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Abstracts: With the aim of detecting insect pests at an early stage, there has been an increasing demand for insect pest 
detection and classification, particularly in large-scale setups. Therefore, the aim of this research is to introduce a new 
real-time pest detection technique using a deep convolutional neural network, which not only offers improved accuracy 
but also faster speed and less computational effort. The networks were constructed using various modern object detector 
models such as YOLOv4, YOLOv5, and YOLOX. Our proposed networks were evaluated on a standard large-scale 
insect pest dataset, IP102, as well as on our collected dataset, Insect10. The experimental results demonstrate that our 
system surpasses previous methods and achieves satisfactory performance with 84.84% mAP on the Insect10 dataset 
and 54.19% mAP on the IP102 dataset. Our system can deliver precise and real-time pest detection and identification for 
agricultural crops, enabling highly accurate end-to-end pest detection that can be applied in realistic farming scenarios. 
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1. INTRODUCTION  

Insects, pests, diseases, and weed populations impact an estimated 40% of agricultural products [1]. Pests 

damage between 20% and 40% of global production each year, according to the Food and Agriculture Organization 

(FAO) [2], [3]. Similarly, diseases of plants harm the economy by $220 billion, while insects harm the economy by 

$70 billion each year [4]. Climate change has increased the number of diseases and pests, causing them to appear 

in previously unknown places [5]. Caterpillars are major pests in agriculture, horticulture, and fruit production [6], [7], 

[8]. Currently, spraying pesticides is the most popular method of insect pest control due to its speed of action and its 

ability to bring high efficiency [9], [10], [11]. Every year, more than 2.36 billion kg of pesticides are used worldwide 

and more than 85% of them are in agricultural production [12]. However, if the pest control method is not suitable, it 

can reduce the yield by 70% and increase the production cost. Furthermore, prolonged use of these pesticides can 

cause environmental pollution as well as potentially dangerous diseases such as cancer, severe respiratory and 

hereditary infections, and fetal death [13]. Due to increasing environmental and health awareness, the use of 

pesticides is less and less. One of the most important ways to reduce pesticide use is to spray precisely where it is 

needed. The authors in [14] reported that spraying pesticides in the right places can reduce the cost of pesticides by 

up to 76% with different forward speeds respectively compared to the traditional method. Meanwhile, studies by 

[15], [16], [17] indicate that spot spraying pesticides can reduce the cost of spraying pesticides by 90%, which can 

reduce environmental contamination and restrain beneficial insects like honeybees. The location of the insect pest 

must first be identified before performing spot spraying. Manual methods are typically used to identify pests, which 

are labor-intensive and thus prone to error [18]. Fortunately, thanks to recent advances in computer vision in 

precision agriculture, detecting insect and diseases has become an essential part of collecting information about 

crop growth and health [3]. Furthermore, detecting objects at various phases of agricultural development is critical 

for predicting future yields, activating intelligent spraying systems, and controlling autonomous pesticide spraying 

robots for large farms and orchards. However, due to the resemblance of form, complexed backdrop, overlying of 

target objects due to dense dispersal, variability of light in the large topography of orchards, and numerous other 

variables, identifying target objects with acceptable precision is difficult. However, as technological advances, image 

processing techniques can be used to identify insect. Therefore, people became increasingly interested in precision 

agriculture to handle these challenges. To conduct out pest detection and spot spraying, visual information 

acquisition and processing via computer vision are unavoidable. Due to the ability to automatically extract image 

features and complex relationships, methods of pest detection by image processing, convolutional neural networks 

(CNN) and deep learning have been widely used to develop insect identification systems in practice [19]. CNNs 

have currently demonstrated their accuracy in object classification and are used in object recognition and detection 

algorithms. These object recognition algorithms are usually divided into two approaches: (i) two-stage object 
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recognizers based on classifiers (two-stage detectors) and (ii) single-stage object recognizers based on regression 

operations. In particular, two-stage detectors have higher object detection accuracy than single-stage detectors, but 

they are slower in inference and recognition speed [20]. Therefore, many studies have used YOLO's single-stage 

detector approach [21] to develop pest identification systems [22] - [23]. However, there are fewer studies using 

YOLO to develop insect identification systems in a large-scale setup and evaluated on large-scale datasets likes 

IP102. Although deep learning algorithms have better generalizability and higher certainty than traditional 

algorithms [24], most insect objects are small in size, thus recognition systems will encounter problems for the 

following main reasons. First, image features are extracted with less useful information. Since small objects occupy 

fewer pixels in the image and carry less information, it makes it difficult to extract distinguishing features that are not 

affected by ambient factors. Second, the requirements for positioning accuracy are high. Whether during training or 

during prediction, the bias of the bounding box is quite large for a small target detection error. Third, the problem of 

object synthesis. As it happens, after being displayed on the deep feature map through multiple downsampling, the 

targets will be grouped into a single point, resulting in indistinguishability of the different objects. Besides, it will 

make the bounding boxes difficult to regress and the model difficult to converge. Therefore, this study aims to 

develop an efficient large-sacle insect object detection system for insect datasets with different species using red-

green-blue (RGB) digital images/videos, this system can overcome the mentioned disadvantages of previous 

studies. Overview of our real-time insect recognition system using YOLO models is shown in Error! Reference 

source not found.. The main contributions of the paper include: 

 
Figure 1. Overview of Real-Time Insect Recognition System using YOLO Models. 

• Develop a large-scale object recognition system for detecting and classifying crop-damaging insect. The 

proposed method is based on fine tuning YOLO object detection architectures including YOLOX (Nano, Tiny, 

S, M, L), YOLOv5 (N, S, M, L, and X), YOLOv3, YOLOv4, SSD300, and RefineDet. 

