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Method of Green’s Functions for the Problem of Sound Diffraction 
on Elastic Shell of Non-Analytical Form 
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Abstract: The real scatterers have a non–analytical form and, therefore, the variable separation method (Fourier series 
method) for calculation of the reflected sound field cannot be applied to them. This article presents the method of 

Green’s functions and methods of the dynamic theory of elasticity for the solution of the problem of sound diffraction on 
elastic shell of a non–analytical surface. Furthermore, this work includes the detailed analysis of the solution of this 
problem and calculation of the angular characteristics of the sound scattering by non-analytical scatterers. 
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INTRODUCTION 

There are quite a number of methods to solve 

problems of reflection and scattering of sound bodies of 

a non–analytical surface. The most well-known and 

frequently used of them: methods of finite and 

boundary elements, method Kupradze, the method of 

the T – matrix, method of geometrical theory of 

diffraction, the method of integral equations, the 

method of Green’s functions, etc. [1-25]. In this paper 

we use the method of Green’s functions [22-25], which 

was developed for the solution of diffraction problems 

on the phone with mixed boundary conditions, and first 

applied in this study of the sound scattering by non-

analytical scatterers. 

THE SOLUTION OF THE THREE-DIMENSIONAL 
PROBLEM OF DIFFRACTION ON AN ELASTIC CYL- 
INDRICAL SHELL USING THE DEBYE POTENTIALS 

We consider bodies, the surface of which cannot be 

applied to the category of coordinate systems with 

shared variables in the scalar Helmholtz equation, as 

non-analytical bodies. Let’s consider this non-analytical 

scatterer in the form of a finite circular cylinder, 

bounded on the sides by spheroidal caps (Figure 1). 

Sound pressure, scattered by this body, can be 

found by one of the numerical methods for solving the 

diffraction problems, among which the method of 

Green’s functions is sufficiently convenient. This 

method is based on the use of mathematical 

formulation of the principle of Helmholtz-Huygens 

(Kirchhoff integral). The algorithm of calculation 

requires knowledge of the amplitude-phase distribution  
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of the sound pressure and the normal component of 

oscillatory velocity on some closed integration surface 

of S that in this case consists of the lateral surface of 

the cylinder S2 and the surfaces of spheroidal caps S1 

and S3 (Figure 1): 
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where ps(P)  - the sound pressure scattered by the 

body, P – the observation point having spherical 

coordinates;   r, ,  – the point on the surface S; ps(Q) 

- the sound pressure in the point Q; G(P,Q) - the 
Green's function of the free space satisfying the 
inhomogeneous Helmholtz equation. 
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Figure 1: Elastic non-analytical shell, compiled from finite 

cylindrical shell with spheroidal shells on the ends. 

In the formula (1) the Green's function is selected 

as a point source potential: 

   

G(P,Q) = eikR

R         (2) 
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where 
2

k =  the wave number,  - the length of the 

sound wave in the liquid medium, R – the distance 
between the points P and Q. 

First, consider problem of sound diffraction in 

infinite elastic hollow cylindrical shell [13, 26, 27]. 

Geometry of a problem is introduced on Figure 2. 

 

Figure 2: Infinite cylindrical shell. 

The scalar potential of sound wave ( )z,,r
i

 with 

unit wave vector k , which directed to axis z at angle , 

can be expand by natural functions of the scalar 

Helmholtz equation in circular cylindrical coordinate 

system: 

       (3) 

where  

 

Let’s transform the expression for vector function A, 

which was presented at [26], using the operator rot, for 

compliance with the conditions div A = 0: 

A (rot= k) + rot rot ( k),         (4) 

where k – unit vector on axis z;  and  – scalar 

potentials, satisfying the Helmholtz equation: 
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Components of vector function A in compliance with 

(4) have the following form: 
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Components of displacement vector U will be: 
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Potentials , , ,
s
 are displayed on by natural 

functions of the scalar Helmholtz equation in circular 

cylindrical coordinate system: 
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where  h = k1
2 k 2( )

1
2 ; 

  
= k

2

2
k

2( )
1

2
; Am,Bm ,Cm,D 

,Dm ,Em,Fm ,Gm - unknown coefficients, which are deter- 

mined from the boundary conditions:  

(1) The normal component of a displacement vector is 

continuous on the boundary of the liquid -elastic shell  

(r = a): 
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(2) The sound pressure in a liquid p is equal to the 

normal strain at an external boundary of elastic shell:  
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(3) The normal strain in a shell at an internal boundary 

of is equal to zero: 

+ 2μ( )
Ur

r
+ r 1 U

+ r 1Ur +
Uz

z

 

 
 

 

 
 = 0

r=b
        (11) 

(4) The tangent strains at the shell’s boundaries are 

equal to zero: 

 

 

       (12) 

 

By substituting expressions (3), (8) at (7), and then 

at boundary conductions (9) – (12) results in the 

heterogeneous system of the seven equations to define 

the unknown coefficients of potential expansions.  

