantages over TLBO, 

thereby emphasizing the importance of this research. 

2.     THE CUBATURE KALMAN OPTIMIZER (CKO) ALGORITHM 

The cubature Kalman optimizer (CKO) is a single-agent metaheuristic algorithm based on CKF 

framework, where agent is employed to estimate the global minima or maxima. The process of the CKO 

algorithm is divided into six main phases: (1) initialization, (2) fitness evaluation and update (3) solution 

prediction, (4) simulate measurement, (5) measurement prediction, and (6) solution update as depicted in 

Figure 1. 
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Figure 1. The CKO algorithm flowchart. 

The detailed process of the CKO is given as follows: 

2.1. Initialization 

The CKO begins with the random initialization of its agent, , within the search space as (1), where 

   is the lower limit,  is the upper limit of the search space in the  th dimension. Additionally, the initial 

value of the solution error, , is generated using a random value as (2). 

  Equation (1) 

  Equation (2) 

2.2.    Fitness Evaluation, Update  

The iteration begins with the fitness calculation of the solution. The fitness of the solution  is 

compared to the fitness of  whereby  will be updated if the better 

solution  (  for minimization problems, or  for maximization 

problem) is found. 

2.3.    Solution Prediction Phase 

At first, the  in (3) is determined, where  is the current iteration, and  is the maximum number of 

iterations. 

 

 
Equation (3) 

Initialization using Equation (1) and (2) 

Fitness Evaluation & Update   

Solution Prediction using Equation (3) until (7) 

Simulate Measurement using Equation (8) 

Measurement Prediction using Equation (9) until (14) 

Solution Update using Equation (15) and (16) 

Return   
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The following equations determine the predicted solution candidate, , where  in (4) is the 

generated cubature point,  in (5) is the propagation of both cubature points randomly in the search 

space by using a random element,  . 

  Equation (4) 

  Equation (5) 

 

 

Equation (6) 

Two cubature point involved in these steps is indicated by  (first point) and  (second point). 

Once the predicted solution candidate is calculated, the solution error, , must be predicted using 

(7), where  is used to present the system error. 

 
 

Equation (7) 

2.4.    Simulate Measurement Phase 

The measurement step performs the role of feedback of estimation process. The measurement of 

each solution is simulated based on the following (8): 

  Equation (8) 

where the simulated measurement value for the agent,  may take any random position in a locus 

. A random element,  in  is responsible for the 

stochastic aspect of the CKO algorithm. 

2.5. Measurement Prediction Phase 

The predicted measurement vector,  is determined by the following equations: 

  Equation (9) 

  Equation (10) 

 

 

Equation (11) 

where  in (9) are the generated cubature point and  in (10) is the propagation cubature point 

randomly in the search space by using a random element, . Then, the measurement error, 

 and the cross-error,   need to be estimated for gain calculation. These two types of error 

can be obtained by using (12) and (13), respectively: 

 
  Equation (12) 

 
 Equation (13) 

where   is measurement noise. Then, the gain,  can be calculated using (14): 

  Equation (14) 
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2.6.    Solution Update Phase 

Finally, the solution,  and solution error,  are updated by the following equations: 

  Equation (15) 

  Equation (16) 

This process is iteratively updated until the stopping condition is fulfilled. The pseudo-code of CKO is 

given in Figure 2. 

Pseudocode: CKO Algorithm 

01: Initialize solution distribution:  using Equation (1) 

02: Initialize solution error:  using Equation (2) 

03: Initial the best solution:  

   for   

04:  Fitness calculation:   

   if  <  

05:      

   end 

06:   Update radius:  using (3) 

07:   Generate cubature points:  using Equation (4) 

08:   Propagate cubature points:  using Equation (5) 

09:   Generate predicted solution:  using Equation (6) 

10:   Generate predicted error:  using Equation (7) 

11:   Simulate measurement:  using Equation (8) 

12:   Generate cubature points:  using Equation (9) 

13:   Propagate cubature points:  using Equation (10) 

14:   Generate predicted measurement:  using Equation (11) 

15:   Calculate measurement error:  using Equation (12) 

16:   Calculate cross error:  using Equation (13) 

17:   Calculate Gain:  using Equation (14) 

18:   Calculate estimated solution:  using Equation (15) 

19:   Calculate estimated error:  using Equation (16) 

 end 

  20: return  

Figure 2. The CKO algorithm pseudocode. 

3. Teaching Learning Based Optimization 

The Teaching Learning Based Optimization (TLBO) algorithm is formulated based on the principles of 

teaching and learning processes observed in a classroom environment. TLBO serves as a population- 

based optimization algorithm, where learners represent potential solutions to the optimization problem. 

The formulation of TLBO involves the following steps: initialization, teaching phase and learning phase. 
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In the initialization phase, the population of learners,  distributed within the search space randomly 

as in (17), where  is the lower limit,  is the upper limit of the search space. 

 ) Equation (17) 

3.1. Teaching Phase 

The algorithm TLBO begins by calculate the mean of all ‘learners’ solutions,  and identifying the 

best solution as the ‘teacher’,   for that iteration, . Then,  will try to move mean  towards its own 

level, so now the new mean will be  designated as . The difference between the existing, 

 and the new mean,  given in (18): 

  Equation (18) 

where  is a random number in the range [0,1], and  is a teaching factor that decides the value of the 

mean to be changed. The value of  can be either 1 or 2 which is again a heuristic step and decided 

randomly with equal probability as (19). 

  Equation (19) 

This heuristic step helps regulate the modification of the mean and introduces variability into the 

algorithm. After that, update the teacher's solution using (20), where  is known as new solution and 

 is current solution. 

  Equation (20) 

3.2.      Learning Phase 

In the learning phase, each learner increases their knowledge by two different mean: one through 

input from the teacher in (21) and other through interaction between themselves in (22). A learner 

interacts randomly with other learners with the help of group discussions, presentations, formal 

communications, etc. A learner learns something new if the other learner has more knowledge than him 

or her. 

  Equation (21) 

 
 

Equation (22) 

Finally, evaluate the objective function for the new solution, . If the new solution is better than the 

current solution,  re-place the current solution with the new solution. The process repeated the 

teaching and learning phases until a predefined termination criterion is met. 

4. Experiment Setup 

The performance of the proposed CKO is compared with the TLBO using CEC2014 Benchmark Test 

Suite for single-objective optimization. The CEC2014 test suite comprises of 30 functions consisting of 

mixture of: three unimodal test suite (Fn1, Fn2 and Fn3) to investigate the exploration capability, 13 

simple multimodal test suite (Fn4 until Fn16) to investigate the exploitation capability, six hybrid test suite 

(Fn17 until Fn22) to investigate the capability of solving complex problem, and eight composition test 
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suites (Fn23 until Fn30) to investigate the balance between exploration and exploitation capability. The 

test functions are tabulated in Table 1. 

