Space-Group Approach to the Wavefunction of a Cooper Pair: Nodal Structure and Additional Quantum Numbers for Sr2RuO4 and UPt3

Authors

  • V.G. Yarzhemsky Moscow Institute of Physics and Technology (State University), Dolgoprudny, 9 Institutsky per., 141700, Moscow Region, Russia

DOI:

https://doi.org/10.15379/2408-977X.2016.05

Keywords:

Group theory, Induced representations, Mackey theorem, Unconventional superconductors, Nodal superconductors, Triplet superconductors, Sr2RuO4, UPt3.

Abstract

Induced representation method and Mackey theorem on symmetrized squares were applied to construct zero-total-momentum two-electron states in solids, corresponding to Cooper pairs in unconventional superconductors. In this approach the structure of two-electron states depends on the position of one-electron wave vector in a single-electron Brillouin zone. It is shown, that the decomposition of total two-electron basis set results in repeating multidimensional irreducible representations. It is obtained, that in order to label repeating irreducible representation two additional quantum numbers are required: irreducible representation of wave vector group for symmetry planes and directions and quantum numbers on an intermediate group for a general point in a Brillouin zone. Theoretical results are applied to unconventional superconductors UPt3 and Sr2RuO4.

References

Schmitt-Rink S, Miyake K and Varma CM. Transport and thermal properties of heavy-fermion superconductors: a unified picture. Phys Rev L.ett 1986; 57: 2575-4. http://dx.doi.org/10.1103/PhysRevLett.57.2575

Bonalde I, Yanoff BD, Salamon MB, Van Harlingen DJ, Chia EM, Mao ZQ et al. Temperature dependence of the penetration depth in Sr2RuO4: evidence for nodes in the gap function. Phys Rev Lett 2000; 85: 4775-4. http://dx.doi.org/10.1103/PhysRevLett.85.4775

Matsuda Y, Izawa K and Vekhter I. Nodal structure of unconventional superconductors probed by angle resolved thermal transport measurements. J Phys Condens Matter 2006; 18: R705-47. http://dx.doi.org/10.1088/0953-8984/18/44/R01

Norman MR. The challenge of unconventional superconductivity. Science 2011; 332(6026): 196-5. http://dx.doi.org/10.1126/science.1200181

Ginzburg VL and Landay LD. On the theory of superconductivity. Zh. Exp. Teor. Fiz 1950; 20: 1064-19 (in Russian).

Anderson PW. Structure of "triplet" superconducting energy gap. Phys Rev B 1984; 30: 4000-3. http://dx.doi.org/10.1103/PhysRevB.30.4000

Blount EI. Symmetry properties of triplet superconductors. Phys Rev B 1985; 32: 2935-10. http://dx.doi.org/10.1103/PhysRevB.32.2935

Volovik, GE and Gor'kov LP. Superconducting classes in heavy fermion systems. Sov Phys JETP 1985; 61: 843-12. http://dx.doi.org/10.1070/PU1985v028n09ABEH003997

Sigrist M and Ueda K. Phenomenological theory of unconventional superconductivity. Rev Mod Phys 1991; 63: 239-73. http://dx.doi.org/10.1103/RevModPhys.63.239

Yip S and Garg A. Superconducting states of reduced symmetry: General order parameters and physical implications Phys Rev B. 1993; 48, 3304-5. http://dx.doi.org/10.1103/PhysRevB.48.3304

Balian R and Werthamer NR. Superconductivity with pairs in a relative p wave Phys. Rev 1963; 131: 155-13. http://dx.doi.org/10.1103/PhysRev.131.1553

Kovalev OV. Irreducible representations of the crystallographic space groups: irreducible representations, induced representations and corepresentations. New York: Gordon & Breach 1993.

Bradley CJ and Cracknell AP. The mathematical theory of symmetry in solids. Representation theory of point groups and space groups. Oxford: Clarendon 1972.

Altman SL. Induced representations for crystals and molecules. New York Academic Press, 1977.

