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Abstract: The applications of carbon membranes are becoming more important than ever due to their resilient 
mechanical strength, stability, and separation performance. The production of carbon membranes involves a suitable 
precursor that is being subjective to a pyrolysis process under controlled operating conditions that will result a porous 
structure to be utilized in many different separation applications. Thus, by understanding the preparation aspects of this 
fabrication process, the product can be manipulated, to optimize the best preparation procedure for obtaining the desired 
properties of a given type of membrane. This paper reviews the preparation aspects of carbon membranes, that can be 
manipulated to enhance the overall separation performance.  
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INTRODUCTION  

The continues mandate for high efficient processes 
to limit the emissions of gases that contribute to the 
greenhouse has triggered the global enthusiasm to 
embrace new green technologies with a long-term 
potential solution [1-3]. Within the context of this 
worldwide environmental concerns, membrane 
technology has attracted a considerable attention as it 
require limited amounts of chemicals compared to 
other standard unit operations [4-8]. 

Among the many types of porous inorganic 
membranes, carbon membranes have many distinct 
advantages and have been looked into and developed 
noticeably in the recent years, mostly for gas 
separation applications. [9-12]. For many applications, 
carbon membranes have a high potential for separation 
due to their micropore structure and amorphous 
properties. Moreover, the use of carbon membranes in 
many applications has been demonstrated to be very 
effective for cost and energy reduction instead of the 
conventional ones [5, 14-16].  

Currently, polymer-based membranes are being the 
most popular type used in the membrane industries. 
However, their poor chemical and temperature 
stabilities limit their applications [17-19]. Therefore, 
many efforts have been made to explore other 
materials that exhibit molecular sieving properties, such 
as silica, zeolites and carbon. Carbon molecular sieve 
membranes (CMSM) acquire many attractive 
characteristic properties due to their selective planar 
molecule shape and hydrophobicity. The CMSM is 
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produced by converting a given precursor by pyrolysis 
process [20-23]. 

Koresh and Soffer were the first to report a 
successful preparation of CMSM using organic 
cellulosic and phenolic resins as precursors [24-26]. 
They have reported and studied the temperature effect 
on the formation of the produced CMSM pore structure, 
followed by developing CMSM to improve gas 
separation performances. Nowadays, membranes 
performance is being investigated and developed to 
overcome the flux/selectivity trade-off and limitation.  

The production of CMSM can be classified into 
different precursor essential treating parameters, 
illustrated in Figure 1, 1) Selection 2) Pre-treatment, 3) 
Pyrolysis, and 4) Post-treatment. As a result, CMSM 
properties (including pore size) and performance are 
determined by manipulation of these parameters. 

CLASSIFICATION  

Different geometries and classifications have been 
reported in the literature to improve the permeability 
and selectivity of gas mixtures [28-33]. Carbon 
membranes can be produced in similar configurations 
as the polymeric membranes, such as hollow fiber, flat 
sheet, tubular, etc. Therefore, An unsupported carbon 
membrane can be distinguished from a supported 
carbon membrane. As for the configurations of 
supported structure, flat membranes and tubular 
membranes are the main categories. Conversely, 
unsupported structure can occur in three flat, hollow 
fiber, and capillary form. Supported membranes tend to 
have more surface areas resulting better separation 
capability [31-33]. Also, the supported membranes 
have better structural integrity compared to the non-
supported membranes [33, 34]. The carbon membrane 
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classification is summarized in Figure 2. Membranes 
are categorized structurally as either isotropic 
(symmetric) or anisotropic (asymmetric). A symmetric 
membrane can be a porous membrane or a nonporous 
membrane (with a dense structure).  

As a result of having a uniform structure and 
identical properties, the properties of symmetric 
membranes are identical over the entire cross section 
[35-38]. Conversely, asymmetric membranes contain 
an very thin surface layer based on a porous 
substructure with a higher thickness. The main purpose 
of using porous support is to provide the mechanical 
support without affecting the separation/permeation 
rates. Where the separation properties and permeation 
rates of the anisotropic membrane are determined 
exclusively by the surface layer. The higher fluxes 
resulted from using Asymmetric membranes are so 
great that almost all commercial processes use such 
type of membranes. Asymmetric membranes usually 
have a thin layer between 0.1 and 30µm thick, while 
supporting layers are usually above 200 micrometers 

(µm) in thickness [35-42]. The development of 
asymmetric membrane structure was one of the major 
innovations made in the separation technology during 
the last 30 years [41, 43]. In general, carbon 
membranes exists in asymmetric geometry (flat or 
tubular). 