• Collect 2,335 images of 10 different insect species in the wild under different illumination and background 

conditions to train the underlying object detection approaches. 

• Propose an insect pest detection system that works efficiently and correctly detects and identifies insect, and 

that can be used in a farming setting. 

The rest of the paper is organized as follows: Section II articulates the related works, Section III presents the 

materials and methods, Section IV illustrates the results and discussion, and Section V concludes the study. 
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2. RELATED WORKS 

In recent years, many researchers have used image processing and machine learning techniques to detect crop 

diseases [25]. Revathi et al. [26] presented Technological Strategies for categorizing illnesses using mobile-

captured symptoms of Cotton Leaf Spot pictures. The classifier is being trained to accomplish intelligent farming, 

such as early disease detection in the trees, selective fungicide application, and so on. The suggested work is built 

on Image Edge detection Segmentation methods, and the recorded pictures are first handled for enrichment. Then, 

to obtain target areas (disease spots), R, G, B color feature picture segmentation is performed. Later, picture 

characteristics such as boundary, form, color, and texture are taken from disease patches in order to identify 

diseases and make pest management recommendations. Vinushree et al. [27] introduced a clustering method in 

which the famous clustering algorithm, kernel-based fuzzy c-means clustering algorithm (KFCM), is used to detect 

pest abundance in plants. A supervised neural network was used to classify leaf feature extraction. The methods 

investigated are for increasing productivity and decreasing subjective error caused by human specialists in spotting 

bugs in plants. Martin et al. [28] suggested an integrated pest management system that uses an image processing 

algorithm and expanded region-based growing to recognize the pest and quantify the pest to estimate the quantity 

of insecticide to be used. This extended area grow algorithm offers the finest pest detection and counting. Preetha 

Rajan et al. [22] suggested an image-processing-based automated pest detection system. The color feature is used 

for training the SVM to distinguish between pest and leaf images. Morphological procedures are used to eliminate 

undesireable components from the classified picture. Yogesh Kumar et al. [29] used a rapid feature recognition 

algorithm to develop an innovative and fast technique for detecting and enumerating pests in an image. The amount 

of pesticides used in farmland pollutes the environment; however, with advanced machine vision systems that apply 

this method, they can build machines that use pesticides efficiently by selectively targeting bugs using image 

processing. Human labor is currently used for physical pest identification, which is not very precise. Automation is 

needed in this area because it would be more effective in detecting insects in agriculture. To identify the pest, 

Apurva Sriwastwa et al. [30] used a color-based image segmentation technique. Extensive simulation findings on 

different pest images demonstrate that the suggested method outperforms Otsu's technique and edge detection 

segmentation. Vivek Agnihotri [31] recognized all of the pests that are present in the agricultural area and 

implemented specific steps to prevent them from destroying crops. Their method classifies pests in a field by using 

a microprocessor, infrared camera, and regular camera connected to a quadcopter that will hover over the field and 

identify the pest. The proposed system by Rajesh et al. [32] uses a decision tree to recognize and classify leaf 

disease and improves detection accuracy while taking less time than the current system. However, because 

conventional machine vision techniques are less robust in complex scenes, meeting the requirements of complex 

scenes is still very challenging for several object detection systems. 

On the other hand, Convolutional neural networks (CNNs) have been effectively used in farming research to 

overcome the shortcomings of conventional techniques [33]. In the automated identification and classification of 

pest infestations, CNN models beat conventional methods [34]. Tu-Liang Lin et al. [35] used Faster R-CNN to build 

a knowledge base system that can detect plant pests as well as diseases autonomously. Li et al. [36] developed a 

real-time plant disease and pest identification system on video using faster R-CNN as an object detection 

framework. Gambhir et al. [37] designed a CNN-based dynamic android and web UI for agricultural pest and 

disease detection. The findings suggested that the proposed method could identify previously unseen rice diseases 

on video. In computer vision, real-time object detection is a very important task. YOLO is a popular family of real-

time object detection algorithms. The initial YOLO object detector was published in 2016 [21]. This architecture is 

much quicker than other object detectors and has become the cutting-edge technology for real-time computer vision 

applications. YOLO is now extensively used in plant pest detection. Zhang et al. combined spatial pyramid pooling 

with YOLOv3 to accomplish inverse by merging upsampling and convolution processes. Convolution can 

successfully identify small-sized plant pest samples in images, with an average identification rate of 88.07% [22]. 

Zhong et al. [38] suggested a visual flying insect identification system on a Raspberry Pi using the YOLO design as 

a detector to determine the number of flying insects and classify them using an SVM model. They got 90.18% 

classification accuracy and 92.50% total accuracy. The authors of [39] suggested the YOLOv4_MF model, which 

uses MobileNetv2 as the feature extraction block and substitutes conventional convolution with depth-wise 

separated convolution to minimize model parameters. In addition, the coordinate attention method was incorporated 
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in MobileNetv2 to improve feature information. A symmetric structure comprised of a three-layer spatial pyramid 

pool is given, and an improved feature fusion structure was developed to fuse the target information. To improve the 

network's learning of tiny objects, focal loss was used instead of cross-entropy loss in the loss function. The 

experimental findings revealed that the YOLOv4_MF model has 4.24% higher mAP, 4.37% higher precision, and 

6.68% higher recall than the YOLOv4 model. Using the YOLOv5 object recognition framework, the authors of [15] 

developed a real-time video detection system to identify the thistle caterpillar (Vanessa cardui), which is found in 

Turkey and can cause harm to sunflower farming. Their findings show that the device is operational and capable of 

detecting the thistle larva at 65 frames per second. The authors of [40] proposed AgriPest-YOLO, a lightweight pest 

detection model for reaching a good equilibrium between efficiency, accuracy, and model size for pest detection. 

