Defect-Structure-Related Ferroelectric Properties of K0.5Na0.5NbO3 Lead-Free Piezoelectric Ceramics

Authors

  • Shanming Ke College of Materials Science and Engineering and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, China
  • Manfang Mai College of Materials Science and Engineering and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, China
  • Tao Li College of Materials Science and Engineering and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, China
  • Mao Ye College of Materials Science and Engineering and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, China
  • Peng Lin College of Materials Science and Engineering and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, China
  • Xierong Zeng College of Materials Science and Engineering and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, China
  • L.M. Zhou Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong
  • Y.W. Mai Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong
  • Haitao Huang Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Hong Kong

DOI:

https://doi.org/10.15379/2408-977X.2015.02.02.6

Keywords:

Defect complex, K0.5Na0.5NbO3, EPR, Ferroelectric polarization, KNN ceramics

Abstract

Lead-free piezoelectric ceramics K0.5Na0.5NbO3 (KNN) doped with Cu, Fe, and Ni have been prepared by a conventional ceramic process. The results reveal that Cu-doped KNN ceramic exhibits double-loop-like characteristics, while Fe & Ni-doped KNN ceramics show normal single loops. EPR spectra verified the formation of irreversible defect complex (DC1) and (DC2) in Cu-doped ceramics, while defect complexes were observed in Fe-doped ceramics and very small defect complex signal in Ni-doped ceramics. The experimental results show that the ferroelectric properties of KNN ceramics are strongly related to these defect structures.

References

Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics, Nature 432 (2004) 84. http://dx.doi.org/10.1038/nature03028

Ke S, Huang H, Fan H, Lee HK, Zhou L, Mai YW, Antiferroelectric-like properties and enhanced polarization of Cu-doped K0.5Na0.5NbO3 piezoelectric ceramics, Appl Phys Lett 101(2012) 082901. http://dx.doi.org/10.1063/1.4747212

Tan X, Fan H, Ke S, Zhou L, Mai YW, Huang H, Structural dependence of piezoelectric, dielectric and ferroelectric properties of K0.5Na0.5(Nb1-2x/5Cux)O3 lead-free ceramics with high Qm, Mater Res Bull 47, (2012) 4472. http://dx.doi.org/10.1016/j.materresbull.2012.09.049

Eichel RA, Erünal E, Jakes P, Körbel S, Elsässer C, Kungl H, et al. Interactions of defect complexes and domain walls in CuO-doped ferroelectric K0.5Na0.5NbO3,Appl. Phys. Lett.102(2013) 242908. http://dx.doi.org/10.1063/1.4811268

Feng Z, Or SW, Aging-induced, defect-mediated double ferroelectric hysteresis loops and large recoverable electrostrain in Mn-doped orthorhombic KNbO3-based ceramics, J Alloys Comp 480 (2009) L29. http://dx.doi.org/10.1016/j.jallcom.2009.02.043

Lin DM, Kwok KW, Chan HLW, Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics, Appl Phys Lett 90 (2007) 232903. http://dx.doi.org/10.1063/1.2746087

Eichel RA, Erünal E, Drahus MD, Smyth DM, Tol JV, Acker J, et al. Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary, Phys Chem Chem Phys 11 (2009) 8698. http://dx.doi.org/10.1039/b905642d

Eichel RA. Structural and dynamic properties of oxygen vacancies in perovskite oxides-analysis of defect chemistry by modern multi-frequency and pulsed EPR techniques, Phys Chem Chem Phys13 (2011) 368. http://dx.doi.org/10.1039/B918782K

Li T, Fan H, Long C, Dong G, Sun S, Defect dipoles and electrical properties of magnesium B-site substituted sodium potassium niobates, J Alloys Comp 609 (2014) 60. http://dx.doi.org/10.1016/j.jallcom.2014.04.024

Zuo R, Ma B, Liu Y, Xu Z. Hardening characteristics and compositional dependence of piezoelectric properties in Cu2+ modified 0.52NaNbO3-(0.48-x)KNbO3-xLiNbO3 ceramics, J Alloys Comp 488(2009) 465. http://dx.doi.org/10.1016/j.jallcom.2009.09.012

Jiao G, Fan H, Liu L, Wang W. Structure and piezoelectric properties of Cu-doped potassium sodium tantalate niobate ceramics, Mater Lett 61(2007) 4185. http://dx.doi.org/10.1016/j.matlet.2007.01.051

Körbel S, Elsässer C. Alignment of ferroelectric polarization and defect complexes in copper-doped potassium niobate Phys Rev B 88 (2013) 214114. http://dx.doi.org/10.1103/PhysRevB.88.214114

Erünal E, Eichel RA, Körbel S, Elsässer C, Acker J, Kungl H, et al. Defect structure of copper doped potassium niobate ceramics, Funct Mater Lett 3(2010) 19. http://dx.doi.org/10.1142/S1793604710000932

Erdem E, Jakes P, Parashar S, Kiraz K, Somer M, Rüdiger A, et al. Defect structure in aliovalently-doped and isovalently-substituted PbTiO3 nano-powders, J Phys: Condens Matter 22 (2010) 345901. http://dx.doi.org/10.1088/0953-8984/22/34/345901

Downloads

Published

2015-12-18

Issue

Section

Articles