SELECTION OF PRECURSOR 

A number of studies have concluded that the choice 
of the precursor is very significant as it can affect the 
final composition's structural properties [44-47]. In 
general, carbon materials are produced by carbonize a 
given precursor using an inert atmosphere or vacuum 
during the pyrolysis process. The most popular 
precursor currently used for manufacturing carbon 
membranes is polyimide [48, 49]. Although polyimide 
offers a promising selective carbon structure, however 
its cost is too high and its commercial availability is 
sometimes very limited. Therefore, in order to reduce 
the overall cost and production time during carbon 

 

Figure 1: Fabrication steps of carbon membrane. 

 

Figure 2: Carbon membrane classifications and structures. 
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membrane fabrication, alternative polymers were looked into and investigated as listed in Table 1. 

Table 1: List of Different Polyimides Precursors Prepared at Different Operating Conditions 

Precursor Configuration Temperature Range (oC) Exposure Duration Ref. 

Acrylonitrile Hollow fiber 800-1600 5-60 min; N2 50 

Acrylonitrile Hollow fiber 600-1200 10 min; N2 51 

Polyacrylonitrile Hollow fiber 250 160 min; N2 52 

Polyacrylonitrile Hollow fiber 260 50 min; N2 53 

Polyacrylonitrile Hollow fiber 900 30 min; N2 54 

Cellulose Hollow fiber 400-900 1-10 min; Ar 55 

Cellulose Hollow fiber 500-800 12 h; Ar 56 

Cellulose Supported film  120-400 30 min; Ar 57 

Coal tar pitch Plate 600-900 1h; N2 58 

Condensed polynuclear aromatic Supported film  400-1000 N2 59 

Kapton and matrimid Supported film 450-700 1h; Vacuum 60 

Kapton and matrimid Film 500-800 2h; Vacuum 61 

Kapton polyimide Film  1000 oC 2h; Vacuum 62 

Kapton polyimide Film  600-1000 2h; Vacuum or Ar 62 

Phenol formaldehyde Flat 800-950 120-180 min; N2 63 

Phenol formaldehyde  Tubluar 800 N2 64 

Phenol formaldehyde Support film 900 60 min; Ar 64 

Phenolic resin  Support film  700-850 3h; N2 or CO2 65 

Phenolic resin  Supported film 900 1h; N2 66 

Phenolic resin  Supported film 500-1000 Vacuum 67 

Phenolic resin Supported film 700 Vacuum  68 

PVDC-AC Supported film 600 3h; N2 69 

PVDC-AC Supported film  1000 3h; N2 69 

PVDC-AC  Supported film 1000 3h; N2 69 

PVDC-AC Supported film  600 3h; N2 69 

PVDC-VC Supported film  500-1000 Vacuum 69 

PEI Supported film 800 1h; Vacuum 70 

PEI Supported film 350 30 min; Ar 70 

PFA Supported film 500-800 2h; He or N2 71 

PFA Supported film 600 1-2 h; He 72 

PFA Supported film 300 2h; N2 73 

PFA  Supported film  150-600 2h; He or N2 73 

PFA Supported film  450 120 min; He 73 

PFA Supported film  150-600 120 min; He 74 

PFA Supported film  200-600 2 h; He 74 

PFA Supported film  600 120 min; He 74 

PFA Supported film  450 1 h; He 75 

PFA Supported film  450-600 1 h; He 76 

PFA Supported film  500-700 30 min ; N2 76 

Polyimide  Supported film 550-700 1h; vacuum  77 

Polyimide  Supported film 800 N2 77 

Polyimide  Supported film 600-900 Ar 78 

Polyimide Hollow fiber 500-550 2h; He 78 

Polyimide Hollow fiber 800 2h; vacuum 79 

Polyimide Hollow fiber 600-900 1h; N2 80 
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Polyfurfuryl alcohol (PFA) precursor has been 
extensively used widely for nanoporous carbon 
membrane preparation [71, 72]. PFA polymerization 
process is very flexible as it can be achived under a 
wider range of temperate. Moreover, this precursor can 
also be used for simulation studies because it has a 
simple mechanism of structure formation. In the carbon 
membrane industry, PFA is used as a support film 
since it exists at room temperature as a liquid. 
Chemical stability and pore size distribution are 
desirable properties of PFA.  

Using the porous surface of a stainless steel disk for 
support, Shiflett and Foley demonstrated the use of 
PFA in nanoporous applications. They demonstrated a 
successful procedures with separation factors of 600, 
45, 17 and 14 for H2/CH4, CO2/CH4, N2O/N2 and 
H2/CO2, respectively [81].  