Their technique was tested on a large size multi pest picture collection with 24 pest groups and 25k images. 

Experiment results show that AgriPest-YOLO achieves end-to-end real-time pest detection with high accuracy, 

achieving 71.3% mAP on the test dataset, outperforming classical detection models while exhibiting better balanced 

performance in terms of model size, detection speed, and accuracy. The Pest-YOLO is a pest detector for multi-

category thick and tiny bugs developed by the authors of [41]. To enhance the attention of hard samples, the 

concept of focal loss is first incorporated into the loss function via weight distribution. The confluence method is then 

used, which is a non-intersection over Union bounding box selection and reduction technique. To the greatest 

degree possible, the confluence approach can eradicate pest detection errors and failures caused by occlusion, 

adhesion, and unlabeling among minuscule dense pest individuals. The suggested Pest-YOLO model is validated 

using a large-scale pest image dataset, Pest24, which contains over 20k images of pests labeled by farming 

specialists and classified into 24 categories. Numerical results show that the Pest-YOLO can obtain 69.59% for 

mAP and 77.71% for mRecall on the 24-class pest dataset, which is 5.32% and 28.12% higher than the benchmark 

model YOLOv4. The authors of [42] built an object identification system for detecting and classifying crop-damaging 

insect. To decrease farms' dependence on pesticides, the current study suggests an automatic system in the shape 

of a smartphone IP-camera to identify insect from digital images and videos. The suggested method is built on 

YOLO object detection designs such as YOLOv5, YOLOv3, YOLO-Lite, and YOLOR. On their IP-23 dataset, the 

designed model YOLOv5-X outperforms the state-of-the-art model with an average accuracy value of (mAP@0.5) 

98.3%, (mAP@0.5:0.95) value of 79.8%, precision of 94.5% and recall of 97.8%, and F1-score of 96%. The authors 

of [23] suggested Maize-YOLO, a novel high-precision and real-time technique for maize pest detection. The 

network is built on YOLOv7 and includes the CSPResNeXt-50 and VoVGSCSP modules. It can increase network 

detection precision and speed while decreasing the model's computational effort. Maize-YOLO's efficacy was tested 

on a standard large-scale pest dataset IP102 with only 13 classes. The experimental findings indicate that their 

approach outperforms the present state-of-the-art YOLO family of object detection algorithms, with 76.3% mAP and 

77.3% recall. The authors of [43] suggested a YOLOX-based forest pest recognition method. To begin, they ultilize 

Mosaic, Mixup, and random erasure data enhancement to preprocess the pictures because there are few image 

data of actual deep forest insects in the field. Second, shallow information is incorporated into the current network 

design to extract fine-grained features, and a two-way cross-scale feature fusion method is used. Finally, on the 

public forest pest dataset IP102, the improved YOLOX algorithm suggested in this article produced the greatest 

results. Although previous studies have successfully applied the YOLO models in insect pest detection, the number 

of identified insect species is still small. There are currently a few research and development projects on the YOLO 

application for large-scale setup and real-time evaluation on large-scale datasets like IP102. Therefore, this paper 

will focus on studying real-time insect recognition systems using several prominent single-stage detectors object 

recognition architectures including YOLOv4, YOLOv5 and YOLOX. Our method will be evaluated on two data sets, 

the large-scale dataset IP102 and the insect dataset collected by us, Insect10. The different architecture versions of 

YOLOv5 and YOLOX will be evaluated in detail in the experiments, they include YOLOv5-N, YOLOv5-S, YOLOv5-

M, YOLOv5-L, YOLOv5-X, YOLOX-Nano, YOLOX-Tiny, YOLOX-S, YOLOX-M, YOLOX-L. Shows how the CNN 

model works in YOLO models to detect insect pest object. 
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Figure 2. The Description of how the CNN Model Works in YOLO Models to Detect Insect Pest Object. 

3. MATERIALS AND METHODS 

3.1. Insect Image Datasets 

3.1.1. Insect10 

To evaluate the proposed insect pest identification system, the insect pest images are collected from the 

internet as a source to train CNN models. The primary goal of the study on insect was to recognize and discover the 

10 insect classes. First, for the data gathering, we looked up images using various databases and search engines, 

including Kaggle, Google, Baidu, Iostock, Dream, Flickr, and Bing. As a result, we have accumulated more than 

5,000 candidate images for the Insect10 dataset. Then, unsatisfactory images will be deleted as part of the data 

cleaning process. Finally, we obtained 2,335 insect images and divided them into 10 different classes, with the 

lowest class having 123 samples, as shown in Error! Reference source not found.. There are enough images in 

the training, validation, and testing sets for each class. For training the pest detection models, we split all datasets 

into a training set, a validation set and a testing set in a ratio of 7:2:1. The training, validation, and testing sets are 

split at the class level. Therefore, the Insect10 dataset was divided into 1,634 training images, 467 validation 

images, and 234 testing images for the detection task. Some representative samples from Insect10 dataset are 

presented in Figure 1. 

Table 1. Details of the Collected Insect10 Images Dataset. 
ID Insect Species # Training # Testing # Validation 

1  Acalymma_vittatum 116 17 33 

2  Achatina_fulica 258 37 74 

3  Alticini 193 28 55 

4  Asparagus_beetles 89 13 25 

5  Aulacophora_similis 113 16 32 

6  Cerotoma_trifurcata 86 12 25 

7  Dermaptera 111 16 32 

8  Leptinotarsa_decemlineata 234 33 67 

9  Mantodea 185 26 53 

10  Squash_bug 249 36 71 

 Total 1634 234 467 
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Figure 1. Some Representative Samples from Insect10 Dataset. 

