Influence of Stress Relaxation on the Magnetization Process of Hitperm-Type Glass-Coated Microwires

Authors

  • A. Talaat Dpto. Fisica de Materiales, UPV/EHU, 20018 San Sebastian, Spain
  • P. Klein Institute of Physics, Faculty of Science, University of Pavol Jozef Safarik, Park Angelinum 9, 041 54 Kosice, Slovakia
  • V. Zhukova Dpto. Fisica de Materiales, UPV/EHU, 20018 San Sebastian, Spain
  • R. Varga Institute of Physics, Faculty of Science, University of Pavol Jozef Safarik, Park Angelinum 9, 041 54 Kosice, Slovakia
  • A. Zhukov Dpto. Fisica de Materiales, UPV/EHU, 20018 San Sebastian, Spain

DOI:

https://doi.org/10.15379/2408-977X.2014.01.02.2

Keywords:

Glass-coated microwires, Nanocrystalline microstructure, Switching field.

Abstract

The remagnetization process of most amorphous and nanocrystalline glass-coated microwires with positive magnetostriction coefficient occurs through the single and large Barkhausen jump. This article encompasses a study on the magnetization process of thin Hitperm-type glass coated microwires. The complex stress distribution inside these microwires enables us to investigate the influence of; the measuring frequency, applied tensile stresses, as well as current annealing, and conventional annealing at wide range of temperatures. A systematic elucidations have been discussed in the framework of the microwire's geometries and the shape anisotropy that arises during its fabrication process, with the aim to provide an assessment of the criteria for selecting the necessary conditions to be designed in high-performance sensors.

References

Parkin SSP, Hayashi M, Thomas L. Magnetic domain wall racetrack memory. Science 2008; 320: 190.

Beach GSD, Nistor C, Knutson C, Tsoi M, and Erskine JL. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nat Mater 2005; 4, No 10: 741-4.

Larin VS, Torcunov AV, Zhukov A, Gonzalez J, Vazquez M, Panina L. Preparation and properties of glass-coated microwires. J. Magn Magn Mater 2002; 249; 39-45.

Zhukov AP, Vázquez M, Velázquez J, Chiriac H and Larin V, The remagnetization process of thin and ultrathin Fe-rich amorphous wires. J Magn Magn Mater 1995, 151, 132-8

Mohri K, FB. Humphrey K. Kawashima, K. Kimura and M. Muzutani. Large Barkhausen and Matteucci effects in FeCoSiB, FeCrSiB and FeNiSiB amorphous wires. IEEE Trans Magn 1990; Mag-26: 1789-91

Varga R, Zhukov A, Blanco JM, Ipatov M, Zhukova V, Gonzalez J, Vojtaník P. Fast magnetic domain wall in magnetic microwires. Phys Rev B 2006; 74; 212405

Panina LV, Mizutani HM, Mohri K, Humphrey FB and Ogasawara L. Dynamics and relaxation of large Barkhausen discontinuity in amorphous wires. IEEE Trans Magn 1991; 27: 5331-3.

Vázquez M, Basheed GA, Infante G, and Del Real RP. Trapping and Injecting Single DomainWalls in Magnetic Wire by Local Fields. Phys Rev Lett 2012; 108: 037201.

Chiriac H and Ovari TA. Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog Mater Science 1996; 40; 333- 407.

Kabanov Yu, A. Zhukov A, Zhukova V and Gonzalez J. Magnetic domain structure of microwires studied by using the magneto-optical indicator film method. Appl Phys Lett 2005; 87: p142507

Varga R, Klein P, Richter K, Zhukov A, Vazquez M. Fast domain wall dynamics in amorphous and nanocrystalline magnetic microwires. J Magn Magn Mater 2012; 324: 3566-3568

Zhukov AP, Ponomarev BK. Start field distribution in bistable amorphous ribbon, Phys Stat Sol (a) 1989; 112: k127-30.

Zhukov AP. The remagnetization process of bistable amorphous alloys. Mat Design 1993; 5: 299-305.

Zhukov A, Vázquez M, Velázquez J, Garcia C, Valenzuela R and Ponomarev B. Frequency dependence of coercivity in rapidly quenched amorphous materials. J Mat Sci Eng 1997; A226-228: 753-6

Zhukova V, Cobeño AF, Zhukov A, Blanco JM, V. Larin V and Gonzalez J. Coercivity of glass-coated Fe73.4-xCu1Nb3.1Si13.4+xB9.1 (0?x?1.6) microwires. Nanostruct Mater 1999; 11(8): 1319-27.