Sauls JA. Theory for the Superconducting Phases of UPt3 J Low Temp Phys 1994; 95: 153-16. http://dx.doi.org/10.1007/BF00754932

Graf MJ, Yip SK and Sauls JA. Identification of the orbital pairing symmetry in UPt3. Phys Rev B 2000; 62, 14393-10. http://dx.doi.org/10.1103/PhysRevB.62.14393

Rice T M and Sigrist M. Sr2RuO4: an electronic analogue of 3He? J Phys Condens Matter 1995; 7: L643-6. http://dx.doi.org/10.1088/0953-8984/7/47/002

Mackenzie AP and Maeno Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet paring. Rev of Mod Phys 2003; 75: 657-56 http://dx.doi.org/10.1103/RevModPhys.75.657

Yarzhemsky VG and Murav'ev EN. Space group approach to the wavefunction of a Cooper pair D2h and D4h. J Phys Cond. Matter 1992; 4: 3525-8.

Yarzhemsky VG. Wavefunction of a Cooper pair in crystals of and symmetry Zeitsch Phys B Cond Matter 1995; 99: 19-5.

Yarzhemsky VG. Space-Group Approach to the Nodal Structure of Superconducting Order parameter in UPt3 Phys stat. sol (b) 1998; 101: 209-7.

Yarzhemsky VG. Space-Group Approach to the Nodal Structure of Superconducting Order parameter in Ferromagnetic and Antiferromagnetic Materials. IntJ Quant Chem 1999; 80: 133-8. http://dx.doi.org/10.1002/1097-461X(2000)80:2<133::AID-QUA9>3.0.CO;2-B

Yarzhemsky VG and Nefedov VI. Symmetry of two-electron states in unconventional superconductors Inorg. Materials. 2005; 41:1247-9. http://dx.doi.org/10.1007/s10789-005-0295-6

Yarzhemsky VG and Nefedov VI. Crystal Symmetry and the Structure of Two-Electron States in High-Temperature Superconductors. Doklady Physics 2005; 50 (10): 494-5. http://dx.doi.org/10.1134/1.2123295

Yarzhemsky VG and Nefedov VI. Group theoretical treatment of photoelectron spectra of high-Tc superconductors. Hidden symmetry and color pairs. Philosophical Magazine Letters 2006; 86: 733-10. http://dx.doi.org/10.1080/09500830600990325

Yarzhemsky VG and Nefedov VI. Structure of triplet states in magnetic crystals. Doklady Physics 2007; 52 (2), 85–5. http://dx.doi.org/10.1134/S1028335807020048

Yarzhemsky VG and Nefedov VI. Time-reversal symmetry violation and the structure of the superconducting order parameter of PrOs4Sb12. Physics Solid State 2009; 51: 448-8. http://dx.doi.org/10.1134/S1063783409030020

Micklitz T and Norman M. Odd parity and line nodes in nonsymmorphic superconductors. Phys Rev B 2009; 80: 100506 (R)-4.

Yarzhemsky VG. Nodal quantum numbers for two-electron states in solids. Few-body systems 2012; 53: P499-6. http://dx.doi.org/10.1007/s00601-012-0438-7

Yarzhemsky VG and Izotov AD. Electronic structure and the structure of the order parameter in high-Tc superconductors based on copper oxides and iron pnictides. Inorg Materials 2014; 50: 907-5. http://dx.doi.org/10.1134/S0020168514090179

Mackey GW. Symmetric and anti symmetric Kronecker squares and intertwining numbers of induced representations of finite groups Am J Math 1953; 75: 387-19 http://dx.doi.org/10.2307/2372459

Bradley CJ and Davies BL. Kronecker products and symmetrized squares of irreducible representations of space groups. J Math Phys 1970; 11: 1536-17. http://dx.doi.org/10.1063/1.1665292

Hamermesh M. Group Theory and Its Application to Physical Problems New York: Adison-Wesley, 1964.

Schemm ER, Gannon WJ, Wishne CM, Halperin WP and Kapitulnik A. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3 Science 2014; 345 (6193): 190-4.

Gannon WJ, Halperin WP, Rastovski C, Schlesinger KJ, Hlevyack J, Eskildsen MR et.al. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt3. New J Phys 2015; 17: 023041-9. http://dx.doi.org/10.1088/1367-2630/17/2/023041

Machida K and Ozaki Ma. Superconducting double transition in a heavy-fermion material UPt3. Phys Rev Lett 1991; 66: 3293-4. http://dx.doi.org/10.1103/PhysRevLett.66.3293

Wigner EP. Symmetry principles in old and new physics. Bull Amer Math Soc 1968; 74: 793-23. http://dx.doi.org/10.1090/S0002-9904-1968-12047-6

Downloads

Published

2016-01-29