Effect of Silver Substitution Threshold on the Superconducting Properties of IG Processed Bulk YBCO/Ag Composite Superconductors

Authors

  • R. Parthasarathy Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India

DOI:

https://doi.org/10.15379/2408-977X.2016.02

Keywords:

YBCO/Ag composite superconductors, IG processing, Magnetic susceptibility, Critical current density.

Abstract

In this article, we report anomalous substitution of Ag in Cu sites in Y-123 lattice during the fabrication of bulk YBCO/Ag composites via the Infiltration Growth Processing technique. We have observed concentration quenching of Ag in the Y-123 unit cell which implies a threshold for Ag substitution in Cu sites. We find gradual variation in properties with increase in Ag content up to a threshold value beyond which the superconducting properties are altered significantly. We discuss the effect of substitution threshold of Ag on the magnetic and superconducting properties of these composites and the optimum substitution level of Ag for enhanced properties.

References

Jeong IK, Kim DY, Park YK, Lee KW, Park JC, Physica C 1991; 185-189: 2393-2394. http://dx.doi.org/10.1016/0921-4534(91)91321-T

Reddy ES and Rajasekharan T. Supercond. Sci. Technol 1998; 11: 523. http://dx.doi.org/10.1088/0953-2048/11/5/014

Iida K, Babu NH, Shi Y and Cardwell DA. Supercond Sci Technol 2005; 18: 1421. http://dx.doi.org/10.1088/0953-2048/18/11/002

Diko P, Antal V, Ka?uchová M, Jirsa M and Jurek K. Physica C 2010; 470 : 155-158. http://dx.doi.org/10.1016/j.physc.2009.11.177

Babu NH, Shi YH, Dennis AR, Pathak SK and Cardwell DA. IEEE Trans.Appl. Supercond 2011; 21(3): 2698-2701. http://dx.doi.org/10.1109/TASC.2010.2101574

Li GZ, Yang WM, Cheng XF, Fan J and Guo XD. J Mater Sci 2009; 44: 6423-6426. http://link.springer.com/article/ 10.1007/s10853-009-3887-8/fulltext.html#copyrightInformation http://dx.doi.org/10.1007/s10853-009-3887-8

Cloots R, Koutzarova T, Mathieu JP and Ausloos M. Supercond Sci Technol 2005; 18: R9-R23. http://dx.doi.org/10.1088/0953-2048/18/3/R01

Mathieu JP, Koutzarova T, Rulmont A, Fagnard JF, Laurent Ph, Mattivi B, et al. Supercond Sci Technol 2005; 18: S136. http://dx.doi.org/10.1088/0953-2048/18/2/028

Kumar ND, Rajasekharan T and Seshubai V. Supercond Sci Technol 2011; 24: 085005. http://dx.doi.org/10.1088/0953-2048/24/8/085005

Fang H and Ravi-Chandar K. Physica C 2000; 340: 261-268. http://dx.doi.org/10.1016/S0921-4534(00)01328-9

Reddy ES, Babu NH, Shi Y, Cardwell DA and Schmitz GJ. Supercond Sci Technol. 2005; 18: S15. http://dx.doi.org/10.1088/0953-2048/18/2/004

Umakoshi S, Ikeda Y, Wongsatanawarid A, Kim CJ and Murakami M. Physica C 2011; 471: 843-845. http://dx.doi.org/10.1016/j.physc.2011.05.070

Reddy ES and Rajasekharan T. J Mater Res 1998; 13 (9): 2472-2475. http://dx.doi.org/10.1557/JMR.1998.0346

Wiesner U, Krabbes G, Ueltzen M, Magerkurth C, Plewa J and Altenburg H. Physica C 1998; 294: 17-22. http://dx.doi.org/10.1016/S0921-4534(97)01650-X

Zhao Y, Cheng CH and Wang JS. Supercond Sci Technol 2005; 18: S43. http://dx.doi.org/10.1088/0953-2048/18/2/010