As the trigonometrical functions cos(m ) and 

sin(m ) are opthogonal, an infinite system breaks out 

into seven equation with fixed index m: 

Am,Bm ,Cm,Dm ,Em,Fm ,Gm for finding the seven 

combinations of heterogeneous system. 

A product 
m

G  for a potential of a scattered wave 

s
 is calculated by Cramer’s rule on a basis of a ratio 

of the two determinants of the seventh-order: 

      Gm =   ,       (13) 

where  - minor of the system,   – system’s 

determinant, which equals [27]. 
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Expression of the elements of the determinants is 

given in the Appendix to this article. 

The relationship between scattered pressure 
s

p  

and scalar potential of displacement of scattered wave 

s
 is determined by well known expression [13, 24]: 

2

s s
p =                    (14) 

THE SOLUTION OF THREE-DIMENSIONAL PROB- 
LEM OF DIFFRACTION ON ELASTIC SPHEROIDAL 
AND SPHERICAL SHELLS WITH THE USE OF 
DEBYE’S TYPE POTENTIALS 

Consider the problem of diffraction of plane wave on 

prolate elastic spheroidal shell [13, 24, 27-28]. 

When studying elastic scatterers of spheroidal form 

irradiated of harmonic wave, are the basic equation 

Lame and the Helmholtz equation for scalar  and 

vector A potentials. 

The solution scheme for axial-symmetric problem of 

sound diffraction on elastic sheroidal body (prolate or 

oblate) is similar to the problem of diffraction for the 

cylinder and sphere. 

In this case, the vector potential is also one non-

zero component A = A . But in this case, the unknown 

coefficients of expansions are not in closed form, and 

are determined from the infinite system of equations by 

the method of truncation. Three-dimensional problem 

of diffraction of elastic spheroidal scatterer solved using 

the Debye’s potentials U and V, through which it is 

expressed vector function A [13, 24]: 

A rot rot= (RU) + i
2

k rot (RV),            (15) 

where R – radius-vector of observation point, k2 – wave 

number of flexural wave. 

The efficiency of such conception becomes obvious, 

when it is considered, that potentials U and V are 

submitted to scalar Helmholtz equation.  

First, it is convenient to write components of vector 

A in spherical coordinate system, expressing them 

through U, V, R, and then by the formulas vector 

analysis go to spheroidal components. 

Express spherical components of the vector 

function A through Debye’s potentials [13, 24, 27-28]. 
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where B = h0
2 1+ 2( )

1
2U . 

Spheroidal components of A will be [13, 24, 27-28]. 
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As scatterer consider the elastic isotropic spheroidal 

shell (Figure 3). The plane wave potential, the 

scattered waves potential, the scalar potential of a shell 

, the Debye’s potentials U and V are arranged in a 

series of spheroidal wave functions: 
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where Cl = k1h0 ; Ct = k2h0 ; C1 = kh0, k – the wave 

number of the sound wave in a gas that fills the shell; 
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unknown coefficients of expansion. 

Unknown coefficients of expansions can be found 

from physical boundary conductions on both of 

surfaces ( 0  and 1 , Figure 3): 

 
Figure 3: Elastic spheroidal shell. 

(1) The normal component of a displacement vector is 

continuous on the external boundary 
0

î ; (2) The sound 

pressure in a liquid is equal to the normal strain in elastic 
shell; (3) The normal strain in a shell at an internal boundary 

1
 of is equal to zero; (4) The tangent strains at the shell’s 

boundaries (
0

 and 
1
) are equal to zero. 

Boundary conditions take the form accordingly [13, 

24, 27-28]. 
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where 1   1
μ  - Lame coefficients of the shell 

material; 0  - the coefficient of volume compression of 

liquid. 
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A substitution of the series (20) – (24) to boundary 

conductions (25) – (29) gives us the system of the 

equations to define the unknown coefficients.  

As the trigonometrical functions cos(m ) and 

sin(m ) are opthogonal, an infinite system breaks out 

to infinite subsystems with fixed index m. Each of 

subsystems can be solved with the use of truncation 

method. The number of members in the ranks (20)-(24) 

increases with the wave size for a given potential. 

Next, we consider a composite elastic shell formed 

by the connection of finite cylindrical shell and two 

hemispherical shells of the same diameter (Figure 4).  