Wang and his coworkers developed a composite 
carbonaceous polyfurfuryl alcohol (CPFA) on 
polysulfone support in 2010. This was achieved by 
carbonizing PFA partially. The application of this 
product was subjected for water desalination 
applications, achieving ratios of water permeability of 
1.54, 2.01 and 0.17 L· µm·m-2 · h-1 · bar-1. Their study 
has concluded that due to the hydrophilic structure of 
the membrane, the flux is considerably higher than that 
of PFA membranes. [82]. Polyacrylonitrile (PAN), with 
the chemical formula (C3H3N)n, is a well-known polymer 
type that has been used widely in the separation 
industry. Among its many uses, PAN is a complex of 
monomer used in reverse osmosis, textile 
manufacturing and high-quality carbon fiber production; 
93% of the world's carbon fiber comes from this 
polymer [83]. Among its many advantages are PAN 
has a high melting point, high thermal stability, and a 
wide variety of mechanical properties. These properties 
have attracted considerable attention alongside other 
advantages, including a high melting point, thermal 
stability, and significant yields. The production of 
carbon membrane using Polyimides are usually done 
by condensing dianhydrides with diamines. Recently, 
this polyimide as a precursor has been used in glassy 
carbon production as it has performed exceptionally 
well in its mechanical stability and separation 
performance. One of the most mutual byproducts of 
this polymer is Kapton polyimide. Kapton has been 
subjected widely in the production of CMSM films. This 
is achieved by carbonizing Kapton precursor at 800 oC. 
Another polymer type i.e., Polyetherimide (PEI), has a 
great chemical properties. PEI is considered as an 
shapeless polyimide used in membrane preparation 

industry mostly for gas separation processes. Phenolic 
polymer, is another well-known polymer consists of 
mixture of chemical compounds (phenol and aldehyde). 
Phenolic polymers has a wide range of applications 
including the manufacture of carbon membranes at 
high yield with molecular sieve properties at low cost. 
Cellulose (C6H10O5) polymer is also considered as a 
low-cost precursor and can be found in most types of 
plants [84].  

PRE-TREATMENT  

As the polymeric structure tends to shrink during the 
pyrolysis conditions, pre-treatment process is a vital 
step to avoid this as it has a significant impact in 
maintaining the precursor stability during pyrolysis [85]. 
Also, the pre-treatment process of a given precursors 
plays an essential role in the transportation of 
properties and could deliver a production of CMSM with 
the desired performance. Pretreatment of precursors 
will result in altering the cooperative segmental mobility 
of the polymer [86], which will significantly affect the 
structural organization of the structure during pyrolysis. 
In other words, the aim of the pre-treatment is to 
stabilize the repeat units’ structure of the precursors, to 
obtain the molecular structure of the carbon chains 
during the pyrolysis process. Also, a given pre-
treatment procedure could enhances the uniformity of 
pore formation during the pyrolysis process. Current 
pre-treatment methods include chemical (oxidation and 
chemical treatment) and physical methods (stretching). 
In general, the chemical methods can be summarised 
in exposing the polymeric precursor to a number of 
chemical reagents to obtain the desired final structure 
to achieve desired separation properties, while the 
physical pre-treatment is achieved by applying a 
stretching mechanism [87]. Oxidation 
(thermostabilization) is considered to be the most 
popular and commonly method used pretreating the 
polymeric precursors before involving it in the pyrolysis 
process [88-90]. The oxidation treatment has a 
excessive impact in stabilizing the structure of the 
precursors to withstand the high temperatures of 
pyrolysis and rise the final yield of the precursor’s 
carbon by preventing excessive volatilization.  

In 1997, Kusuki et al have tested the performance 
of a number of membranes that were not pre-treated 
prior to the pyrolysis process. The study has concluded 
the poor performance of these membranes due to not 
pre-treating them [91], emphasizing the great 
importance of this process. Other studies have 
reported this process using different precursors as 
listed in the Table 2. 
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Another aspect that should be considered in 
pretreating the membrane precursor with certain 
chemicals enhances the uniformity and distribution of 
the channeling structure during the pyrolysis step. The 
most common chemicals used to fulfill this task are 
hydrazine, dimethylformamide (DMF), hydrochloric acid 
and ammonium chloride [104, 105]. In the chemical 
pre-treatment process, the given membrane is fully 
immersed in a chemical solution then washed and 
dried before undergoing the separation application. 
Pretreatment of a membrane with certain chemicals 
can provide enhanced uniformity of the pore system 
formed during pyrolysis. Another pretreatment 
technique that is being used is the stretching 
pretreatment. This is a physical pre-treatment 
technique that has been adapted from spinning 
treatment and applied to many different hollow fiber 
precursors. The stretching method expose the surface 
defects and make them reachable so that they can be 
treated to become rigid fibers. Also, this method 
reorient the molecular structure to produce more 
balanced fiber arrangement. A previous study reported 
that the pretreatment by heating and stretching was 
conducted on PAN precursor fibers in a steam bath 
media, to convert the flexible linear chain molecule to a 
stiff ladder like structure by intramolecular cyclization 
process [106].  

PYROLYSIS  

Pyrolysis can be defined as a heating process, at a 
certain heating rates, that is being conducted at an 
elevated temperature in a vacuum/ inert atmosphere. 
This process aims to produce a carbon sturcture with 
molecular sieve properties [107]. In this process, most 
of the heteroatoms are removed, including; nitrogen, 
iodine, chlorine. This process aims to result a cross-
linked carbon structure to avoid the formation of 
tapered pores the are produced by the graphite-like 
crystals.  

A deep comprehension of the operational conditions 
i.e., pyrolysis temperature, gas flow, heating rates, and 
thermal soaking period, will make the desired structure 
of a given carbon membrane easy to achieve. 
Therefore, conducting the pyrolysis process in a proper 
conditions, will result a membrane with appropriate 
pore size. This is obviously of great importance to 
establish a high performance in terms of permeability 
and selectivity [108].  

Generally, carbon membranes contain a pore 
system that is non-homogeneous as the size and 
shape of the pore system depend on the precursor type 
and the operating conditions of the pyrolysis process. 
Figure 3 illustrates a typical carbon pore structure, 

Table 2: Pre-Treatment (Oxidation) at Different Operating Conditions and Precursors 

Precursor Configuration Temperature Range (oC) Exposure Duration Ref. 

Acrylonitrile Hollow fiber 200-300 3 h 92 

Acrylonitrile Hollow fiber 180-350 1-20 min 92 

Polyacrylonitrile Hollow fiber 250 30 min; O2 93 

Polyacrylonitrile Hollow fiber 260 30 min; N2 94 

Polyacrylonitrile Hollow fiber 270 30 min; air 95 

Phenol resin Supported film 200-300 2 h; air 96 

Phenol resin Supported film 150 2 h; air 97 

Phenol resin  Supported film 300 1h; air 97 

PVDC-VC Supported film 150 6h; air 98 

Polyfurfuryl alcohol Supported film 90 3h; air  99 

Polyimide Hollow fiber 400 30 min; air 100 

Polyimide Hollow fiber 400-450 1h; air  100 

Polyimide Hollow fiber 400-500 1-100 h; air 101 

Polyimide Hollow fiber 400 1h; air 102 

Polyimide Supported film 500 0-1h; air 103 
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presenting the ultramicropores structure with a 
diameter less than 10Å (D1). This channel perform the 
sieving properties for a given molecule. On the other 
hand, micropores structure with diameter of 5-20 Å 
(D2) permit the molecules to be diffused through this 
channel. It can be concluded that the carbon 
membrane has the ability to deliver a significantly 
higher flux of permeated molecules than the sieving 
property solely [109]. 

In a controlled atmosphere, the pyrolysis process is 
usually performed at 500-1000 oC depending on the 
type of precursor to prevents any unwanted burnoff that 
might ruin it. As a result, heteroatoms are removed in 
order to form a cross-linked porous carbon structure. 
[110]. There has been extensive research revealing 
that temperature affects the production of carbon 
structure, including its separation performance 
selectivity and permeability, and that an increase in 
pyrolysis temperature leads to more crystallinity and 
smaller layer spacing [109-120]. By controlling the 
heating rate sequence, pyrolysis produces products 
with different volatilities and results in a final weight 
loss [130, 131]. By determining the evolution rate of 
volatile components, the heating rate contributes to the 
formation of the final shape. According to the findings, 
lower heating rates increase the carbon crystallinity 
and facilitate the formation of small pores. On the other 
hand, higher the heating rate, the more likely it will 
produce a structure with low separation selectivity due 
to pinholes, cracks, and deformations [121-132]. 
Another aspect in the pyrolysis process that affects the 
final properties is the thermal dwell period. This is a key 
player in the rearrangement of the microstructures, 

which leads to different distribution of pores in the final 
formation of the membrane. The period of thermal 
dwell depends on two main aspects i.e., pyrolysis 
temperature and precursor type.  

In general, with longer thermal soak periods, a 
membrane's separation selectivity generally increases 
[107, 132]. The gas flow plays an important role in the 
pyrolysis process. Gas flow is introduced into the 
pyrolysis process in order to prevent any undesired 
burn-off, which can negatively impact membrane 
formation [134]. 