Barnes PN, Kell JW, Harrison BC, Haugan TJ, Varanasi CV, Rane M, http://ieeexplore.ieee.org/search/searchresult.jsp? Search Within=p_ Authors: QT. Ramos, F. QT. & new search=partial Pref Ramos F, Appl Phys Lett 2006; 89(1): 012503-1 – 012503-3. http://dx.doi.org/10.1063/1.2219391

Antal V, Ka?uchová M, Šef?iková M, Ková? J, Diko P, Eisterer M, et al., Supercond Sci Technol. 2009; 22: 105001. http://dx.doi.org/10.1088/0953-2048/22/10/105001

Diko P, Antal V, Ka?uchová M, Šef?iková M and Ková? J. J Phys Conf Ser 2009; 153: 012009. http://dx.doi.org/10.1088/1742-6596/153/1/012009

Thoma M, Shi Y, Dennis T, Durell J and Cardwell D. J Cryst Growth 2015; 412: 31-39. http://dx.doi.org/10.1016/j.jcrysgro.2014.11.037

Huang J, Tsai CF, Chen L, Jian J, Yu K, Zhang W and Haiyan Wang. IEEE Trans. App Supercond 2015; 25(3): 7500404 http://dx.doi.org/10.1109/TASC.2014.2369736

Welp U, Kwok WK, Crabtree GW, Vandervoort KG and Liu JZ. Phys Rev Lett 1989; 62: 1908-1911. http://dx.doi.org/10.1103/PhysRevLett.62.1908

Hao Z and Clem JR. Phys Rev B 1991; 43: 2844-2852. http://dx.doi.org/10.1103/PhysRevB.43.2844

Muné P, Govea-Alcaide E and Jardim RF. Physica C 2003; 384: 491-500. http://dx.doi.org/10.1016/S0921-4534(02)02060-9

Vipulanandan C and Salib S. J Mater Sci 1995; 30: 763-769. http://link.springer.com/article/10.1007%2FBF00356340 http://dx.doi.org/10.1007/BF00356340

Manthiram A and Goodenough JB. Nature 1987; 329: 701 http://www.nature.com/nature/journal/v329/n6141/abs/329701a0.html http://dx.doi.org/10.1038/329701a0

Pathak LC and Mishra SK. Supercond Sci Technol 2005; 18: R67. http://dx.doi.org/10.1088/0953-2048/18/9/R01

Zhang Ch, Kulpa A, Chaklader ACD, Physica C 1995; 252 : 67-78. http://dx.doi.org/10.1016/0921-4534(95)00404-1

Cahen D, Moisi Z and Schwartz M. Mater Res Bull 1987; 22 (11): 1581-1588. http://dx.doi.org/10.1016/0025-5408(87)90225-X

Maeda J, Izumi T and Shiohara Y. Supercond Sci Technol 1999; 12:45-47. http://dx.doi.org/10.1088/0953-2048/12/1/008

Roa JJ, Capdevila XG, Martínez M, Espiell F and Segarra M. Nanotechnology 2007; 18: 385701. http://dx.doi.org/10.1088/0957-4484/18/38/385701

Behera D, Mishra NC and Patnaik K. J Supercond 1997; 10 (1): 27.

http://link.springer.com/article/10.1007%2FBF02763947 http://dx.doi.org/10.1007/BF02763947

Bean CP. Phys. Rev. Lett 1962; 8: 250. http://dx.doi.org/10.1103/PhysRevLett.8.250

Bean CP. Rev. Mod. Phys 1964; 36: 31. http://dx.doi.org/10.1103/RevModPhys.36.31

Chen DX and Goldfarb RB. J Appl Phys 1989; 66: 2489. http://dx.doi.org/10.1063/1.344261

Küpfer H, Wolf Th, Lessing C, Zhukov AA, Lançon X, Meier-HR, et al. Phys Rev B 1998; 58: 2886-2894. http://dx.doi.org/10.1103/PhysRevB.58.2886

Downloads

Published

2016-01-29