Table 1. The CEC2014 Benchmark Test Suite 

  Type   No Function 
Ideal 

Fitness 

Unimodal  

  function 

1 Rotated High Conditioned Elliptic function 100 

2 Rotated Bent Cigar function 200 

3 Rotated Discus function 300 

Simple multimodal  

function 

4 Shifted and Rotated Rosenbrock’s function 400 

5 Shifted and Rotated Ackley’s function 500 

6 Shifted and Rotated Weierstrass function 600 

7 Shifted and Rotated Griewank’s function 700 

8 Shifted Rastrigin’s function 800 

9 Shifted and Rotated Rastrigin’s function 900 

10 Shifted Schwefel’s function 1000 

11 Shifted and Rotated Schwefel’s function 1100 

12 Shifted and Rotated Katsura function 1200 

13 Shifted and Rotated HappyCat function 1300 

14 Shifted and Rotated HGBat function 1400 

15 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s function 1500 

16 Shifted and Rotated Expanded Scaffer’s F6 function 1600 

Hybrid  

  function 

17 Hybrid function 1 (N=3) 1700 

18 Hybrid function 2 (N =3) 1800 

19 Hybrid function 3 (N =4) 1900 

20 Hybrid function 4 (N =4) 2000 

21 Hybrid function 5 (N =5) 2100 

22 Hybrid function 6 (N =5) 2200 

Composition 

 function 

23 Composition function 1 (N =5) 2300 

24 Composition function 2 (N =3) 2400 

25 Composition function 3 (N =3) 2500 

26 Composition function 4 (N =5) 2600 

27 Composition function 5 (N =5) 2700 

28 Composition function 6 (N =5) 2800 

29 Composition function 7 (N =3) 2900 

30 Composition function 8 (N =3) 3000 

The comparison between CKO and TLBO is conducted over 50 trials, each with 1 million function 

evaluations and complexity set to 50-dimension sizes. For algorithm parameter setting, the coefficient 

value of CKO algorithm is set to 12, while the random value in TLBO is set between 1 and 2. The 

MATLAB code for the CEC 2014 benchmark suite can be accessed on the website http://github.com/P-N- 

Suganthan/CEC2014. In this experiment, the Wilcoxon signed rank test is conducted to provide an 

unbiased observation, based on their performance differences at a 5% significance level. 

5.      RESULT AND DISCUSSION 

This section presents the results of the CKO algorithm, compared against TLBO algorithms using the 

CEC 2014’s benchmark suite. Tables 2 present the mean of the fitness achieved by both algorithms for 

unimodal, simple multimodal, hybrid and composition benchmark functions. The numbers written in bold 

indicate the best mean value obtained for the corresponding objective function among both algorithms. 

The CKO is able to find better performance for 22 functions from the 30 test functions. 

http://github.com/P-N-
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Table 2. Average Fitness Value 

Function Average fitness CKO Average Fitness TLBO 

Fn1 1.79E+06 6.55E+05 

Fn2 5855.3 5908.3 

Fn3 301.67 345.58 

Fn4 503.08 492.85 

Fn5 520 521.11 

Fn6 618.91 637.87 

Fn7 700.01 700.12 

Fn8 803.46 981.69 

Fn9 1051.4 1091 

Fn10 1232.6 5232.2 

Fn11 5648.3 10753 

Fn12 1200 1203.2 

Fn13 1300.4 1300.6 

Fn14 1400.1 1400.3 

Fn15 1511 1575.7 

Fn16 1618.8 1620.3 

Fn17 1.53E+05 1.73E+05 

Fn18 3374.6 3586.5 

Fn19 1936.9 1922 

Fn20 2241.9 2321 

Fn21 1.14E+05 98795 

Fn22 2974.7 3007.2 

Fn23 2644 2644 

Fn24 2662.2 2600 

Fn25 2713.7 2700 

Fn26 2700.5 2759 

Fn27 3536.4 4117.2 

Fn28 4711.3 5279.2 

Fn29 10468 4.64E+07 

Fn30 18347 16079 

5.1. Unimodal function 

The results in table 2 (Fn1, Fn2 and Fn3) show the CKO algorithm better than TLBO algorithm in solving 

unimodal function, especially for solving Fn2 and Fn3. The CKO algorithm managed to converge near the 

ideal fitness value. The comparison of boxplots and convergence curves in solving unimodal function are 

shown in Figure 3 and 4 respectively. In the boxplot, CKO still performs competitively compared with TLBO 

algorithms, with a small deviation from the median value. We can also see from the convergence curve of the 

CKO algorithm that once the agent enters the second half of the iterations, exploitation kicks in to refine the 

estimation. 
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Figure 3. Comparison of boxplot for unimodal functions 
 

   
Figure 4. Comparison of convergence curve for unimodal functions 

5.2.     Simple multimodal function 

The results in Table 2 (Fn4 until Fn16) show that although CKO managed to outperform TLBO by 12 

out of 13 simple multi modal functions. The CKO algorithm managed to solve most of the problems closer 

to optimality especially for Fn5, Fn6, Fn7, Fn8, Fn12, Fn13, Fn14, Fn15, and Fn16. Based on the 

convergence behavior of the algorithms, we can see that CKO algorithm is able to do exploitation better 

than the TLBO as shows in Figure 6. Meanwhile, in Figure 5, we can see that CKO has a very good and 

consistent performance depicted by the position of the boxplot and its size. 

