Gradation of Nanoparticle Size by Stokes' Law: A New Approach for Synthesis of CdS Nanoparticles

Authors

  • Beer Pal Singh Department of Physics, Ch. Charan Singh University, Meerut – 250004 (UP), India
  • Shekhar Tyagi Department of Physics, Ch. Charan Singh University, Meerut – 250004 (UP), India
  • Rakesh Kumar Department of Physics, Ch. Charan Singh University, Meerut – 250004 (UP), India

DOI:

https://doi.org/10.15379/2408-977X.2015.02.01.4

Keywords:

Stokes' law, Cadmium sulfide, Nanoparticles, IR radiation, Optical spectroscopy, XRD, SEM.

Abstract

The synthesis technique and its allied process parameters have a specific effect on the nucleation, growth-dominated microstructure and properties of nanostructure materials. The properties of semiconductor nanoparticles strongly depend on its size, shape, composition, crystallinity and structure. Recently, semiconductor nanoparticles have been extensively investigated and gained much interest due to their unique properties and applications in diverse areas of science and technology. A new controlled technique for synthesis of CdS nanopartlicles by means of kinetic approach using well-known Stokes' law for free body falling in quiescent and viscous fluid has been employed. Nanoparticles of cadmium sulfide (CdS) have been synthesized by simple controlled chemical method using IR radiation heating without using any capping agent and stirring. The desired concentration of aqueous solutions of cadmium chloride (CdCl2.2H2O) and thioacetamide (CH3CSNH2) were reacted in a controlled manner by IR radiation heating at the reaction area (top layer of reactants solution) of solution results the formation of CdS nanoparticles following Stokes' law. The as-synthesized nanoparticles were characterized by XRD, optical spectroscopy and SEM with EDX analysis.

References

Afzaal M, Ellwood K, Pickett NL, O’Brien P, Raftery J, Waters J, J Mater Chem 2004; 14: 1310-1315. http://dx.doi.org/10.1039/b313063k

Nirmal M, Brus L, Acc Chem Res 1999; 32: 407. http://dx.doi.org/10.1021/ar9700320

Alivisatos AP, J Phys Chem 1996; 100: 13226-13239. http://dx.doi.org/10.1021/jp9535506

Burda C, Chen X, Narayanan R, El-Sayed MA, Chem Rev 2005; 105: 1025-1102. http://dx.doi.org/10.1021/cr030063a

Carney R P, Kim J Y, Qian H, Jin R, Mehenni H, Stellacci Fr, Bakr O M, Nat Commun 2011; 2:335: 1338, 1-8.

Maity R, Chattopadhyay KK, J Nanopart Res 2006; 8: 125-130. http://dx.doi.org/10.1007/s11051-005-8595-y

Zhang YC, Wang GY, Hu XY, J Alloys Compd 2007; 437: 47-52. http://dx.doi.org/10.1016/j.jallcom.2006.07.065

Alivisatos AP, Science 1996; 271: 933-937. http://dx.doi.org/10.1126/science.271.5251.933

Geng J, Jia X, Zhu, J. Cryst Eng Commun 2011; 13: 193-198. http://dx.doi.org/10.1039/C0CE00180E

Jang J S, Upendra AJ, Jae SL, J Phys Chem C 2007; 111: 13280-13287. http://dx.doi.org/10.1021/jp072683b

Dolog I, Robert R, Mallik, and Lyuksyutov F S, Appl Phys Lett 2007; 90: 213111. http://dx.doi.org/10.1063/1.2742910

Zhao H, Farah A, Morel D, Ferekides CS, Thin Solid Films, 2009; 517 (7): 2365. http://dx.doi.org/10.1016/j.tsf.2008.11.041

Lal C, Jain IP, Inter J of Hydro Energy, 2012; 37: 3792-3796. http://dx.doi.org/10.1016/j.ijhydene.2011.06.033

Han J, Spanheimer C, G Haindl, Fu G, Krishnakumar V, Schaffner J, Sol Energy Mater Sol Cells 2011; 95: 816-820. http://dx.doi.org/10.1016/j.solmat.2010.10.027

Ma RM, Wei XL, Dai L, Huo HB, Qin GG. Nanotechnology 2007; 18: 1-5.

Li L, Coates N, Moses D. J Am Cmem Soc. 2010; 132: 22-23 http://dx.doi.org/10.1021/ja908371f

Kotkata MF, Masoud AE, Mohamed MB, Mahmoud EA. Physica E 2009; 41: 1457-1465. http://dx.doi.org/10.1016/j.physe.2009.04.020

Ghows N, Entezari MH. Ultrasonics Sonochemistry 2011; 18: 269-275

Figure 6: EDAX spectrum of as-prepared CdS nanoparticles. Underneath is the elemental composition of the product. http://dx.doi.org/10.1016/j.ultsonch.2010.06.008

Tang KB, Qian YT, Zeng JL, Yang XG, Adv Mater. 2003; 15: 448-450. http://dx.doi.org/10.1002/adma.200390104

Osuntokun J, Ajibade PA. Superlatt Microstruc 2015; 83: 89-100. http://dx.doi.org/10.1016/j.spmi.2015.01.018

Ajibade PA, Onwudiwe DC, Moloto MJ, Polyhedron 2011; 30: 246-252. http://dx.doi.org/10.1016/j.poly.2010.10.023

Pickett NL, O'Brien P. The Chem Rec 2001; 1: 467-479. http://dx.doi.org/10.1002/tcr.10002

Gibson PN, Ozsan ME, Lincot D, Cowache P, Summa D, Thin Solid Films 2000; 361: 34. http://dx.doi.org/10.1016/S0040-6090(99)00833-0

Klug HP & Alexander LE, X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd Edition (John Wily and Sons, New York), (1954) 491.

Tauc J., Amorphous and liquid semiconductors, (Plenum Press New York) (1974) 159. http://dx.doi.org/10.1007/978-1-4615-8705-7_4

Efros AI, Efros AL, Sov. Phys. Semicon. 1982; 16: 772.

Brus LE, J. Chem. Phys. 1986; 90: 2555. http://dx.doi.org/10.1021/j100403a003

Kayanuma Y. Phys.Rev. B. 1998; 38: 9797-9805. http://dx.doi.org/10.1103/PhysRevB.38.9797

Brus LE, J Chem Phys 1984; 80 (9): 4403-4409. http://dx.doi.org/10.1063/1.447218

Downloads

Published

2015-06-15

Issue

Section

Articles