For the application of the method of Green’s 

functions will use the solution of the axis- symmetrical 

problem of diffraction of a plane acoustic wave by an 

elastic spherical shell under the dynamic theory of 

elasticity [29-31] and transform the decision on three-

dimensional version. 

This solution is not very different from the solution of 

the three-dimensional problem of diffraction on an 

elastic spheroidal shell [13, 24, 27-28]. 

 

Figure 4: Elastic non-analytical shell, compiled from finite 

cylindrical shell with hemispheres on the ends. 

The expression for the spherical components of the 

vector function A, using Debye’s potentials have the 

following form [32-34]. 
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Then the solution of this problem coincides with the 

solution of the problem of diffraction of elastic 

spheroidal shell, with the wave functions of the 

spheroidal coordinates should be replaced with the 

functions of spherical coordinates [25]. 

For the model presented in Figure 1 were calculated 

modules of angular characteristic of scattering ( )D  at 

0

0
90= =  in range of wave sizes 

0
0,053 0,581.kR =  

The model had the following parameters: 

1
200,51L =  m; 100,0L =  m; 

0
50,0h =  m; 

0
5,04R =  m; 

1
5,01R =  m; 

0
1,005075;=  

1
1,005.=  Under that 

conditions 0(90 )D  changes in the range 0,49 – 18,46. 

In the Figure 5 and Figure 6 the modules of angular 

characteristics of scattering (in the plane XOY, 0

0
90= ) 

of elastic non-analytical scatterer in the form of a 
cylindrical shell with hemispheres on the ends (Figure 
4), for 0,523ka =  (Figure 5) and for 0,941ka =  (Figure 

6), is presents.  

The results of these calculations are very close to 

the characteristics of sound scattering of elastic infinite 

entire cylinder is given in [35]. 

k
D( )

 

Figure 5: Module of angular characteristic of scattering 

( )D  for 
0

0
0,523, 90 .ka = =  
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k
D( )

 

Figure 6: Module of angular characteristic of scattering 

( )D  for 0,941,ka =  0

0
90 .=  

CONCLUSIONS 

Using the method of Green’s functions, of the 

Debye’s potentials and “Debye’s type” potentials, the 

solution of the problem of diffraction on an elastic 

composite shell of non-analytical form was obtained. 

The solution is supplemented by calculating angular 

characteristic of scattering for different wave sizes. 
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APPENDIX 

a11 =  J m  h a( ) ; 

a12 =  N m  h a( ) ; 

  
a13 = ik  J m  æ a( ) ; 

  
a14 = ik  N m  æ a( ) ; 

  

a15 = a 1mJm  æ a( ) a 2m2
+ k 2( ) a 2m  J m  æ a( )

a 1m   J m  æ a( ) ;
 

  

a16 = a 1mNm  æ a( ) a 2m2
+ k 2( ) a 2m  N m  æ a( )

a 1m   N m  æ a( ) ;
 

a17 = Hm
1( )© k a( ) ;

 

a21 = + 2μ( )   J m  h a( ) + a 1
 J m  h a( )[

m2a 2 + k 2( )Jm  h a( )] ;
 

a22 = + 2μ( )   N m  h a( ) + a 1
 N m  h a( )[

m2a 2 + k 2( )Nm  h a( )] ;
 

  
a23 = 2μ ik   J m  æ a( ) ; 

a24 = 2μ ik   N m  æ a( ) ; 

  

a25 = + 2μ( ) a 1 ma 1Jm  æ a( ) a 1m2 k 2 3a 2m2( ){ +

+m  J m  æ a( ) 2a 2 + k 2( ) m    J m  æ a( )} +

+ a 1 a 1mJm  æ a( ) k 2 a 2m2( ){ +

+m  J m  æ a( ) a 2m2 k 2( ) 2a 1m   J m  æ a( ) m    J m  æ a( )} ;
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a26 = + 2μ( ) a 1 ma 1Nm  æ a( ) a 1m2 k 2 3a 2m2( ){ +

+m  N m  æ a( ) 2a 2 + k 2( ) m    N m  æ a( )} +

+ a 1 a 1mNm  æ a( ) k 2 a 2m2( ){ +

+m  N m  æ a( ) a 2m2 k 2( ) 2a 1m   N m  æ a( ) m    N m  æ a( )} ;

