Lanthanum-Doped Barium Stannate - a New Type of Critical Raw Materials-Free Transparent Conducting Oxide
Keywords:
Critical raw materials, TCOs, BaSnO3, La doping, Kubelka-Munk methodAbstract
A pulsed laser deposition-based process for growth of highly-doped epitaxial La:BaSnO3(001) layers on (001)-oriented SrTiO3 is developed. The growth window of single-phase epitaxial Ba0.93La0.07SnO3 films is determined and the influence of growth parameters on crystalline quality is studied.
Reciprocal space maps showed fully relaxed Ba0.93La0.07SnO3 epitaxial layers on SrTiO3 (001). The crystalline quality of material obtained was evidenced through HR-XRD measurements with a full width at half maximum (FWHM) of 290 arcsec for the Rocking curve of the symmetric (002) peak and 108 arcsec for the asymmetric (103) peak. The band gap of the layers, determined from Reflection measurements employing the Kubelka-Munk method, was estimated as 2.97 - 3.01 eV, i.e. very suitable for the applications envisaged. The layers demonstrated electrical conductivity value of 1024 (?·cm)-1at a free carrier concentration of 2.18×1021 cm-3 and a high transparency (up to 90%) in the visible and NIR range of spectrum. The Ba0.93La0.07SnO3 layers grown could be regarded as a cost-effective and thermally and chemically stable alternative to highly doped ZnO-based transparent conductive oxides and to In2O3:Sn in applications ranging from solar energy utilization to optoelectronics as well as for the emerging field of transparent and radiation hard electronics.
Downloads
Published
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .