Properties of the Coherence Length and Van Hove Singularity in High-Tc Superconductors

Authors

  • A. Bechlaghem Faculté des Sciences de la Nature et de la Vie, Université d’Oran, Es-sénia, 31100, Algeria

DOI:

https://doi.org/10.15379/2408-977X.2015.02.01.3

Keywords:

Superconductivity, Density of states, Coherence length, Fermi velocity, Fermi energy, Gap energy, Van Hove singularity, Phonon-interaction, Effective mass, Coulomb repulsion.

Abstract

High- superconductors are characterized by a short coherence length . From the quasi-2D structure of these compounds, we calculate the density of states , the Fermi velocity and the gap energy . From these parameters, we deduce a formula of the coherence length . We study the effect of the phonon-interaction , the effective mass of carriers and the Coulomb repulsion on the coherence length . We show that when the coupling constant is in the range 0.06 – 0.30 and the effective mass is between 2m0 and 6m0 (m0 is the free electron mass), the values obtained of the coherence length and the gap energy are in a good agreement with experimental results.

References

Welp U, Kwok WK, Crabtree GW, Vandervoort KG and Liu JZ. Magnetic measurements of the upper critical field of delta single crystals. Phys Rev Lett. 1989; 62(16): 1908-1911. http://dx.doi.org/10.1103/PhysRevLett.62.1908

Hao Z, Clem JR, McElfresh MW, Civale L, Malozemoff AP, Holtzberg F. Model for the reversible magnetization of high-? type-II superconductors: Application to high- superconductors. Phys Rev B. 1991; 43(4): 2844-2852. http://dx.doi.org/10.1103/PhysRevB.43.2844

Brandsatter G, Sauerzopf FM, Weber HW, Ladenberger F, Schwarzmann E. Upper critical field, penetration depth, and GL parameter of Tl-2223 single crystals. Physica C. 1994; 235-240(3): 1845-1846.

Li Q, Suenaga M, Hikata T, Sato K. Two-dimensional fluctuations in the magnetization of Bi2Sr2Ca2Cu3O10. Phys Rev B. 1992; 46(9): 5857-5860. http://dx.doi.org/10.1103/PhysRevB.46.5857

Brandaw B. Characteristic features of the exotic superconductors.Phys. Rep. 1998; 296(1): 1-63. http://dx.doi.org/10.1016/S0370-1573(97)00071-9

Ekino T, Doukan T, Fujii H, Nakamura F, Sakita S, Kodama M et al. Superconducting energy gap of La1.85Sr0.15CuO4 single crystals from break-junction tunneling. Physica C. 1996; 263(1-4): 249-252. http://dx.doi.org/10.1016/0921-4534(95)00714-8

Yoshida T, Hashimoto M, Ideta S, Fujimori A, Tanaka K, Mannella N et al. Universal versus material-dependent two-gap behaviors of the high- cuprate superconductors: angle-resolved photoemission study of La2?xSrxCuO4. Phys Rev Lett. 2009; 103(3): 037004-037007. http://dx.doi.org/10.1103/PhysRevLett.103.037004

Yu G, Li Y, Motoyama EM, Greven M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nature Phys. 2009; 5: 873-875. http://dx.doi.org/10.1038/nphys1426

Ekino T, Akimitsu J. Energy gaps in Bi-Sr-Ca-Cu-O and Bi-Sr-Cu-O systems by electron tunneling. Phys Rev B. 1989; 40 (10): 6902-6911. http://dx.doi.org/10.1103/PhysRevB.40.6902

Lee WS, Vishik IM, Tanaka K, Lu DH, Sasagawa T, Nagaosa N et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature (London). 2007; 450: 81-84. http://dx.doi.org/10.1038/nature06219

Fedorov AV, Valla T, Johnson PD, Li Q, Gu GD, Koshizuka N. Temperature dependent photoemission studies of optimally doped Bi2Sr2CaCu2O8. Phys Rev. Lett. 1999; 82(10): 2179-2182. http://dx.doi.org/10.1103/PhysRevLett.82.2179

Ideta S, Takashima K, Hashimoto M, Yoshida T, Fujimori A, Anzai H et al. Enhanced superconducting gaps in the trilayer high-temperature Bi2Sr2Ca2Cu3O10+? cuprate superconductor. Phys Rev Lett. 2010; 104(22): 227001-227004. http://dx.doi.org/10.1103/PhysRevLett.104.227001

Wei JYT, Tsuei CC, van Bentum PJM, Xiong Q, Chu CW, Wu MK. Quasiparticle tunneling spectra of the high- mercury cuprates: Implications of the d-wave two- dimensional van Hove scenario. Phys Rev B. 1998; 57(6): 3650-3662. http://dx.doi.org/10.1103/PhysRevB.57.3650

Getino JM, de Llano M, Rubio H. Properties of the gap energy in the van Hove scenario of high-temperature superconductivity. Phys Rev B. 1993; 48(1): 597-599. http://dx.doi.org/10.1103/PhysRevB.48.597

Bouvier J, Bok J. Gap anisotropy and van Hove singularities in high- superconductors. Physica C. 1995; 249(1): 117-122. http://dx.doi.org/10.1016/0921-4534(95)00294-4

Sarkar S, Das AN. Isotope-shift exponent, pressure coefficient of , and the superconducting-gap ratio within the van Have scenario. Phys Rev B. 1994; 49(18): 13070-13074. http://dx.doi.org/10.1103/PhysRevB.49.13070

Krunavakarn B, Udomsamuthirun P, Yoksan S, Grosu I, Crisan M. The gap-to- ratio of a van Hove superconductor. J Supercond. 1998; 11(2): 271-273. http://dx.doi.org/10.1023/A:1022636001976

Pakokthom C, Krunavakarn B, Udomsamuthirun P, Yoksan S. Reduced-gap ratio of high- cuprates within the d-wave two-dimensional van Hove scenario. J. Supercond. 1998; 11(4): 429-432. http://dx.doi.org/10.1023/A:1022645630932

Das AN, Lahiri J, Sil S. Superconducting gap ratio and isotope-shift exponent in a pair-tunneling model. Physica C. 1998; 294(1-2): 97-104. http://dx.doi.org/10.1016/S0921-4534(97)01754-1

Kaskamalas S, Krunavakarn B, Rungruang P, Yoksan S. Dependence of the gap ratio on the Fermi level shift in a van Hove superconductor. J. Supercond. Incor. Novel Mag. 2000; 13(1): 33-36. http://dx.doi.org/10.1142/s0217979200002387

Fedorov AV, Valla T, Johnson PD, Li Q, Gu GD, Koshizuka N. Temperature dependent photoemission studies of optimally doped Bi2Sr2CaCu2O8. Phys Rev Lett. 1999; 82(10): 2179-2182. http://dx.doi.org/10.1103/PhysRevLett.82.2179

Shen Z-X, Spicer WE, King DM, Dessau DS, Wells BO. Photoemission studies of high- superconductors: the superconducting gap. Science. 1995; 267: 343-350. http://dx.doi.org/10.1126/science.267.5196.343

Ding H, Campuzano JC, Gofron K, Gu C, Liu R, Veal BW et al. Gap anisotropy in Bi2Sr2CaCu2O8+? by ultrahigh-resolution angle-resolved photoemission Phys Rev B. 1994; 50(2): 1333-1336. http://dx.doi.org/10.1103/PhysRevB.50.1333

Ma J, Quitmann C, Kelley RJ, Alméras P, Berger H, Margaritondo G et al. Observation of a van Hove singularity in Bi2Sr2CaCu2O8+x with angle-resolved photoemission. Phys. Rev. B. 1995; 51(6): 3832-3839. http://dx.doi.org/10.1103/PhysRevB.51.3832

Blumberg G, Stojkovi? BP, Klei MV. Aniferromagnetic excitations and van Hove singularities in YBa2Cu3O6+x. Phys Rev B. 1995; 52(22): R15741-R15744. http://dx.doi.org/10.1103/PhysRevB.52.R15741

Rossat-Mignod J, Regnault LP, Vettier C, Bourges P, Burlet P, Bossy J et al. Neutronscattering study of the YBa2Cu3O6+x system. Physica C. 1991; 185-189 (1): 86-92. http://dx.doi.org/10.1016/0921-4534(91)91955-4

Burger JP, Zanoun Y. Main properties and origin of the new high- superconductors. Materials Chemistry and Physics. 1992; 32(1): 177-182. http://dx.doi.org/10.1016/0254-0584(92)90274-C

Markiewicz RS. A survey of the van Hove scenario for high- superconductivity with special emphasis on pseudogap and striped phases. J Phys Chem Solids. 1997; 58(8): 1179-1310. http://dx.doi.org/10.1016/S0022-3697(97)00025-5

Labbé J, Bok J. superconductivity in alkaline-earth-substituted La2CuO4: a theoretical model Europhys. Lett. 1997; 3(11): 1225-1230. http://dx.doi.org/10.1209/0295-5075/3/11/012

Bok J, Force L. Origin of superconductivity in cuprates the Van Hove scenario. Physica C. 1991; 185-189(3): 1449-1450. http://dx.doi.org/10.1016/0921-4534(91)90851-O

Bechlaghem A, Mostéfa M, Zanoun Y. Gap energy, isotope effect and coherence lengh in high- oxides. Int J Mod Phys B. 1999; 13(32): 3915-3925. http://dx.doi.org/10.1142/S0217979299004082

Pattnaik PC, Kane CL, Newns DM, Tsuei CC. Evidence for the van Hove scenario in high-temperature superconductivity from quasiparticle-life time broadening. Phys Rev B. 1992; 45(10): 5714-5717. http://dx.doi.org/10.1103/PhysRevB.45.5714