3.1.2. IP102 

IP102 [44] is a large-scale insect dataset with 102 species of plant pests. This dataset contains 75,222 insect 

images gathered from the Internet using popular search engines, with the English name and corresponding 

synonyms of each class used as keywords when searching for candidate images. For each keyword, only the top 

2,000 results are retained. Then the authors of [44] conducted a search on various professional agriculture and 

insect science websites. Based on the crop affected by the insect pest, each insect pest is assigned an upper-level 

class (denoted as super-class in the following). In other words, each insect pest is a subordinate class (referred to 

as a sub-class in the following) of a larger class. As described in [44], this dataset contains several factors that 

influence and challenge the performance of classification and image recognition models when compared to other 

existing insect datasets such as [44], [45], [46], [47], [48], [49], [50], [51], and [52]. Firstly, the insect are difficult to 

identify due to their similar coloration and backgrounds. Second, each layer contains an image of the entire life 

cycle of an insect pest and is therefore difficult to classify, especially the larval stage. Third, many pests and 

diseases belong to different classes but have similar images. Fourth, this dataset is greatly imbalanced, the least 

prevalent class (Erythroneura apicalis) has only 71 images, while the most frequent class (Cicadellidae) has nearly 

5,740 images. These are factors that cause many difficulties and challenges when designing image classification 

and recognition algorithms on this dataset. On the IP102 dataset, the current best classification accuracy is reported 

as 67.13% in [53], while the recognition accuracy is reported as 25.67% mAP [44]. There should be enough 

examples of each group on the testing set for more reliable IP102 results. As a result, they have an approximately 

6:1:3 divide. The training, validation, and testing sets are divided by subclass. For the classification task, the IP102 

is divided into 45,095 training images, 7,508 validation images, and 22,619 testing images. Furthermore, there are a 

total of 18,983 annotated images for the task of object detection. They divided the images with bounding box 

annotation into testing and training sets of 15,178 and 3,798 images, respectively. Some representative samples 

from the IP102 dataset are presented in Figure 4. 
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Figure 4. The augmentation is carried out by applying shifts in horizontal and vertical directions, rotation, horizontal flipping, hue, 

blur, and saturation. 

Data augmentation: In general, more data can improve the performance of CNN algorithms. Collecting large 

amounts of data for training purposes, on the other hand, is a difficult job. As a result, the issue of inadequate data 

frequently arises in data analysis. Increasing the number of training examples can help the CNN model generalize 

data and avoid overfitting in training process. Fortunately, data augmentation methods can help address overfitting 

issues and improve the performance of CNN models. Geometric transformation is one of the most recent 

techniques of data augmentation [54], [55]. In this study, several geometric transformation techniques are utilized, 

including rotation, horizontal flipping, shifting, hue, blurring, and saturation. Error! Reference source not found. 

demonstrates the use of the data augmentation techniques on the insect pest images, with (a) the original image, 

and transformed images by (b) flipping horizontally, (c) flippingvertically, (d) rotating 180 °, (e) Shift 3 pixels to the 

right , (f) Shift 3 pixels to the left, (g) Shift 3 pixels down, (h) Shift 3 pixels up, (i) Shift 3 pixels to the left and down, 

(j) Shift 3 pixels to the right and down, (k) Shift 3 pixels right and up, (l) Shift 3 pixels left and up, (m) rotate 900, (n) 

rotate 2700. 

 
Figure 2. Some Representative Samples from IP102 Dataset [44]. 
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3.2. YOLO Object Detection Models for Insect Pest Detectio N 

3.2.1. YOLOv3 

YOLOv3 [56] uses logistic regression to calculate the target detection score. It awards points to all targets within 

each bounding box. YOLOv3 can perform multilabel classification because it employs a logistic classifier for each 

class rather than the softmax class used in YOLOv2. YOLOv3 has a Darknet-53 backbone with 53 convolutional 

layers. These layers have more depth than the Darknet-19 used in YOLOv2. Darknet-53 primarily includes 3x3 and 

1x1 filters, as well as skip links [57], [56]. The advantage of YOLOv3 over YOLOv2 is that a modified number is 

included in the error function and, for objects of significant size, occurs on three scales. The multi-glass problem 

has turned into a multi-label problem, and performance has been significantly improved when recognizing small-

sized objects. 

3.2.2. YOLOv4 

Since the announcement of YOLOv3, no new version has been announced for about two years. Up to this point, 

EfficientDet [58] has achieved higher mAP performance than YOLOv3. EfficientDet uses EfficientNet [59] as the 

backbone for feature extraction and automatic neural network design, which makes it obsolete to develop models 

under human supervision. However, EfficientDet requires huge GPU power, making it difficult to win object 

detection research competitions, unless the participant is a large company. YOLOv4 [60] is an important advance in 

YOLO history, launching in April 2020. Based on YOLOv3, YOLOv4 can be trained and put to practical use with just 

one GPU, creating a faster model with the same accuracy as EfficientDet, created by researchers like Google who 

have huge computing power. 

3.2.3. YOLOv5 

YOLOv5 [61] was released by Utralytics, in October 2021, just a few weeks after the release of YOLOv4. 

YOLOv5 is a native extension of the PyTorch YOLOv3 implementation. YOLOv5 is a lightweight object detection 

architecture that is easy to modify, infers fast, and performs well. The YOLOv5 architecture has the following 

improvements: In the Input part, adaptive anchors using K-means can automatically compute anchor boxes that 

match the training dataset. All link boxes are automatically learned in YOLOv5 to custom data. The self-adjusting 

image scale adds black edges at least adaptively to the original image to speed up inference. For Backbone, Focus 

CSPDarknet53 is used, where the focusing mechanism combines higher resolution features with lower features by 

stacking into different channels rather than spatial locations. The focus mechanism is better for the model to learn 

the features of small subjects. For the Neck part, a cross stage partial (CSP) connection [62] is included in the FPN 

to shorten the feature extraction network for higher speed. For the Head part is the same as the YOLOv4 model. 