 

a27 = 0
2Hm

1( ) k a( ) ;
 

a31 = + 2μ( )   J m  h b( ) + b 1
 J m  h b( )[

m2b 2 + k 2( )Jm  h b( )] ;
 

a32 = + 2μ( )   N m  h b( ) + b 1
 N m  h b( )[

m2b 2 + k 2( )Nm  h b( )] ;
 

  
a33 = 2μ ik   J m  æ b( ) ; 

  
a34 = 2μ ik   N m  æ b( ) ; 

a35 = + 2μ( )b 1 mb 1Jm  æ b( ) b 1m2 k 2 3b 2m2( ){ +

+m  J m  æ b( ) 2b 2 + k 2( ) m   J m  æ b( )} +

+ b 1 b 1mJm  æ b( ) k 2 b 2m2( ){ +

+m  J m  æ b( ) b 2m2 k 2( ) 2b 1m   J m  æ b( ) m    J m  æ b( )} ;
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a37 = 0 ; 

a41 = 2ma 1 a 1Jm  h a( )  J m  h a( )[ ] ; 
a42 = 2ma 1 a 1Nm  h a( )  N m  h a( )[ ] ; 

  
a43 = 2mika 1 a 1Jm  æ a( )  J m  æ a( )[ ] ; 

  
a44 = 2mika 1 a 1Nm  æ a( )  N m  æ a( )[ ] ; 

a45 = a 1m2Jm  æ a( ) 8a 3 a 2m2 k 2( ) +

+a 3
 J m  æ a( ) 3k 2 3 4m2( ) +

+a 2
  J m  æ a( ) 3 k 2 + 2m2( ) +

+a 1
   J m  æ a( ) Jm

IV
 æ a( ) ;
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a46 = a 1m2Nm  æ a( ) 8a 3 a 2m2 k 2( ) +

+a 3
 N m  æ a( ) 3k 2 3 4m2( ) +

+a 2
  N m  æ a( ) 3 k 2 + 2m2( ) +

+a 1
   N m  æ a( ) Nm

IV
 æ a( ) ;

 

a47 = 0 ; 

a51 = 2mb 1 b 1Jm  h b( )  J m  h b( )[ ] ; 

a52 = 2mb 1 b 1Nm  h b( )  N m  h b( )[ ] ; 

  
a53 = 2mikb 1 b 1Jm  æ b( )  J m  æ b( )[ ] ; 

a54 = 2mikb 1 b 1Nm  æ b( )  N m  æ b( )[ ] ; 

a55 = b 1m2Jm  æ b( ) 8b 3 b 2m2 k 2( ) +

+b 3
 J m  æ b( ) 3k 2 3 4m2( ) +

+b 2
  J m  æ b( ) 3 k 2 + 2m2( ) +

+b 1
   J m  æ b( ) Jm

IV
 æ b( ) ;

 

a56 = b 1m2Nm  æ b( ) 8b 3 b 2m2 k 2( ) +

+b 3
 N m  æ b( ) 3k 2 3 4m2( ) +

+b 2
  N m  æ b( ) 3 k 2 + 2m2( ) +

+b 1
   N m  æ b( ) Nm

IV
 æ b( ) ;

 

a57 = 0 ; 

a61 = 2ik  J m  h a( ) ; 

a62 = 2ik  N m  h a( ) ; 

  

a63 = 2a 3m2Jm  æ a( ) +

+  J m  æ a( ) a 2
+ a 2m2 k 2( )   J m  æ a( ) ;

 

  

a64 = 2a 3m2Nm  æ a( ) +

+  N m  æ a( ) a 2
+ a 2m2 k 2( )   N m  æ a( ) ;

 

  

a65 = a 1mikJm  æ a( ) a 2m2
+ k 2( ) +

+a 2mik  J m  æ a( ) 3a 2 2( )

a 3mik   J m  æ a( ) ;
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a66 = a 1mikNm  æ a( ) a 2m2
+ k 2( ) +

+a 2mik  N m  æ a( ) 3a 2 2( )

a 3mik   N m  æ a( ) ;

 

a67 = 0 ; 

a71 = 2ik  J m  h b( ) ; 

a72 = 2ik  N m  h b( ) ; 

  

a73 = 2b 3m2Jm  æ b( ) +

+  J m  æ b( ) b 2
+ b 2m2 k 2( )   J m  æ b( ) ;

 

  

a74 = 2b 3m2Nm  æ b( ) +

+  N m  æ b( ) b 2
+ b 2m2 k 2( )   N m  æ b( ) ;

 

  

a75 = b 1mikJm  æ b( ) b 2m2
+ k 2( ) +

+b 2mik  J m  æ b( ) 3b 2 2( )

b 3mik   J m  æ b( ) ;

 

  

a76 = b 1mikNm  æ b( ) b 2m2
+ k 2( ) +

+b 2mik  N m  æ b( ) 3b 2 2( )

b 3mik   N m  æ b( ) ;

 

a77 = 0; 

b17 = m i( )
m

 J m k a( ) ; 

b27 = 0
2

m i( )
m
Jm k a( ) . 
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