Effect of Stress Annealing on Domain Wall Dynamics in Nanocrystalline Hitperm-Type Microwires
DOI:
https://doi.org/10.15379/2408-977X.2016.03.01.03Keywords:
Magnetic wires, Hitperm, Nanocrystalline materials, Domain wall dynamics, Longitudinal anisotropy, Compressive stressesAbstract
We have studied the effect of stress induced anisotropy on domain wall dynamics in as-cast and annealed nanocrystalline Hitperm-type microwires. Annealing without stress leads to stress relaxation of the strong stresses frozen-in post the production process. Stress annealing at 300oC under 222.7 and 270.9 MPa, respectively, has triggered most complex domain wall dynamics.
Observed results are discussed considering that annealing under higher stresses leads to an enhancement of longitudinal (axial) anisotropy due to positive magnetostriction of both bcc-(Fe, Co) grain as well as the residual amorphous matrix, and subsequently due to the decreasing of axial anisotropy due to back stresses arising from the glass-coating after removing the mechanical load.
Magnetic anisotropies (axial and radial ones) after stress annealing can be responsible for the considerable influence of the annealing conditions on domain wall dynamics observed in Hitperm-type microwires. As a result of decreasing both anisotropies by different ways, the domain wall velocity decreased.
References
Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP. Magnetic domain-wall logic. Science 2005; 309: 1688-1692. http://dx.doi.org/10.1126/science.1108813
Parkin SSP, Hayashi M, Thomas L. Magnetic Domain-Wall Racetrack Memory. Science 2008; 320: 190-4. http://dx.doi.org/10.1126/science.1145799
Hayashi M, Thomas L, Moriya R, Rettner C, Parkin SSP. Current-Controlled Magnetic Domain-Wall Nanowire Shift Register. Science 2008; 320: 209-211. http://dx.doi.org/10.1126/science.1154587
Varga R, Zhukov A, Zhukova V, Blanco JM, Gonzalez J. Supersonic domain wall in magnetic microwires. Phys Rev B 2007; 76: 132406. http://dx.doi.org/10.1103/PhysRevB.76.132406
Zhukov A. Domain Wall propagation in a Fe-rich glass-coated amorphous microwire. Applied Physics Letters 2001; 78: 3106-8 http://dx.doi.org/10.1063/1.1372342
Ekstrom PA and Zhukov A. Spatial structure of the head-to-head propagating domain wall in glass-covered FeSiB microwires. J Phys D Appl Phys 2010; 43: 205001 http://dx.doi.org/10.1088/0022-3727/43/20/205001
Richter K, Varga R, Badini-Confalonieri GA, Vazquez M. The effect of transverse field on fast domain wall dynamics in magnetic microwires. Appl Phys Lett 2010; 96: 182507. http://dx.doi.org/10.1063/1.3428367
Lewis ER, Petit D, Brien LO, Fernandez-Pacheco A, Sampaio J, Jausovec AV et al. Fast domain wall motion in magnetic comb structures. Nature Mater. 2010; 9: 980-983. http://dx.doi.org/10.1038/nmat2857
Klein P, Varga R, Badini-Confalonieri GA, Vazquez M. Domain Wall Dynamics in Amorphous and Nanocrystalline FeCoMoB Microwires. J Nanosci Nanotechnol 2012; 12: 7464-7467. http://dx.doi.org/10.1166/jnn.2012.6526
Fan L, Hu J, Su Y, Zhu J. Influence of temperature on current-induced domain wall motion and its Walker breakdown. J Magn Magn Mater 2016; 401: 484-487. http://dx.doi.org/10.1016/j.jmmm.2015.10.090
Gudoshnikov SA, Grebenshchikov Yu B, Ljubimov B. Ya, Palvanov PS, Usov NA, Ipatov M, et al. Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire. Phys Stat Sol A 2009; 206: 613-617. http://dx.doi.org/10.1002/pssa.200881254
Chirac H, Tibu M, Óvari TA. Domain Wall Propagation in Nanocrystalline Glass-Coated Microwires. IEEE Trans Magn 2009; 45: 4286-4289. http://dx.doi.org/10.1109/TMAG.2009.2022743
Panina LV, Ipatov M., Zhukova V, Zhukov A. Domain wall propagation in Fe-rich amorphous microwires. Physica B 2012; 407: 1442-1445. http://dx.doi.org/10.1016/j.physb.2011.06.047
Zhukova V, Blanco JM, Rodionova V, Ipatov M, Zhukov A. Domain wall propagation in micrometric wires: Limits of single domain wall regime. J Appl Phys 2012; 111: 07E311.