YOLOv5 is easier to use for a developer to implement object detection into an application than other object 

detection frameworks due to the following qualities: Positive pattern augmentation using an anchor pattern matching 

strategy adjacent positive; flexible variable configuration parameters, different levels of modeling can be obtained; 

improve overall performance through built-in hyperparameter optimization strategies. YOLOv5 currently has four 

different versions, which are labeled according to the model's size and complexity as small (S), medium (M), large 

(L), and extra large (X). 

3.2.4. YOLOX 

YOLOX [63], one of the most accurate detectors accessible, employs a more effective data enhancement 
method to pre-process the data. With some new advanced recognition methods, such as decoupled head, anchor-
free, and advanced label giving strategy, YOLOX gets a better trade-off between speed and accuracy than 
competitors across all model sizes. YOLOX uses SimOTA as the label assignment strategy to to achieve state-of-
the-art results across a large scale range of detection models. It is also an anchor-free frame-based detector that 
builds a high-performance detector by avoiding the issue of unbalanced positive and negative data with the anchor 
frame method. In terms of precision and efficiency, the use of decoupled heads for categorization and regression 
jobs outperforms other detectors. The general model architecture of YOLOX is shown in Error! Reference source 
not found.. The operating principle of insect identification using YOLO models is shown in  
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Figure 3. 
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Figure 6. The General Architecture of YOLOX [63]. 
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Figure 3. The Operating Principle of Insect Identification using YOLO Models. 

3.3. Transfer Learning 

Transfer learning [64] is a machine learning method where a model developed for a task is reused as the 

starting point for a model on a second task. It is a popular approach in deep learning where pre-trained models are 

used as the starting point on computer vision tasks given the vast compute and time resources required to develop 

neural network models on these problems and from the huge jumps in skill that they provide on related problems. 

Transfer learning is one of the most efficient methods when the training data is small. Transfer learning can help 

increase model accuracy while also shortening training time. This technique proved to be very useful in practical 

applications. Instead of training the entire model, transfer learning on the trained models is used, which uses fewer 

resources and cuts training time in half. Transfer learning employs the optimized parameters of a pre-trained 

network as well as the training of a few extra layers based on the requirements of an underlying task. In this study, 

pretrained weights trained on the ImageNet dataset [65] are utilised to continue training YOLO models to recognize 

insect objects. 

3.4. The Process of Real-Time Insect Detection System 

Our proposed system consists of five consecutive steps (Figure 4). In the first stage, the insect pest images are 

collected for CNN model training and evaluation. Second, the entire dataset is strictly preprocessed through 

annotation and augmentation to increase the number of samples in the insect datasets. Image data augmentation is 

a method for artificially increasing the size of a training dataset by modifying existing images slightly based on 

certain parameters. Third, the YOLO object detection models are trained on insect datasets. The detection 

performance of the fine-tuned models is evaluated by using the dataset split. Finally, the best YOLO model was 

chosen for a practical farming application. 
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Figure 4. Schematic Flowchart of the Research Approach. 

4. RESULTS AND DISCUSSION 

4.1. Experimental Setup and Training 

The experiments were conducted on a Tesla K80 12 GB (Gigabyte) GPU in the Google COLAB. For neural 

network training, on Insect10, 1,634 images were used to train each underlying model for object recognition. On 

IP102, 45,095 images were used to train large-scale object detectors. Regularization method was performed from 

the BN layer to update the weight of the model. For training the network, the learning rate was set at 0.01, the 

momentum factor was set at 0.937, the decay rate of the weights was set at 0.0005, the initial vector and IoU 

threshold were set at 0.01, and the gain coefficients of hue (H), saturation (S), and lightness (L) were set at 0.015, 

0.7, and 0.4, respectively. Stochastic Gradient Descent (SGD) [66] was used as the optimization algorithm [67], and 

each model was created using Pytorch [68]. The final output of the detection model was the location bounding box 

of the target insect pest categories (the prediction box of the position), and the probability of a particular class. 

Error! Reference source not found. and Error! Reference source not found. show the detailed training 

strategies of each model for YOLOv5 and YOLOX respectively. 

Table 2. The Detailed Training Strategies of Underlying Yolov5 Models. 

Dataset Model Model Size Batch-Size Epochs GPU Usage (GB) Training Time (h) In
s
e
c
t1

0
 

YOLOv5-N 1.8 16 150 4.98 0.82 

YOLOv5-S 7.2 16 150 7.11 1,23 

YOLOv5-M 21.2 16 150 7.45 2,11 

YOLOv5-L 46.5 16 150 8.93 3,62 

YOLOv5-X 86.7 8 150 10.22 6,37 
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IP
1
0

2
 

YOLOv5-N 1.8 16 150 11.03 8.90 

YOLOv5-S 7.2 16 150 20.34 10.97 

YOLOv5-M 21.2 16 150 20.82 22.09 

YOLOv5-L 46.5 8 150 22.33 35.13 

YOLOv5-X 86.7 8 150 23.24 67.15 

Table 3. The Detailed Training Strategies of Underlying YOLOX Models. 

Dataset Model Model Size Batch-Size Epochs GPU Usage (GB) Training Time (h) 

In
s
e
c
t1

0
 

YOLOX-Nano 0.91 16 150 4.11 3,77 

YOLOX-Tiny 5.06 16 150 4.09 3.67 

YOLOX-S 9.0 16 150 4.89 7,51 

YOLOX-M 25.3 16 150 5.09 10,88 

YOLOX-L 54.2 8 150 6.22 19.36 

IP
1
0

2
 

YOLOX-Nano 0.91 16 150 22.12 44,12 

YOLOX-Tiny 5.06 16 150 21.82 40,34 

YOLOX-S 9.0 16 150 23.34 80,49 

YOLOX-M 25.3 8 150 23.5 109.46 

YOLOX-L 54.2 4 150 23.6 184.95 

4.2. Evaluation Metrics of the Trained Models 

In order to evaluate the performance of YOLO models on insect datasets, several comprehensive metrics were 

employed for rigorous evaluation. Mean Average Precision (mAP) with Intersection over Union (IoU) in [.50:.05:.95], 

mAP.50 and mAP.75 is ultilized to evaluate insect pest detection performance of the models. In which, IoU is a 

number that quantifies the degree of overlap between two boxes (Figure 5). In the case of object detection and 

segmentation, IoU evaluates the overlap of the Ground Truth and Prediction region. mAP represents the average 

value of AP, which is used to measure the overall detection accuracy of object detection. For object detection, AP 

and mAP are the best indicators to measure the detection accuracy of the model [69]. Besides, Precision and 

Recall are also two major metrics employed in our insect datasets, which describe the false positive reduction and 

misdetection rate respectively. The formula is shown in Equations (1) -  (3): 
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Figure 5. The Predicted Bounding Box is Drawn in Red While the Ground-Truth Bounding Box is Drawn in 

Green. Intersection Over Union (IOU) is the Intersection Over Union between These Bounding Box. 

In the following formulas, TP is the number of true positives, the samples that are correctly identified as insect; 

FN is the number of false negatives, the samples that are incorrectly identified as the background; TN is the number 

of true negatives, the samples that are correctly identified as the background; and FP is the number of false 

positives, the samples that are incorrectly identified as insect. The precision P in formula (1) measured the 

classification ability of the model by calculating the ratio of the number of correctly detected targets to the overall 

number of detected targets. Recall R in formula (2) is a measure of the model’s detection capability, which is 

obtained by calculating the ratio of the number of correctly detected targets to the total number oftargets. AP in 

formula (3) is the average precision, which measures the detection performance of a model by calculating the area 

under the Precision-Recall curve. The 10-class or 102-class mean of the above indicators was calculated, and the 

mean average precision (mAP), mean Precision (mPrecision), and mean Recall (mRecall) were obtained. 

 
(1) 

 
(2) 

 

(3) 

4.3. Results 

This section presents the results when training YOLOv5, YOLOX models using transfer learning on the Insect10 

and IP102 datasets. The images are selected at random from the test set to better illustrate the results of our 

experiments. The performances of YOLOv5 and YOLOX were verified by experiments. The comparison results of 

the models obtained in the ablation experiments are shown in  

Table 1 and  

Table 2.  

4.3.1. Training Results on Insect10 

The training process of YOLOv4, YOLOv5, YOLOX models on the Insect10 dataset was evaluated through the 

mAP indicator with IoU thresholds of 0.5 and 0.5:0.95, mPrecission and mRecall. Figure 6 shows the training results 

of different YOLOX model architectures on the Insect10 dataset. It can be seen that there is not a significant 

difference between the models, and the average accuracy indicators increase with the size of the model variations 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 2, pp. 892-915 

906 

because the dataset is quite small and has an even distribution between classes. However, the models have been 

unstable since the 20th loop and show signs of increasing in the last loops. As shown in  

Table 1, compared to the baseline model YOLOv4, the mAP of YOLOv5 and YOLOX do not show better 

performance. It is because the number of images and the classes of Insect10 are still small. 

Table 1. Training Results of Yolo Models using Transfer Learning on Dataset Insect10. 

Methods mAPtest 

mAPtest 

0.5 

mAPtest 

0.5:0.95 

mPrecision mRecall 

YOLOv4 84.94 84.90 63.19 81.00 80.00 

YOLOv4-tiny 64.35 64.40 48.34 69.00 58.00 

YOLOv5-N 70.10 70.10 40.20 77.00 64.70 

YOLOv5-S 70.50 70.50 35.90 73.90 67.30 

YOLOv5-M 76.60 76.60 42.70 78.70 73.00 

YOLOv5-L 78.90 78.90 46.80 81.80 73.40 

YOLOv5-X 73.00 73.00 40.90 73.60 71.00 

YOLOX-Nano 77.43 77.43 51.89 - - 

YOLOX-Tiny 77.54 77.54 53.17 - - 

YOLOX-S 84.84 84.84 58.50 - - 

YOLOX-M 82.34 82.34 61.92 - - 

YOLOX-L 84.01 84.06 65.04 - - 
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Figure 6. The Training Results Of Different YOLOX Model Architectures on Insect10 Dataset (mAP@IoU:0.5, 

mAP@IoU:0.5:0.95) with (a) YOLOX-S, (b) YOLOX-M, (c)YOLOX-L. 

The results of the YOLOX-S model for detecting Acalymma vittatum with many individuals in a single image 

from the Insect10 dataset are shown in Figure 7. 
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Figure 7. The results of the YOLOX-S Model for Detecting Acalymma Vittatum with Many Individuals in a Single Image from the 

Insect10 Dataset. 

