Effect of Silver Plasmonic Layer on Cu2O/In2S3 Solar Cell

Authors

  • R. Jayakrishnan Research Center, Department of Physics, Christian College, Chengannur, Kerala-689122, India
  • Rani Abraham Department of Chemistry, Christian College, Chengannur, Kerala-689122, India
  • Desy P. Koruthu Department of Chemistry, Christian College, Chengannur, Kerala-689122, India
  • Mr. Manivarnan Department of Chemistry, Christian College, Chengannur, Kerala-689122, India

DOI:

https://doi.org/10.15379/2408-977X.2015.02.02.3

Keywords:

Surface Plasmon Resonance, Solar cell, Thin Films, Nano particles, Flexible substrate

Abstract

Solar cell with the structure Cu/Cu2O/In2S3/Ag@NP/Ag was fabricated where the In2S3-window layer and the plasmonic Ag nano particle thin film layer were deposited using injection chemical spray pyrolysis technique. Quantum efficiency measurement of these solar cells showed improved performance in the blue region of the visible spectrum compared to their counterparts. The films with Ag nano particles exhibited surface plasmon resonance peak at 432 nm which could be assigned to plasmon resonance of Ag nano-particles. The open circuit voltage of the best solar cell is 0.65 V, with short circuit current density of 1.2 mA/cm2, fill factor 22% and efficiency 0.17 %. We conclude that the in-coupling of light by the metallic nanoparticle thin film layer into the underlying semiconductor layer resulted in improvement in electrical performance of these solar cells containing the plasmonic Ag nano particles.

References

Kühn S, Hakanson U, Rogobete L, Sandoghdar V. 2006, Phys. Rev. Lett. 97, 017402. http://dx.doi.org/10.1103/PhysRevLett.97.017402

Verhagen E, Spasenovi? M, Polman A, Kuipers L. 2008, Phys. Rev. Lett. 102, 203904. http://dx.doi.org/10.1103/PhysRevLett.102.203904

Prodan E, Radloff C, Halas NJ, Nordlander P. 2003, Science, 302, 419. http://dx.doi.org/10.1126/science.1089171

Zia R, Selker MD, Catrysse PB, Brongersma ML. 2004, J. Opt. Soc. Am. A 21, 2442. http://dx.doi.org/10.1364/JOSAA.21.002442

Mühlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW. 2005, Science 308, 1607. http://dx.doi.org/10.1126/science.1111886

Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen. 2006, T.W. Nature, 440, 508. http://dx.doi.org/10.1038/nature04594

Krasavin AV, Zheludev NI. 2004, Appl. Phys. Lett. 84, 1416. http://dx.doi.org/10.1063/1.1650904

Oulton RF. 2009, Nature 461, 629. http://dx.doi.org/10.1038/nature08364

Okamoto K. 2004, Nature Mater. 3, 601. http://dx.doi.org/10.1038/nmat1198

Pendry JB. 2000, Phys. Rev. Lett. 85, 3966. http://dx.doi.org/10.1103/PhysRevLett.85.3966

Shelby RA., Smith DR, Schultz S. 2001, Science 292, 77. http://dx.doi.org/10.1126/science.1058847

Linden S. 2004, Science 306, 1351. http://dx.doi.org/10.1126/science.1105371

Stuart HR, Hall DG. 1996, Appl Phys Lett 69, 2327. http://dx.doi.org/10.1063/1.117513

Stuart HR, Hall DG. 1998, Appl Phys Lett 73, 3815. http://dx.doi.org/10.1063/1.122903

Harry A. Atwater, Albert Polman. 2010, Nature Materials, 9,205. http://dx.doi.org/10.1038/nmat2629

Kelly KL, Coronado E, Zhao LL, Schatz GC. 2002, Journal of Physical Chemistry B 107,668. http://dx.doi.org/10.1021/jp026731y

Cheng YN, Wang M, Borghs G, Chen HZ. 2011, Langmuir 27,7884. http://dx.doi.org/10.1021/la200840m

Yang Y, Matsubara S, Nogami M, Shi JL. 2007, Materials Science and Engineering B 140, 172. http://dx.doi.org/10.1016/j.mseb.2007.03.021

Morfa AJ, Rowlen KL, Reilly TH, Romero MJ, Lagemaat JVD. 2008, Applied Physics Letters 92, 013504. http://dx.doi.org/10.1063/1.2823578

Kim SS, Na SI, Jo J, Kim DY, Nah YC. 2008, Applied Physics Letters 92, 073307. http://dx.doi.org/10.1063/1.2967471

Yoon WJ, Jung KY, Liu J, Duraisamy T, Revur R, Teixeira, S. Sengupta, P.R. Berger, 2010, Solar Energy Materials FL, Solar Cells 94,128. http://dx.doi.org/10.1016/j.solmat.2009.08.006

Rocca M. 1995, Surf. Sci. Rep., 22, 1. http://dx.doi.org/10.1016/0167-5729(95)00004-6

Teny Theresa John, Sudha Kartha C, Vijayakumar KP, Abe T, Kashiwaba Y. 2005, Sol. Energy Mater. Sol. Cells 89, 27 http://dx.doi.org/10.1016/j.solmat.2004.12.005

Jayakrishnan R, Teny Theresa John Sudha Kartha C, Vijayakumar KP, Deepthi Jain, Sarath Chandran, Ganeshan V. 2008, J Appl Phys 103, 053106 http://dx.doi.org/10.1063/1.2841488

Jayakrishnan R, Tina Sebastian, Teny Theresa John, C.Sudha Kartha Vijayakumar KP. 2007, J Appl Phys 102, 043109 http://dx.doi.org/10.1063/1.2770830

Jayakrishnan R, Teny Theresa John, Sudha Kartha CVijayakumar KP, Abe T, Kashiwaba Y. 2005, Semi. Cond. Sci. and Tech. 20, 1162 http://dx.doi.org/10.1088/0268-1242/20/12/003

Jayakrishnan R. 2013, Materials Science in Semiconductor Processing, 16 (6), 1608. http://dx.doi.org/10.1016/j.mssp.2013.04.018

Ehrenreich E, Philipp H. 1962, Phys. Rev., 128, 1622. http://dx.doi.org/10.1103/PhysRev.128.1622

Chen CF, Tzeng SD, Chen HY, Lin KJ, Gwo S. 2008, Journal of the American Chemical Society 130, 824. http://dx.doi.org/10.1021/ja0773610

Downloads

Published

2015-12-01

Issue

Section

Articles