Varga R, Infante G, Badini-Confalonieri GA, Vazquez M. Diffusion-damped domain wall dynamics. J Phys: Conf Series 2010; 200: 042026. http://dx.doi.org/10.1088/1742-6596/200/4/042026
Olivera J, Varga R, Prida VM, Sanchez ML, Hernando B, Zhukov A. Domain wall dynamics during the devitrification of Fe73.5CuNb3Si11.5B11 magnetic microwires. Phys Rev B 2010; 82: 094414. http://dx.doi.org/10.1103/PhysRevB.82.094414
Herzer G. Anisotropies in soft magnetic nanocrystalline alloys. J Magn Magn Mater 2005; 294: 99-106. http://dx.doi.org/10.1016/j.jmmm.2005.03.020
Willard MA, Laughlin DE, McHenry ME, Thomas D, Sickafus K, Cross JO, et al. Structure and magnetic properties of (Fe0.5Co0.5) 88Zr7B4Cu1 nanocrystalline alloys. J Appl Phys 1998; 84 12: 6773-6777 http://dx.doi.org/10.1063/1.369007
Fukunaga H, Furukawa N, Tanaka H, Nakano M. Nanostructured soft magnetic material with low loss and low permeability. J Appl Phys 2000; 87: 7103-5. http://dx.doi.org/10.1063/1.372944
Alves F, Simon F, Kane SN, Mazaleyrat F, Waeckerle T, Save T, et al. Influence of rapid stress annealing on magnetic and structural properties of nanocrystalline Fe74.5Cu1Nb3Si15.5B6 alloy, J Magn Magn Mater 2005; 294: e141-e144. http://dx.doi.org/10.1016/j.jmmm.2005.03.071
Ipatov M, Zhukova V, Zvezdin AK, Zhukov A. Mechanisms of the ultrafast magnetization switching in bistable amorphous microwires. J Appl Phys 2009; 106: 103902. http://dx.doi.org/10.1063/1.3256121
Zhukova V, Blanco JM, Ipatov M, Zhukov A. Effect of transverse magnetic field on domain wall propagation in magnetically bistable glass-coated amorphous microwires. J Appl Phys, 2009; 106: 2009 http://dx.doi.org/10.1063/1.3266009
Richter K, Varga R, Zhukov A. Influence of the magnetoelastic anisotropy on the domain wall dynamics in bistable amorphous wires. J Phys: Condens Matter 2012; 24: 296003. http://dx.doi.org/10.1088/0953-8984/24/29/296003
Ipatov M, Usov NA, Zhukov A, Gonzalez J. Local nucleation fields of Fe-rich microwires and their dependence on applied stresses. Physica B 2008; 403: 379-381 http://dx.doi.org/10.1016/j.physb.2007.08.054
Zhukov A, Blanco JM, Ipatov M, Chizhik A, Zhukova V. Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Research Letters 2012; 7: 223. http://dx.doi.org/10.1186/1556-276X-7-223
Talaat A, Blanco JM, Ipatov M, Zhukova V, Zhukov AP. Domain Wall Propagation in Co-Based Glass-Coated Microwires: Effect of Stress Annealing and Tensile Applied Stresses. IEEE Trans Magn 2014; 50: 2005704. http://dx.doi.org/10.1109/TMAG.2014.2321114
Talaat A, del Val JJ, Zhukova V, Ipatov M, Klein P, Varga R, et al. Effect of annealing on magnetic properties of nanocrystalline Hitperm-type glass coated microwires, J Alloy Compound 2016; 660: 297-303 http://dx.doi.org/10.1016/j.jallcom.2015.11.102
Talaat A, del Val JJ, Zhukova V, Ipatov M, Klein P, Varga R, et al. Grain size refinement in nanocrystalline Hitperm-type glass-coated microwires. J Magn Magn Mater 2016; 406: 15-21 http://dx.doi.org/10.1016/j.jmmm.2015.12.034