4.3.2. Training Results on IP102 

The process of training different architectures of the YOLOX model on the IP102 dataset evaluated by the 

indicators mAP.05 and mAP.50:.95, is detailed in Figure 8. During the first 20 iterations, the mAP of YOLO models 

is gradually increasing and stable ; however, the YOLOX-M and YOLOX-L models have a decrease in accuracy in 

the last iterations. The mAP index increased sharply at loop 130 but not significantly, the proportion of mAP 

accuracy assessments of the model variants increased with the size of those variants. As shown in  

Table 2, compared to the baseline model YOLOv3, the mAP of YOLOv4, YOLOv5 and YOLOX have much 

better results than the YOLOv3 model in the article [44], 54.19% mAP versus 25.67% mAP, increased by 28.52%. 

Further, compared to the model YOLOv4, the mAP of the YOLOv5 and YOLOX achieve 54.01%, 54.19% 

respectively,  an increased by 27.69%. 

Table 2. The training Results of YOLOV5, YOLOX on ip102. 

Methods mAPtest 

mAPtest 

0.5 

mAPtest 

0.5:0.95 

mPrecision mRecall 

FRCNN [70] 21.05 47.87 15.23 - - 

FPN [71] 28.10 54.93 23.30 - - 

SSD300 [72] 21.49 47.21 16.57 - - 

RefineDet [73] 22.84 49.01 16.82 - - 
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Methods mAPtest 

mAPtest 

0.5 

mAPtest 

0.5:0.95 

mPrecision mRecall 

YOLOv3 [44] 25.67 50.64 21.79 - - 

YOLOv4 26.50 52.70 22.06 - - 

YOLOv5-S 42.90 42.90 24.00 44.20 50.80 

YOLOv5-M 47.41 47.41 27.90 50.30 51.20 

YOLOv5-L 50.10 50.10 29.91 50.60 51.50 

YOLOv5-X 54.01 54.01 32.52 50.10 58.10 

YOLOX-Nano 49.38 49.38 32.19 - - 

YOLOX-Tiny 50.00 49.96 33.05 - - 

YOLOX-S 52.30 52.30 31.10 - - 

YOLOX-M 54.19 54.19 35.08 - - 

YOLOX-L 53.93 53.93 34.71 - - 

I-YOLOX-S 52.27 52.27 34.14 - - 

I-YOLOX-M 54.19 54.20 35.08 - - 

I-YOLOX-L 53.93 53.93 34.71 - - 

The average accuracy of classes on dataset IP102 with the YOLOX-S model is illustrated in Error! Reference 

source not found.. In particular, the YOLOX-S has high AP recognition accuracy on some insect species, such as 

Cicadellidae (89.40%), Unaspis yanonensis (87.30%), Icerya purchasi Maskell (90.70%), parathrene regalis 

(100%). However, there are still some insects that the system can not recognize such as therioaphis maculata 

Buckton (0%), Phyllocoptes oleiverus ashmead (0%). Figure 9 depicts the real-time detection results of the YOLOX-

S model for English or aphid insects with many individuals from the IP102 dataset. The detection results of the 

YOLOX-S model have also been tested for many insect species, many individuals on the same image as in the 

IP102 dataset shown in Figure 10.  
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Figure 8. The Training Results of Different YOLOX Model Architectures on IP102 (mAP@IoU:0.5 and mAP@IoU:0.5:0.95) with 

(a) YOLOX-Nano, (b) YOLOX-tiny, (c) YOLOX-S, (d) YOLOX-M, (e) YOLOX-L. 
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Figure 13. Average Accuracy of Classes on Dataset IP102 with YOLOX-S Model. 