Rodionova V, Ipatov M, Ilyn M, Zhukova V, Perov N, Gonzalez J and Zhukov A. Tailoring of Magnetic Properties of Magnetostatically-Coupled Glass-Covered Magnetic Microwires. J Supercond Nov Magn 2011; 24(1-2): 541-7

García C, Zhukova V, Gonzalez J, Blanco JM, Zhukov A. Effect of magnetic field frequency on coercivity behavior of nanocrystalline Fe79Hf7B12Si2 glass-coated microwires. Phys B 2008; 403: 286-8

Willard MA, Huang M-Q, Laughlin DE, McHenry ME, Cross JO, Harris VG, Franchetti C. Magnetic properties of HITPERM (Fe,Co)88Zr7B4Cu1 magnets. J Appl Phys 1999; 85: 4421- 3.

Škorvánek I, Švec P, Marcin J,Ková? J, Krenický T and Deanko M, Nanocrystalline Cu-free HITPERM alloys with improved soft magnetic properties. Phys stat sol(a) 2003; 196(1) 217- 20.

García C, Zhukov A, Gonzalez J, Zhukova V, Varga R, del Val JJ, Larin V and Blanco JM. Studies of a structural and magnetic properties of glass-coated nanocrystalline Fe79Hf7B12Si2 microwires. J Alloys Comp 2006; 423: 116-9.

Klein P, Varga R, and Vazquez M, Stable and fast domain wall dynamics in nanocrystalline magnetic microwire. J. Alloys Comp 2013; 550: 31-34.

Zhukova V, Cobeño AF, Zhukov A, Blanco JM, Puerta S, Gonzalez J and Vázquez M, Tailoring of magnetic properties of glass coated microwires by current annealing, Non-crystalline solids 2001; 287; 31-36

Zhukov A, Zhukova V, Larin V, Blanco JM and Gonzalez J. Tailoring of magnetic anisotropy of Fe-rich microwires by stress induced anisotropy. Physica B 2006; 384: 1-4

Klein P, Varga R, Badini-Confalonieri GA and Vazquez M. Study of the Switching Field in Amorphous and Nanocrystalline FeCoMoB Microwire. IEEE Trans Magn 2010; 46 ( 2): 357-60.

García C, Zhukov A, Gonzalez J, Zhukova V, Varga R, del Val JJ, Larin V, Chizhik A and Blanco JM. Stress dependence of coercivity in nanocrystalline Fe79Hf7B12Si2 glass-coated microwires. JAppl Phys 2006; 99: 08F116.

Allia P and Vinai F. New approch to the study of the magnetic permeability aftereffect of amorphous ferromagnetic alloys. Phys Rev B 1982; 26: 6141-9.

Varga R, Zhukov A, Blanco JM, Gonzalez J, Zhukova V and Vojtanik P. Stress dependence of the domain wall potential in amorphous CoFeSiB glass-coated microwires. Phys. B 2006; 372: 230-3.

Klein P, Varga R, Vojtanik P, Kovac J, Ziman J, Badini-Confalonieri GA and Vazquez M. Bistable FeCoMoB microwires with nanaocrystalline microstructure and increased Curie temperature. J Phys D: Appl Phys 2010; 43: 045002.

Vázquez M, Ascasibar E, Hernando A and Nielsen OV. Co-Si-B and Fe-Co-B amorphous alloys: Induced anisotropy and various magnetic properties. J Magn Magn Mater 1987; 66: 37-44.

Luborsky FE and Walker JL. Magnetic Anneal Anisotropy in Amorphous Alloys. IEEE Trans Magn 1977; Mag-13: 953-6.

Miyazaki T and Takahashi M. Magnetic annealing effect of amorphous (Fe1- xCox)77Si10B13 alloys. J Appl Phys 1978; 17: 1755-63.

Nielsen OV and Nielsen HJV. Stess and field-induced magnetic anisotropy in metallic glasses with positive or negative ?s. Solid Stat Commun 1980; 35: 281-4.

González J, Vázquez M, Barandiarán JM, Madurga V and Hernando A. Different Kinds of Anisotropies Induced by Current Annealing in Metallic Glasses. JMagn Magn Mater 1987; 68: 151-6

Garcia Prieto MJ, Pina E, Zhukov AP, Larin V, Marin P, Vázquez M and Hernando A. Glass coated Co-rich Amorphous Microwires with Improved Permeability. Sens Actuators A 2000; 81 (1-3), 227-31.

Zhukov A, Gonzalez J, Blanco JM, Prieto MJ , Pina E and Vazquez M, Induced Magnetic Anisotropy in Co-Mn-Si-B Amorphous Microwires. J Appl Phys 2000; 87: 1402-8.

Downloads

Published

2014-12-31

Issue

Section

Articles