    
 

   

 

 Figure 5. Comparison of boxplot for simple multimodal functions.  
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Figure 5. Comparison of boxplot for simple multimodal functions (continues)  
 

    
 

   

 

 

   

 

 

   

 

Figure 6.  Comparison of convergence curve for simple multimodal functions 
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5.3. Hybrid function 

The CKO algorithm managed to outperform TLBO the most in solving hybrid benchmark problems. Hybrid 

functions mimic real-world optimization problems, as the variables in the hybrid functions are randomly divided 

into subcomponents. Then, different basic functions are applied to these different subcomponents, making 

each of them have different properties. From table 2 (Fn17 until Fn22), it can be seen that CKO algorithm 

performs the best to TLBO in 4 out of 6 hybrid function. The convergence curve in Figure 8 shows, CKO has 

better exploration phase. Meanwhile, the boxplot comparison shown in Figure 7 demonstrates that CKO has a 

very consistent performance throughout the 50 runs. 

 

    
 

  

 

Figure 7. Comparison of boxplot for hybrid functions 

 

 

    
 

  

 

Figure 8. Comparison of convergence curve for hybrid functions 
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5.4. Composition function 

Composition functions are used to test the algorithms’ tendency to converge to the center of the search 

space. A local optimum is set to the origin as a trap for each composition function. Results in table 2 (Fn23 

until Fn30) show that the CKO algorithm has the same performance compared to TLBO where both win 4 out 

of 8 composition benchmark functions. Figure 10 gives a graphical view of the convergence behavior of the 

CKO algorithm in comparison to the TLBO algorithms when solving benchmark function. It shows that, CKO 

algorithm has better exploitation phase especially in the first half of the total iterations. This is followed by figure 

9, which shows CKO algorithm has a competitive consistency with the TLBO, depicted by a narrower boxplot. 

    

    
Figure 9. Comparison of boxplot for composition functions 

 

    

    
Figure 10.  Comparison of convergence curve for composition functions 
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5.5.   Statistical analysis 

The Wilcoxon signed rank test with significance level, α = 0.05 is chosen to provide an unbiased 

observation. The test gives a statistical value of 125 which is smaller than 137, thus the null hypothesis of 

equivalent performance is rejected and CKO is concluded to be significantly better than the TLBO. 

Overall, CKO proved to have a good balance between the exploration and exploitation phase due to the 

CKF update strategy associated with the shrinking local neighborhood. The CKO is a practical algorithm for 

solving simple multimodal functions and demonstrates strong competitiveness in solving unimodal, hybrid, and 

composition functions. CKO successfully led 22 out of 30 functions in CEC2014 test suite. Furthermore, CKO 

uses only one parameter compared to different estimation-based algorithms, making it easy to tune. 

CONCLUSION 

The CKO and TLBO are metaheuristic algorithm inspired by Cubature Kalman filter and teaching- learning 

process in classroom, respectively. Both algorithms have been incorporated to balance exploration and 

exploitation. For that reason, both algorithms have been tested with 30 benchmarking functions in CEC2014. 

The accuracy performance of the algorithms has been analyzed and discussed. Graphical plots have been 

included to portray the convergence trend and the accuracy achievement. The test results show that the CKO 

graphs have outperformed the TLBO graphs in both convergence and accuracy (box plot) for most functions. In 

the future, the algorithm will be used to solve and optimize a robotic system's modelling and control problems. 

These compelling findings not only highlight CKO's effectiveness in optimizing complex problems but also 

provide robust evidence of its clear superiority over TLBO. In the future, the algorithm will be used to solve and 

optimize a robotic system's modelling and control problems. 
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