0 rice leaf roller, 85.90%
1 rice leaf caterpillar, 36.40%

2 paddy stem maggot, 31.40%
3 asiatic rice borer, 61.50%

4 yellow rice borer, 51.80%
5 rice gall midge, 82.00%

6 Rice Stemfly, 50.20%
7 brown plant hopper, 66.80%

8 white backed plant hopper, 46.90%
9 small brown plant hopper, 22.70%

10 rice water weevil, 71.40%
11 rice leafhopper, 39.30%

12 grain spreader thrips, 36.40%
13 rice shell pest, 72.70%

14 grub, 95.70%
15 mole cricket, 90.40%

16 wireworm, 83.60%
17 white margined moth, 12.60%

18 black cutworm, 50.70%
19 large cutworm, 26.30%

20 yellow cutworm, 31.10%
21 red spider, 63.10%

22 corn borer, 68.40%
23 army worm, 35.50%

24 aphids, 70.30%
25 Potosiabre vitarsis, 90.30%

26 peach borer, 71.00%
27 english grain aphid, 39.70%

28 green bug, 1.00%
29 bird cherry-oataphid, 15.10%

30 wheat blossom midge, 68.70%
31 penthaleus major, 91.90%

32 longlegged spider mite, 56.80%
33 wheat phloeothrips, 74.90%

34 wheat sawfly, 77.80%
35 cerodonta denticornis, 12.10%

36 beet fly, 40.30%
37 flea beetle, 85.20%

38 cabbage army worm, 35.20%
39 beet army worm, 42.40%

40 Beet spot flies, 74.20%
41 meadow moth, 67.10%

42 beet weevil, 69.70%
43 sericaorient alismots chulsky, 71.10%

44 alfalfa weevil, 41.70%
45 flax budworm, 36.40%

46 alfalfa plant bug, 26.50%
47 tarnished plant bug, 63.20%

48 Locustoidea, 53.20%
49 lytta polita, 36.20%

50 legume blister beetle, 55.50%
51 blister beetle, 76.60%

52 therioaphis maculata Buckton, 0.00%
53 odontothrips loti, 68.50%

54 Thrips, 25.30%
55 alfalfa seed chalcid, 57.30%

56 Pieris canidia, 29.80%
57 Apolygus lucorum, 46.30%

58 Limacodidae, 19.80%
59 Viteus vitifoliae, 0.00%
60 Colomerus vitis, 0.00%
61 Brevipoalpus lewisi McGregor, 0.00%

62 oides decempunctata, 99.30%
63 Polyphagotars onemus latus, 0.00%

64 Pseudococcus comstocki Kuwana, 74.00%
65 parathrene regalis, 100.00%

66 Ampelophaga, 87.30%
67 Lycorma delicatula, 90.90%

68 Xylotrechus, 98.30%
69 Cicadella viridis, 74.20%

70 Miridae, 80.30%
71 Trialeurodes vaporariorum, 39.30%

72 Erythroneura apicalis, 100.00%
73 Papilio xuthus, 47.50%

74 Panonchus citri McGregor, 47.30%

75 Phyllocoptes oleiverus ashmead, 0.00%
76 Icerya purchasi Maskell, 90.70%
77 Unaspis yanonensis, 87.30%

78 Ceroplastes rubens, 75.30%
79 Chrysomphalus aonidum, 32.80%

80 Parlatoria zizyphus Lucus, 0.00%
81 Nipaecoccus vastalor, 55.60%

82 Aleurocanthus spiniferus, 44.60%
83 Tetradacus c Bactrocera minax, 54.60%

84 Dacus dorsalis (Hendel), 69.10%
85 Bactrocera tsuneonis, 18.10%

86 Prodenia litura, 54.50%
87 Adristyrannus, 78.60%

88 Phyllocnistis citrella Stainton, 81.80%
89 Toxoptera citricidus, 20.80%

90 Toxoptera aurantii, 62.30%
91 Aphis citricola Vander Goot, 0.00%
92 Scirtothrips dorsalis Hood, 12.80%

93 Dasineura sp, 34.20%
94 Lawana imitata Melichar, 81.80%

95 Salurnis marginella Guerr, 86.80%
96 Deporaus marginatus Pascoe, 51.00%

97 Chlumetia transversa, 34.30%

98 Mango flat beak leafhopper, 7.30%
99 Rhytidodera bowrinii white, 68.50%

100 Sternochetus frigidus, 72.50%
101 Cicadellidae, 89.40%

all, 52.30%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

Mean Ap
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Figure 9. The Real-Time Detection Results of the YOLOX-S Model for English or Aphid Insects with many Individuals from the 

IP102 Dataset. 

 
Figure 10. The Detection Results of YOLOX-S Model of many Species, Many Individuals on the Same Image as in IP102. 

5. DISCUSSION 

Among the trained and validated models with transfer learning, the YOLOX models were the most successful 
models. These YOLOX models were studied in terms of real-time object recognition. It is found that YOLOX-L can 
recognizes efficiently 10 different categories of insect against different backgrounds with 84.84%, and YOLOX-M 
can recognizes efficiently 102 different categories of insect with 54.19% on IP102 datasets. As shown in  

Table 1, the mAP, Precision, and Recall on the Insect10 are usually very high and there is not a significant 

difference between the models of the architectures. This is a small data set, but there is a uniform distribution of the 

number of input images between the classes, which explains the rather high mAP parameters between the models. 

However, it is difficult to judge that the architectures of YOLOv4 have an average accuracy performance that 

outperforms the architectures of the remaining models. Due to the different complexity between models, YOLOv4 

needs more iterations, namely Class * 2000  

iterations to get the best results. While the rest of the models are only 150 loops. Meanwhile, the evaluation 

indicators on the IP102 dataset in  



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 2, pp. 892-915 

913 

Table 2 are only achieved with two architectures, YOLOv5 and YOLOX, due to the technology and training time 

being too large, not feasible when implemented on YOLOv4. In general, the mAP of the models is still quite high 

when trained with a large data set and there is no uniform distribution between classes like IP102. The mAP 

accuracy ranges from 40% to 54% within the 0.5 IoU threshold and increases with the size of the YOLO models. 

The YOLOv4, YOLOv5, and YOLOX architectures are relatively good at correctly identifying insects. On the 

Insect10, averages ranged from 70.10% mAP to 84.94% mAP, and on the IP102 dataset, averages ranged from 

26.50% mAP to 54.19% mAP. However, on the Insect10 dataset, YOLOv4 has a relatively good accuracy 

performance like other YOLO models, while on IP102 YOLOv5 has a lower accuracy rate than YOLOX on the same 

input image but not significantly. For the ability to identify insects on video, the accuracy between the two YOLO 

architectures still has good similarities on the Insect10 dataset. However, on a large-scale dataset like IP102, there 

is a certain difference between the detection models, specifically the YOLOv5 model has a lower mAP in 

recognition than the YOLOX model (from 10% to 17%). From the analysis of the recognition results of the model, it 

can be seen that the system and our collected insect dataset have high accuracy, identify insect pest objects in 

many situations and are suitable for implementation on mobile terminal devices, mobile applications, and websites. 

The models are still quite accurate and promise to improve the evaluation indicators to better match real projects. 

6. CONCLUSION AND FUTURE WORK 

Deep learning models are commonly used to detect insect in plants. However, a major problem is low accuracy 

when real-world images are presented to the model. In this study, after conducting a comprehensive comparison of 

the several detection frameworks from deep learning, we built an object detection system that can detect insect in 

digital images in real-time using the single-stage object detection architectures including YOLOv4, YOLOv5 with five 

different scales (N, S, M, and L), and YOLOX with four different scales (N, S, M, L, and X). In which, the YOLOX-L 

model achieved the highest accuracy of 54.19% mAP on the IP102 dataset. The next step in the research is to 

collect and add other common insect. Then more efficient insect detection models will be studied to implemented 

the system on high-performance mobile terminal devices. 
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