Klein P, Varga R, Vazquez M. Enhancing the velocity of the single domain wall by current annealing in nanocrystalline FeCoMoB microwires. J Phys D: Appl Phys 2014; 47 255001. http://dx.doi.org/10.1088/0022-3727/47/25/255001
Varga R, Gamcova J, Klein P, Kovac J, Zhukov A. Tailoring the switching field dependence on external parameters in magnetic microwires. IEEE Trans Magn. 2013; 49: 30-33. http://dx.doi.org/10.1109/TMAG.2012.2218224
Herzer G. Creep induced magnetic anisotropy in nanocrystalline Fe-Cu-Nb-Si-B alloys. IEEE. Trans. Magn. 1994; 30: 4800-4802. http://dx.doi.org/10.1109/20.334226
Hofmann B, Kronmüller H. Stress-induced magnetic anisotropy in nanocrystalline FeCuNbSiB alloy. J Magn Magn Mater 1996; 152: 91-98. http://dx.doi.org/10.1016/0304-8853(95)00447-5
Varga LK, Gercsi Zs, Kovacs Gy, Kakay A, Mazaleyrat F. Stress-induced magnetic anisotropy in nanocrystalline alloys. J Magn Magn Mater 2003; 254-255: 477-479. http://dx.doi.org/10.1016/S0304-8853(02)00870-3
Ohnuma M, Herzer G, Kozikowski P, Polak C, Budinsky V, Koppoju S. Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy. Acta Mater 2012; 60: 1278-1286. http://dx.doi.org/10.1016/j.actamat.2011.11.017
Cullity BD, Graham CD. Introduction to magnetic materials. Ed. L. Hanzo, Wiley NJ USA 2009 p. 340. 39Chiriac H, Ovari TA, Zhukov A. Magnetoelastic anisotropy of amorphous microwires. J Magn Magn Mater 2003; 254-255: 469-471
Skorvanek I, Marcin J, Krenicky T, Kovac J, Svec P, Janickovic D. Improved soft magnetic behaviour in field-annealed nanocrystalline Hitperm alloys. J Magn Magn Mater 2006; 304: 203-207. http://dx.doi.org/10.1016/j.jmmm.2006.02.120
Fernandez L, Iturriza N, Ipatov M, del Val JJ, Chizhik A, Gonzalez J, et al. Magnetic behavior and microstructure of Finemet-type ribbons in both, surface and bulk. J Non-Cryst Solids 2007; 353: 777-781. http://dx.doi.org/10.1016/j.jnoncrysol.2006.12.039
Velázquez J, Vazquez M, Zhukov A. Magnetoelastic anisotropy distribution in glass-coated microwires. J Mater Res 1996; 11 (10): 2499-2505. http://dx.doi.org/10.1557/JMR.1996.0315
Chiriac H, Ovari TA, Zhukov A. Magnetoelastic anisotropy of amorphous microwires. J Magn Magn Mater 2003; 254-255: 469-471
Zhukov A. Design of magnetic properties of Fe-rich glass – coated magnetic microwires for technical applications. Adv Func Mat 2006; 16(5): 675-680. http://dx.doi.org/10.1002/adfm.200500248
Schryer NL, Walker LR. The motion of 180o domain walls in uniform dc magnetic fields. J Appl Phys 1974; 45: 5406-5421. http://dx.doi.org/10.1063/1.1663252
Varga R, Klein P, Richter K, Zhukov A, Vazquez M. Fast domain wall dynamics in amorphous and nanocrystalline magnetic microwires. J Magn Magn Mater 2012; 324: 3566-3568. http://dx.doi.org/10.1016/j.jmmm.2012.02.091
Klein P, Varga R, Vazquez M. Domain wall dynamics in nanocrystalline microwires. Physica status Solidi C 2014; 11 No. 5-6: 1139-1143. http://dx.doi.org/10.1002/pssc.201300707
Downloads
Published
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .