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Abstracts: In 1965, Zadeh introduced the concept of fuzzy set, which is a class of objects with a continuum of grades of 
membership, such a set is characterized by a membership (characteristic) function which assigns to each object a grade 
of membership ranging between zero and one. In 1987 O. Kaleva defined the concept of fuzzy differential equations and 
present some basic notions of differential equations such as differentiability, integrability, existence and uniqueness 
theorem for a solution to a fuzzy differential equation. He also, in 1990 studied the Cauchy problem for fuzzy differential 
equations and showed that it has a solution if and only if there is a subset and its locally compact. Later, M. Ma, M. 
Friedman, and A. Kandel 1999 introduced numerical solutions of fuzzy differential equations. In this paper we incorporate 
the above ideas to introduce numerical solution of complex fuzzy differential equations by Euler and Taylor methods by 
extending the codomain of membership function of fuzzy topological space from [0, 1] to the unit disk in the complex 
plane. This extension allows us getting more range and flexibility to represent objects with uncertainty and periodicity 
semantics without losing the full meaning of information. Also, we considered the definitions of complex fuzzy sets, 
cartesian and polar representation of complex membership, and Cauchy problem for CFDEs. We then found the exact 

solutions and approximations for Taylor and Euler methods for CFDEs by levels and  where , and 
provide examples of the results we obtained.   
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1. INTRODUCTION  

In 1965 Zadeh [8] was interduce the concept of fuzzy set. The first order Cauchy problem is: 

x^' (t)=f(t,x(t)),x(t_0 )=x_0 

has a solution if f is continuous. A fuzzy differential equation has been studied extensively like Peano’s theorems 

see [9]. The idea of extending the range values from [0, 1] to unit disk in the complex plane has successfully spread 

in different areas and has useful applications in the real life. So, in (2002,2003) Ramot et. al. [10,11] proposed this 

idea by introducing the concept of complex fuzzy set and logic, he extended the range of membership function to a 

unit disk in the complex plane. Hence, for translating some complex-valued functions on physical terms to human 

language and vice versa he added phase term to solve this enigma. In (2012) Jun et al. [7] used complex fuzzy sets 

to represent the information with the uncertainty and periodicity simultaneously, where they generate a solution of 

multiple periodic factor prediction (MPFP) problems. In (2012) Zhifei et al. [18], the concept of complex fuzzy logic 

has been applied in a neuro-fuzzy system architecture. Many other researchers who combined, generalized and 

applied the concept of complex fuzzy sets, as, Alkouri and Salleh [2-4], Zhang et al. [17], Tamir and Kandel [13] and 

Tamir et al. [14-16]. Later, Alhusban and Salleh [1] incorporate the above ideas to introduce complex fuzzy space 

and applied it in complex fuzzy group theory. Tamir et al. [6], interduce a new interpretation of complex membership 

grade, and presented cartesian and polar representation of complex grades of membership. Karpenko et al. [5] 

based on pure complex fuzzy sets they studied the existence of a solution for the Cauchy problem for FDEs. Later, 

S. Abbasbandy, T.A. Viranloo [12], used Taylor method to solve Numerical solutions of fuzzy differential equation. In 

this paper we will using cartesian and polar representation of complex grades of membership to define Taylor and 

Euler methods for complex fuzzy differential equations. 

2. LITERATURE REVIEW 
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In this section, we introduce basic, definitions, theorems and notations which are used throughout this paper. 

Definition 2.1 [11] A complex fuzzy set , defined on universe of discourse , is characterized by membership 

function , 

 

where  and  are both real-valued, and . 

The complex fuzzy set  it’s an ordered pair. 

 
At the first, will denote  for the set of all nonempty compact convex subsets of . 

An expansion of the original definition in [11] referred as “pure complex fuzzy” in [6], where the cartesian and a 

polar representation of complex membership are defined in Tamir et al. At the first will consider the cartesian 

definition. 

The concept of cartesian and polar representation of complex membership was introduced in [6] 

2. 1. Cartesian representation of complex membership 

In [6] defined the complex membership functions  as: 

 

where  is a fuzzy set and  belong to . We can extend this definition to  by make . 

 

Where ,  assigns to each  a value in the unit square in complex plane , representing 

a complex grade of membership.  expresses non-complex fuzzy set in . 

Now, for , level sets are defined as: 

 

. 

Now, we can define level where , for  as: 

. 222  (2.1) 

The following set are conditions as an alternative definition of : 

  (2.2) 

  (2.3) 

  (2.4) 

  (2.5) 

Notice that (2.2) and (2.5) are equivalent to (2.1) for the corresponding , but that (2.3) and (2.4) are not 

equivalent to (2.1) and may not generate closed sets when one of  is equal , but (2.3) and (2.4) would generate 

the respective closures of those sets. 
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Now, let   be the set of all , we have  is always compact and convex for , and 

,  for make sure that  be nonempty and  be 

nonempty, therefore there exist , such that  and . Therefore, we define the following set: 

 (2.6) 

Then , , and the compactness of the  sets guarantee the complete 

equivalence of (2.1) and the set of (2.2) – (2.5). 

 
2.2. Polar representation of complex membership 
 

In [6] defined the complex membership functions  as: 

 

where  and  are both real-valued, does not translate quickly to and from the particular cartesian 

representation. Hence, the two representations of the corresponding extension to  are not equivalent. 

Now, the polar form is: 

 

Where , and  is taken scaling factor, allowing the range of  to be the unit circle. The value 

of  giving by the maximum distance from ,  , to be the “maximum” membership value because  is 

periodic. Now, we can define  as , the level sets for  denoted by  defined as: 

 

 

 

Now, we can define level for  as: 

,  (2.7) 

Or 

 (2.8) 

 (2.9) 

, (2.10) 

, (2.11) 

. (2.12) 

It’s clearly that , , but   need not be compact or convex. So, we define  is the 

set of all  where , and satisfying the following: 

(i)  s.t ; 

(ii)  is monotone, 
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(iii)  is upper semi-continuous on  and lower on  where 

 

 

(iv)  is compact. 

Hence, we can define: 

and . (2.13) 

We claim that  is embeddable into a Banach space, see [15]. 

 

2.3. The Cauchy problem for complex fuzzy differential equations CFDEs 

 

Let  and  to express the cartesian and polar complex form, respectively. By CFDE, the solution  is 

a continuous map  .Now, we will use the Hukuhara difference to define the differentiability. For , if 

there exists  such that , implies that,  and it’s called the difference between  and . 

Definition 2.2 The mapping  where  be a compact interval, is differentiable at , if there 

exists  such that the limits exist and are equal to : 

 

Now, let   and    are continuous mapping, and we define  by: 

 

When we take the derivative: 

.  (2.15) 

2.3. The Cauchy problem for complex fuzzy differential equations CFDEs 

Consider the continuous mapping , and we define the Cauchy problem as: 

  (2.16) 

Definition 2.3 Let  is a solution for (2.16) iff  is continuous and satisfies the following: 

 

3. The Complex Fuzzy Differential Equation 
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Consider the IVP for complex fuzzy differential equation (2.16): 

 

 

Where  and  is a complex fuzzy number and belong to . 

The level denote by: 

 

 

Where 

 

The parametric form (3.1) is given by: 

 

The  is a complex fuzzy process and  is derivative for  and denoted by: 

  (3.3) 

provided that determines the complex fuzzy number , where: 

 

 

4. The Euler method 

Let the exact solutions: 

 

And 

 

Be approximation solutions at  where . The solutions are calculated by grid points at: 
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The Euler’s method is based on first-order approximation of and  and given by: 

 

Where  is . 

Then we have  

 

Where 

 

 

From (4.2) we define: 

 

The polygon curves: 

 

The previous equations are Euler approximates  when . Now, to show 

convergence of these approximates will use the next corollary. 

 

Corollary 4.1 If the sequence  satisfy: 

 

For some  and  are positive constant, then 

 

Corollary 4.2 If the sequences  and , satisfy: 
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For some  and  are positive constant and , then 

 

Where   and . 

Let the functions  and  of (3.2), where  and  and ,  are constants such that , then 

the domain is: 

 

Theorem 4.1 let  and let the partial derivatives of and  be bounded over , then for 

, the Euler approximates of (4.4) converge to the solutions and  uniformly in . 

Proof. Let 

 

Where , . Now, by using Taylor theorem we have: 

 

Where . Consequently 

Let  

  and   

 

Then  

 

 

Hence, 
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Where  

 

and  is a bound. Thus, by Corollary 4.2 

 

 

Where . In particular 

 

 

Since , we get: 

 

 

If  then we have , the proof is done.  

5. Taylor method of order  

Let the exact solutions: 

 

And 

 

By expansion the Taylor method: 

 

Where  or . We define 
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The exact and approximate solutions at , where , are denoted by: 

 

And 

 

Therefore, using the Taylor method and replacing  into (5.1), we have: 

 

Where 

 

 

We get: 

 

Where 

 

The polygon curves: 

 

Now, to show convergence of these approximates will use the corollary 4.1. 

 

 

Let the functions  and  of (5.2) and (5.3), where  and  and ,  are constants such that 

. That is means: 
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then the domain is: 

 

Theorem 5.1 let  and let the partial derivatives of and  be bounded over , then for 

, the Taylor approximates of (5.6) converge to the solutions and  uniformly in . 

Proof. Let 

 

 

Where , . Now, by using Taylor theorem we have: 

 

Where . Consequently 

Let  

  and   

Then  

 

 

Hence, 
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Where  

 

 

 and  is a bound. Thus, by Corollary 4.2 

 

 

Where . In particular 

 

 

Since , we get: 

 

 

Thus, if  we get .  

6. EXAMPLES  

Example 6.1 Consider the complex IVP:  

 

The exact solution at  is: 

 

By using the Taylor method, we have: 

 

The exact solution is , at  is: 
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Where  have the same value of . 

Example 6.2 Consider the complex IVP: 

 

We have two steps: 

Step 1. : in this case the parametric form is: 

 

with the ICs given. The unique solution is: 

 

 

Where 

 

For , we get: 

 

 

and use these complex fuzzy numbers as ICs for step two. 

Step 2. : in this case the parametric form is: 

 

with the ICs  and , and the solution at  is: 

 

For , we get: 

 

Thus, 
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We divide  into  even equally spaced subintervals to get Euler approximation and define 

 and : 

 

 

CONCLUSIONS 

This works we concerned with methods of solving the complex fuzzy initial value problem. We first developed 

our new solution . Basically,  is the complex fuzzification of the crisp solution to the initial value problem. 

We gave necessary and sufficient conditions for  to solve the complex fuzzy initial value problem. And we 

consider Taylor and Euler for complex fuzzy differential equations, and we establish some basic definitions and 

theorems to build our result. In this work we obtained some results that are necessary to develop fuzzy differential 

equations and to be well-to-do. 
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