 In general, a vacuum or inert atmosphere can be 
used to perform the pyrolysis process. In case of the 
use vacuum, a less permeable structure is formed that 
has a better separation selectivity than an inert 
atmosphere [135]. Meanwhile, inert gas flow can 
affects the overall permeability performance without 
affecting the membrane selectivity. It is established that 
the gas flow is proportional with the permeability of the 
carbon membrane [135, 136]. Different precursors with 
using different inert gas with dwell period are listed in 
Table 3. 

POST-TREATMENT  

Oxidation process has also been utilized a post 
treatment process in the preparation of carbon 
membrane. Post-oxidation, is a popular post-treatment 
utilized in many reported studies to regulate the pore 
structure of the prepared carbon membrane. In which, 
the average pore size increases when the membrane is 
exposed to an oxidizing atmosphere afterward the 
pyrolysis process. The atmosphere involved in this 

 

Figure 3: Illustration of a pore structure of carbon materials. 
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process can be pure oxygen or mixed with other gases, 
or air [88, 89]. In recent years, the post-oxidation effect 
on the permeation performances of the carbon 
membrane under different oxidation conditions as listed 
in Table 4.  

The growing research on carbon membrane 
technology, especially in gas separation, indicates that 
carbon membranes is an alternative potential candidate 
to fulfill the industrial-related separation process due to 
their stability and molecular sieving capabilities. The 
results of carbon membrane performance that have 
been reported by different investigators in different gas 
separation applications as presented in Table 5. 

CONCLUSIONS AND FUTURE CONSIDERATION 

Carbon membranes with its useful characteristics 
and advantages will compete with polymeric 

membranes and other porous inorganic membranes. 
However, further intensive research work should be 
carried out to develop the carbon membranes to meet 
the industrial standards and to commercialize carbon 
membranes in the international market. The production 
process of carbon membranes should be developed as 
it currently involves a relatively costly procedure. Also, 
the cost of a carbon membrane per unit of membrane 
area is reported to three times the typical polymeric 
membrane [18]. Therefore, carbon membranes must 
achieve a superior performance in order to compensate 
for their higher cost. Optimizing the fabrication 
parameters during the pyrolysis process is arguably the 
best way to achieve this goal. These parameters will 
tailor the pore properties of the resulted carbon 
membrane, which eventually determine the overall 
separation mechanism. In addition, the effect of 
pretreatments and posttreatments during the 
membrane fabrication process should also be 

Table 3: List of Different Types of Precursors Under Pyrolysis Process Conditions 

Precursor Type Heat Rate Temperature (oK) Inert Gas Dwell Period Ref. 

PFA 10 C/min 773-1072  He/N2 2 hr 73 

PFA 5 C/min 423-871  He/N3 1-2 hr 75 

PFA 6 C/min 723  He 2 hr 121 

PAN 1 C/min 1223  N2 3 hr 122 

PAN 9 C/ min 523 -1073  N2 3 hr 123 

Polyimide 5 C/min 773-1173 N2 N.A. 124 

Polyimide 6 C/min 973-1073 Ar N.A. 125 

PEI 0.5 C/min 1073 Vacuum 1 hr 126 

Phenolic resin 25C/min 1173 N2 1 hr 127 

Phenolic resin 50 C/min 1073 N2 N.A. 127 

Cellulose 0.5 C/min 393-673 Ar N.A. 128 

Cellulose 1-10 C/ min 673-1173 Ar N.A. 129 

 

Table 4: Examples of Post-Oxidation Treatments of Selected Carbon Membranes 

Precursor Configuration Temperature Range (oC) Exposure Duration Ref. 

Cellulose Hollow fiber 200-300 3 h; N2 137 

Phenol formaldehyde Supported film 180-350 1-20 min; air 138 

Phenol formaldehyde Supported film 800 30 min-6h; air 138 

Phenolic resin Supported film 100-475 30 min; air 139 

Phenolic resin Supported film 300-400 30 min; air 139 

Phenolic resin Supported film 75-350 30 min; air 139 

Phenolic resin Supported film 800 3 h; O2 139 

Polyimide Supported film 300 3 h; O2 140 

Polyimide Hollow fiber 250-455 0.2–50 h; air 140 
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considered. These steps provide a great opportunity for 
optimize the separation properties of a given carbon 
membrane. The data obtained from the experimental 
work should be utilized and simulated using computer 
software to provide an ideal pyrolysis condition that can 
be subjected in to a pilot scale. 
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