Newns DM, Tsuei CC, Huebener RP, van Bentum PJM, Pattnaik PC, Chi CC. Quasiclassical transport at a van Hove singularity in cuprate superconductors. Phys Rev Lett. 1994; 73(12): 1695-1698. http://dx.doi.org/10.1103/PhysRevLett.73.1695

Houssa M, Ausloos M, Cloots R. Thermal conductivity of YBa2 (Cu1-xZnx) O7-?: relation between x and ?. Phys. Rev B. 1997; 56(10): 6226-6230. http://dx.doi.org/10.1103/PhysRevB.56.6226

Newns DM, Tsuei CC, Pattnaik PC, Kane CL. Cuprate superconductivity: The van Hove scenario. Comments Condens Matter Phys. 1992; 15: 273-302.

Schulz HJ. Superconductivity and antiferromagnetism in the two-dimensional Hubbard model: Scaling theory. Europhys. Lett. 1987; 4(5): 609-615. http://dx.doi.org/10.1209/0295-5075/4/5/016

Xing DY, Liu M, Gong CD. Comment on “Anomalous isotope effect and van Hove singularity in superconducting Cu oxides”. Phys Rev Lett. 1992; 68(7): 1090. http://dx.doi.org/10.1103/PhysRevLett.68.1090

Bechlaghem A, Bourbie D. Properties of the superconducting gap ratio in the van Hove scenario of high- oxides. Mod Phys Lett B. 2010; 24(23): 2395-2401. http://dx.doi.org/10.1142/S0217984910024638

Bechlaghem A, Bourbie D. Theory of the isotope effect and superconducting transition temperature in high- oxides. Mod Phys Lett B. 2011; 25(26): 2069-2078. http://dx.doi.org/10.1142/S0217984911027248

Bechlaghem A, Bourbie D. Isotope effect due to the super-exchange interaction and van Hove singularity in high- superconductors. J App Phys. 2013; 114(6): 063901-063903. http://dx.doi.org/10.1063/1.4817789

Bok J, Bouvier J. Superconductivity in cuprates, the van Hove scenario. J. Supercond. 1999; 12(1): 27-31. http://dx.doi.org/10.1023/A:1007753032139

Novikov DL, Gubanov VA, Freeman AJ. Electronic structure and Fermi surface topology of the infinite-layered superconductor Sr Physica C. 1993; 210(3-4) 301-556. http://dx.doi.org/10.1016/0921-4534(93)90971-R

Udomsamuthirun P, Yoksan S, Crisan M. Effect of orthorhombic and second-nearest neighbor hopping on gap-to ratio. J. Supercond. 1997; 10(3): 189-191. http://dx.doi.org/10.1007/BF02770549

Cappelluti E, Pietronero L. Nonadiabatic superconductivity: The role of van Hove singularities. Phys Rev B. 1996; 53(2): 932-944. http://dx.doi.org/10.1103/PhysRevB.53.932

Tsuei CC, Newns DM, Chi CC, Pattnaik PC. Anomalous isotope effect and van Hove singularity in superconducting Cu oxides. Phys Rev Lett. 1990; 65(21): 2724-2727. http://dx.doi.org/10.1103/PhysRevLett.65.2724

Bechlaghem A. Fundamental Properties and Origin of High- Cuprate Superconductors: Development of Concepts. Int J App Phys Res.2014; 1(1): 19-34. http://dx.doi.org/10.15379/2408-977X.2014.01.01.3

Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys Rev. 1957; 108: 1175-1204. http://dx.doi.org/10.1103/PhysRev.108.1175

Kresin VS, Wolf SA. Major normal and superconducting parameters of high- oxides. Phys Rev B. 1990; 41(7): 4278-4285. http://dx.doi.org/10.1103/PhysRevB.41.4278

Kresin VZ, Wolf SA, Ovchinnikov YN. Exotic normal and superconducting properties of the high- oxides. Phys Rep 1997; 288(1): 347-354. http://dx.doi.org/10.1016/S0370-1573(97)00032-X

Aminov BA, Hein MA, Muller G, Piel H, Wehler D. Two-gap structure in Yb(Y)Ba2CuO3-x singal crystals. J. Supercond. 1994; 7(2): 361-365 http://dx.doi.org/10.1007/BF00724569

Shen Z-X, Dessau DS, Wells BO, King DM, Spicer WE, Arko AJ et al. Anomalously Large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+?. Phys Rev Lett. 1993; 70 (10): 1553-1556. http://dx.doi.org/10.1103/PhysRevLett.70.1553

Force L, Bok J. Superconductivity in two dimensional systems: van Hove singularity and Coulomb repulsion. Solid State Commun. 1993; 58(11): 975-978. http://dx.doi.org/10.1016/0038-1098(93)90716-Z

Downloads

Published

2015-06-15

Issue

Section

Articles